
S4D-Cache: Smart Selective SSD Cache for Parallel
I/O Systems

Shuibing He, Xian-He Sun, Bo Feng

Department of Computer Science

Illinois Institute of Technology

Chicago, IL 60616

{she11, sun, bfeng5}@iit.edu

Abstract—Parallel file systems (PFS) are widely-used in mod-
ern computing systems to mask the ever-increasing performance
gap between computing and data access. PFSs favor large
requests, and do not work well for small requests, especially
small random requests. Newer Solid State Drives (SSD) have
excellent performance on small random data accesses, but also
incur a high monetary cost. In this study, we propose a hybrid
architecture named the Smart Selective SSD Cache (S4D-Cache),
which employs a small set of SSD-based file servers as a selective
cache of conventional HDD-based file servers. A novel scheme
is introduced to identify performance-critical data, and conduct
selective cache admission to fully utilize the hybrid architecture
in terms of data-access parallelism and randomness. We have
implemented an S4D-Cache under the MPI-IO and PVFS2
parallel file system. Our experiments show that S4D-Cache
can significantly improve I/O throughput, and is a promising
approach for parallel applications.

Keywords-Parallel I/O System; I/O Middleware; Solid State
Drive

I. INTRODUCTION

Many modern HPC applications are becoming increasingly

data intensive. For example, the astro program in astronomy,

generates tens of gigabytes of data in one run [1]. To meet

the high I/O demands of these applications, HPC clusters rely

on parallel I/O systems to provide data accesses. Typically,

a parallel I/O system consists of several layers including

applications, I/O middleware, parallel file systems (PFSs),

and storage systems. In general, a parallel file system, such

as PVFS [2], Lustre [3] and GPFS [4], will stripe file data

across multiple file (I/O) servers and allows data requests to be

served concurrently by multiple file servers. Thus, I/O system

efficiency is significantly improved by exploiting parallelism

when serving large I/O requests from a PFS.

While PFSs are an effective approach to cap the perfor-

mance gap between the computing system and I/O system

for large requests, they fail to perform well when serving

clusters of small requests, especially random requests. In the

meantime, hard disk drives (HDD), which are the dominant

storage media deployed on current file servers, are notoriously

slow in random data access due to the mechanical nature of

disk head movements. Combining the difficulty of parallelism

and slow access times, small random requests are easily the

number one performance killer of PFSs.

To illustrate the performance degradation from this issue,

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

8
M

1
6

M

3
2

M

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

Request Size

Sequential
Random

Fig. 1. I/O throughput for sequential and random reads

we ran IOR [5] benchmark on a PVFS2 file system built on

eight I/O servers (each server includes a single HDD). We

limited the overall file size to 16GB, the number of processes

to 16, and varied the request size from 4KB to 32MB. Each of

the n MPI processes reads its own 1/n of the shared file, and

continuously issues requests with sequential or random offsets.

Figure 1 demonstrates the aggregated bandwidth for different

request sizes during sequential and random I/O operations.

The average bandwidth is reduced by more than half when

small random accesses are conducted with different request

size from 4KB to 32KB. For request size larger than 4MB,

the random I/O performance is comparable to the sequential

performance. These results confirm that small random access

is a major performance impediment on parallel I/O systems.

A number of approaches have been proposed in the I/O

hierarchy to speed up the small random accesses over the past

years. For example, I/O middleware approaches improve disk

throughput by transforming a large number of small and non-

contiguous requests into large contiguous requests [6], [7].

Memory caching strategies reduce the I/O latency by accessing

more data from memory [8], [9]. I/O scheduling approaches

reorganize the incoming I/O requests to create more sequential

accesses in order to improve performance [10]. These methods

are very helpful, however, they need to be extended to take

the advantage of the availability of new technologies, such as

solid state drive (SSD).

Advanced storage devices, such as SSD, provide a possible

hardware solution to improve small random access perfor-

mance on PFSs. Currently, An SSD is commonly used as a

2014 IEEE 34th International Conference on Distributed Computing Systems

1063-6927/14 $31.00 © 2014 IEEE

DOI 10.1109/ICDCS.2014.59

514

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:47:06 UTC from IEEE Xplore. Restrictions apply.

cache [11]–[14] of HDD or as a hybrid storage [15], [16] on

each file server. While this is straightforward to implement,

it requires a large number of SSDs thus may be costly.

Furthermore, since SSDs are deployed on each file server, the

global utilization of SSDs becomes impossible which can be

very useful to improve performance [17], [18].

In this paper, we propose the Smart Selective SSD Cache

(S4D-Cache) architecture to combine the merits of SSDs

with parallel file systems. The main idea is to employ a

small set of SSD-based file servers as a selective cache for

conventional HDD-based file servers. With a smart selective

algorithm, S4D-Cache can significantly improve I/O through-

put by buffering or caching large amounts of performance-

critical data during both read or write requests.

Conventionally, a cache uses data locality principals to

increase cache efficiency. However, a different scheme is

used for the S4D-cache. The SSD-based cache in the S4D-

Cache architecture is designed to utilize an SSD’s ability to

support small random data accesses. Therefore, the selection

algorithm of S4D-Cache is derived from the randomness of

data accesses, not the data access locality. Application-aware

scheduling to utilize random access performance on SSDs and

the parallelism on PFS is a key strength of S4D-Cache.

In summary, this study makes the following contributions.

• A novel system-level cache architecture is proposed to

use SSDs as a selective cache on top of the traditional

HDD-based file servers. This cache is pluggable and

makes the employment of SSDs cost-effective.

• A cost model is introduced for parallel file requests,

which can evaluate the access time of the request in

parallel file systems built on different data storage media.

• A scheduling scheme which first identifies performance

critical data via the cost model, and then uses a smart

selective cache admission policy to take full advantage

of the hybrid SSD and PFS architecture is introduced.

• A prototype of S4D-Cache is implemented and integrated

under MPI-IO library on a computer cluster equipped

with the PVFS2 parallel file system. This implementa-

tion is transparent to applications, and portable to many

different parallel file systems. S4D-Cache is evaluated

with representative benchmarks, including IOR, HPIO,

and MPI-TILE-IO. Experimental results show that I/O

throughput is significantly improved.

The rest of this paper is organized as follows. Section II

discusses the related work. Section III describes the design of

S4D-Cache and section IV presents the detailed implementa-

tion. Section V evaluates the performance of S4D-Cache with

representative benchmarks. Finally, we conclude the paper in

section VI.

II. RELATED WORK

This section focuses on previous work related to this study

by looking at three separate aspects.

A. I/O Request Stream Optimization

To tackle the performance issue of small random requests,

a lot of efforts have focused on I/O request stream reorgani-

zations in the middleware layer. For multiple noncontiguous

smaller requests, Data sieving [6] technique integrates them

into a larger contiguous chunk including the additional data

(hole) instead of accessing them separately. Datatype I/O [7]

and List I/O [19] techniques allow users to merge multiple

I/O requests with different patterns within a single I/O routine.

Collective I/O [6] is another technique proposed to rearrange

concurrent I/O accesses among a group of processes of a

parallel program to a larger contiguous request.

All these techniques succeed in exploiting regular group

relation for parallelism, but they are not designed to utilize

SSDs for random access. S4D-Cache can use not only these

techniques for its underlying parallel file systems but also

utilize SSDs’ characteristics.

B. Using System Memory as Cache

Traditionally the problem of small requests is addressed by

using system main memory as cache. These cache schemes

are deployed on both client side and server side in a parallel

environment, including client-side file caching in GPFS [4]

and Lustre [3], cooperative caching [20], active buffering [9]

and collective caching [8].

In contrast to these memory-based methods, S4D-Cache has

larger cache capacity and is reliable due to its use of non-

volatile SSDs. SSDs are a complement of memory cache and

can be served as an extension of memory cache. However,

S4D-Cache has a totally different selection algorithm and

runtime system design. The integration of memory cache and

S4D-Cache will be an interesting topic for future study.

C. SSD-based Storage System

Using SSDs as a cache of traditional HDDs is a widely

used strategy in I/O systems, such as FlashCache [12],

Conquest [21], SieveStore [14], iTransformer [13], and iB-

ridge [11]. Liu et al. simulates a system using SSD storage

on I/O nodes as buffers to handle burst I/O requests [22].

Tiered checkpointing redirects all write data to the RAM

disks or SSDs in the computing nodes [23]. SSD-based hybrid

storage is another popular method to make full use of SSD.

This method integrates an SSD and a hard disk as one block

device [24], [25]. I-CASH is a new hybrid storage architecture

based on data-delta pairs to improve I/O performance for I/O-

intensive workloads [16]. Hystor identifies critical data blocks

with strong temporal locality and redirects them to SSD for

fast future accesses [15].

These approaches succeed in exploiting data access informa-

tion within single file server or computing node. But unlike this

work, S4D-Cache leverages the global data access information

in parallel environment to improve I/O performance. Our pre-

vious work CARL similarly uses the global data information

and SSDs to boost performance [26]. However, the SSD-

based servers are used as persistent storage instead of cache.

With a small set of SSD-based file servers and the selective

515

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:47:06 UTC from IEEE Xplore. Restrictions apply.

Application

Middleware

PFS client

PFS server

Original PFS(OPFS)

SSD SSD

Compute Nodes

CSservers

HDD

…

…

P P P P P P

HDD HDD HDD HDD HDD

S4D-Cache

MPI-IO

…

Cache PFS(CPFS)

DServers

The original system The plug-in system

Fig. 2. The S4D-Cache architecture

cache policy, S4D-Cache provides a feasible and cost-effective

solution for large-scale data intensive applications.

III. DESIGN OF S4D-CACHE

S4D-Cache aims to use SSD-based file servers to cache

small random accesses in parallel I/O system with non-uniform

workloads. By exploiting SSD’s strong performance advantage

for small random request, the I/O system performance can be

significantly improved.

A. Architecture Overview

Figure 2 shows the high performance computer systems

for which S4D-Cache is designed. S4D-Cache acts as an

augmented module to MPI-IO library [27]. In these systems,

besides the traditional HDD-based file servers (DServers),

there are a small number of SSD-based File servers (CServers).

DServers are accessed by the original parallel file system

(OPFS); CServers act as a fractional cache of DServers and

are accessed by the cache parallel file system (CPFS). When

application processes pass their I/O requests to MPI-IO, S4D-

Cache intercepts all the requests and choose the proper servers

to serve them.

Positioning S4D-Cache at the middleware layer is ideal for

several reasons. First, key global data access information, such

as file-level, process-level, and MPI Rank-level attributes are

accessible. Second, the middleware layer is independent of

the file system, allowing the solution to support multiple file

systems, such as PVFS [2], Lustre [3], and GPFS [4]. Third,

the plug-in design is transparent to applications, therefore user

programs do not require modifications to utilize the increased

performance. Finally, because only a small cluster of SSDs

are deployed into the system, the design is flexible and highly

cost-effective.

S4D-Cache consists of three key software components: Data
Identifier, Redirector and Rebuilder, as shown in Figure 3.

Data Identifier intercepts every file request issued to DServers,

and identifies requests for performance-critical data using

a data access cost model. Redirector redirects the selected

requests to the high-performance CServers. While selected

write requests and cached read requests are redirected to

CServers, other write requests and missed read requests are

directed to the traditional DServers. Rebuilder is responsible

Data Identifier

Redirector
Rebuilder

(Helper

thread)

OPFS CPFS

Request

CDT

DMT

Application

main thread

Process 0

Data Identifier

Redirector
Rebuilder

(Helper

thread)

Request

CDT

DMT

Application

main thread

Process 1

S
4

D
-C

a
ch

e

...

Cost

Model

Cost

Model

Fig. 3. Software structure of S4D-Cache

for flushing the selected write data back to DServers, and

fetching the selected read data to CServers.

B. The Data Access Cost Model

TABLE I
PARAMETERS (SHORT IN PARS) IN COST ANALYSIS MODEL.

Pars Description

M Number of HDD file servers

N Number of SSD file servers (N < M)

str Stripe size of parallel file system

d Logical address distance between ri and ri−1

f File offset of request ri
r Data size of request ri
R Average rotation delay for HDD

S Maximum seek time for HDD

βD Cost of access one unit of data for HDD

βC Cost of access one unit of data for SSD

Because each CServer is of relatively limited size, S4D-

Cache only caches performance-critical data. Thus, the poten-

tial performance benefit of redirecting a request to CServers

must be evaluated to prioritize their eligibility for caching. To

this end, a cost model is derived to evaluate the data access

time for each file request in parallel file systems, and the

corresponding parameters are listed in Table I.

For each file request req served by DServers, the access

cost is defined as

TD = Ts + Tt (1)

Ts is the startup time, including disk seek and rotation delay.

Tt is the data transfer time spent on actual data movement. Let

α denote the startup time in each server, then α is usually a

random variable. Assume α follows uniform distribution on

[a, b], then the probability function of α is

P (α < x) =
x− a

b− a
, a � x � b (2)

Here a = F (d) + R, b = S + R. The request distance d
can be a metric to measure the randomness of a request, and

F is a function for converting d to seek time. We use the

approach described in [28] to derive this function from an

offline profiling of the HDD storage.

516

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:47:06 UTC from IEEE Xplore. Restrictions apply.

Request

File Servers

File

Str

r

(1) (2) (3)

r

Sm Sm

r

File Servers File Servers

Request

File

Request

File

r

(4)

r

File Servers

Request

File

f f

Sm

f f

Sm
b

e

b
e

b
e

Fig. 4. Four cases where a file request involves a different number of sub-
requests.

For a parallel request req, it may involve multiple sub-

requests on m file servers, and the overall startup time of

req is determined by the maximum of all sub-requests. Let

α1, α2, · · · , αm be the startup time of the m file servers,

X = max(α1, α2, · · · , αm), then the probability density

function of X is

f(x) =
m× (x− a)m−1

(b− a)m
, a � x � b (3)

Hence, the expectation of the maximum startup time

Ts =

∫ b

a

xf(x)dx = a+
m

m+ 1
(b− a) (4)

On the other hand, the data transfer time Tt of request

req should be the maximum of all m file servers, which is

proportional to the data size in each file server. Let s(i) is

the size of the sub-request on file server i (1 ≤ i ≤ m), and

sm = max{s(1), s(2), ..., s(m)}, then

Tt = sm ∗ βD (5)

Assume the parallel file is placed on DServers with a fixed-

size stripe in a round-robin way, then for a given request with

offset f and size r, the serial number of the involved beginning

file stripe is B = � f
str �, the ending file stripe is E = � f+r

str �.
Hence, the number of the involved file servers is

m =

{
E −B + 1, E −B + 1 < M

M, otherwise
(6)

Accordingly, the size of the beginning fragment can be

calculated as b = str − f%str, and the size of the ending

fragment is e = (f + r)%str. For a parallel I/O request, it

will be served by multiple file servers concurrently. Figure 4

shows an example of the possible sub-request layouts of req.

Let � = E − B, then � � 0, and sm can be calculated as

table II. Based on Equation 6 and table II, TD of each file

request in Equation 1 can be obtained.

In contrast, for request req served at CServers, we calculate

the access cost without consideration of the seek time because

SSDs are insensitive to spatial locality. Assume Sn is the

maximum data size when all SSD file servers are involved

in parallel data accesses, it can be defined as

TABLE II
MAXIMUM SIZE OF SUB-REQUEST IN DIFFERENT FILE ACCESSES CASES.

Case Maximum size of sub-request (sm) Conditions
1 r � = 0

2 max{b+ e+ (��
M
� − 1) ∗ str, � > 0&�%M = 0

��
M
� ∗ str}

3 max{b+ (��
M
� − 1) ∗ str, � > 0&�%M = 1

e+ (��
M
� − 1) ∗ str}

4 ��
M
� ∗ str otherwise

TC = Sn∗βC (7)

Then the performance benefit of serving a request issued to

DServers if it were served by CServers can be calculated as

following:

B = TD − TC (8)

C. Critical Data Identification

With the proposed data access cost model, Data Identifier is

able to obtain the performance benefit (B) for each incoming

request. By examining the above equations, it can be noted that

small random requests lead to more benefit from CServers,

because single CServer has performance advantage in serving

them. However, large continues requests will get less or even

no benefit because DServers have higher parallelism due to

more file servers. A positive B means that serving the request

at CServers will reduce the I/O access time, i.e., increase the

parallel I/O system performance. In such a case, since the

space of CServers is limited, the request should be served at

CServers. Otherwise, serving the request at DServers helps

improve the I/O performance and there is no need to serve it

at CServers.

When the benefit B of a request is larger than zero, Data
Identifier regards the requested data as performance-critical

data, and records it to the critical data table (CDT). As

shown in Figure 5, each entry in CDT consists of four

variables, D file, D offset, Length, and C flag. They indicate

the file name in DServers, the data offset in the file, the data

length, and whether the data needs to be cached in CServers,

respectively. Based on the CDT, critical read/write data can be

identified and redirected to the high-performance CServers.

CDT
…

…

D_file

DMT
…

…

D_offset Length C_flag

D_file D_offset Length C_flag

D_file D_offset C_file C_offset Length D_flag

D_file D_offset C_file C_offset Length D_flag

Fig. 5. The data structure of CDT and DMT

D. Cache Metadata Management

S4D-Cache creates a correlating cache file for each origial

file and uses Data Mapping table (DMT) to keep track of data

517

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:47:06 UTC from IEEE Xplore. Restrictions apply.

information that has been cached in CServers. As shown in

Figure 5, each entry in DMT includes six important fields.

D file and D offset are the file name and offset for the data

in the original file, C file and C offset are the file name and

offset for the data in the cache file. Length is the size of the

cached data, and D flag indicates whether the cached data

is dirty. The D flag is set when CServers contains data that

requires to be copied back to DServers. The DMT is updated

each time a data location has changed. By maintaining the

DMT, Redirector can continuously track the most up-to-date

location of the data, which ensures data consistency between

DServers and CServers.

In memory, the table is organized as a hash table to speedup

lookups, which only incur minimal overhead with several

memory accesses. Since only remapped data needs to be

tracked in the mapping table, the spatial overhead of the

mapping table is small. Besides the memory-resident copy, the

DMT table is also maintained in persistent storage. In order to

reduce the I/O delay of DMT access, in our implementation,

DMT is written to an addressable file in CServers. Changes

to the mapping table are synchronously written to the storage

in order to survive power failures.

In parallel I/O environment, multiple processes possibly ac-

cess DMT concurrently. In order to keep metadata consistency,

DMT is maintained in a global data file, and each process

sends a lock request to access the DMT table. To simplify the

implementation, we leverage the mechanism in Berkeley DB

to perform metadata operations and address lock contentions.

Techniques, similar to the distributed cache meta data [8], can

also be applied to distribute meta data among the application

processes, so that the communication contention for accessing

metadata can be minimized.

E. Selective Caching Scheme

Redirector is a core module in S4D-Cache, it selectively

caches data based on four factors: (1) the mapping entry in

DMT, indicating if the request can be served by CServers, (2)

the entry in CDT, indicating if the missed request should be

admitted in CServers, (3) type of I/O request (read or write),

and (4) the available space in CServers.

Upon each I/O request, Redirector looks up the DMT and

checks if the request hits CServers or not. If so, Redirector
directly serves the request with the data in CServers. Other-

wise, Redirector handles the request obeying a selective cache

policy.

Algorithm 1 shows the work-flow of Redirector for each I/O

request. The algorithm attempts to utilize CServers whenever

possible. For write requests, CServers are regarded as a write

buffer. If there is a sufficient space in CServers (line 5 and

10) or the request is already mapped (line 22), the request will

be absorbed by CServers. In order to reduce data migration

overhead, the algorithm first looks for free space in CServers

when allocating an available space for a write request. If free

space cannot be found, a clean space will be the candidate

based on a LRU policy. For read requests, Redirector uses

CServers as a caching area. When the required data misses,

Algorithm 1 Redirection Algorithm

Require: I/O Request: req, Data Mapping Table: DMT, Crit-

ical Data Table: CDT.

1: if req misses in DMT then
2: if req is write then
3: if req is in CDT then
4: find free space in CServers

5: if free space is found then
6: add new entry in DMT (mark dirty)

7: change the req location as the DMT entry

8: else
9: find clean space in CServers

10: if clean space is found then
11: change the entry in DMT (mark dirty)

12: change the req location as the DMT entry

13: end if
14: end if
15: end if
16: else
17: if req is in CDT then
18: set the C flag of the entry in CDT

19: end if
20: end if
21: else
22: change the req location as the DMT entry

23: end if
24: send request req

the request is cached in a “lazy” way. This means that

Redirector marks the C flag in the corresponding entry of

CDT (line 18), which indicates to Rebuilder that an actual

data movement should be performed in the following data

reorganization stage. This method reduces the response time

of read requests. Please note that this algorithm is selective:

instead of writing or reading all data, it only attempts to absorb

the most performance-critical requests in the CDT (line 3 and

17), to maximize use of CServers space.

F. Data Reorganization

Rebuilder plays the role of freeing CServers space for future

use. It is triggered periodically, and performs two kinds of

operations. 1) It writes dirty data back to DServers, and then

sets the D flag in DMT to 0, indicating the data is clean and

the space is available for future use. 2) It reads data from the

DServers into CServers by consulting the CDT table, and then

sets, the C flag to 0 to show the data has been cached.

The data reorganization activities may interfere with the

normal I/O activities. For this reason, Rebuilder issues low-

priority I/O requests for the reorganization to reduce the

interference.

IV. IMPLEMENTATION

We have implemented the S4D-Cache selective scheme and

its runtime system under MPICH2 [29]. The primary and

challenging parts are explained below.

518

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:47:06 UTC from IEEE Xplore. Restrictions apply.

A. Cache Metadata Mapping Table

Both Redirector and Rebuilder need to get application data

access information from the DMT. The DMT is a key structure

to save the mapping relation between the data cached in

CServers and DServers.

We use Berkeley DB to implement the DMT table. DMT is

a database file which has a standalone space in CServers. The

Berkeley DB is configured as a hash table, and each record

is a key-value pair. We generate a mapID by encoding the

following information: application name, number of process,

rank of the process, and the original file name. Each record

in the Berkeley DB hash table is a key-value pair; the key is

the mapID and the value contains the data access information

listed in Figure 5. By leveraging the light-weighted DB, the

lock contention is addressed and metadata operations are

performed efficiently. We also use a list to maintain the most

frequently accessed mapping entries which further reduces the

in-memory mapping table size.

B. I/O Redirection Module in MPI-IO

The I/O redirection module redirects data accesses on the

original files to the cache file. Usually an application issues a

data request with three parameters: the identifier of the original

file, the data offset, and the request size. The redirection

module translates the filename and offset between the original

file and the cache file and serves the request using the cache

file. We have made the following modifications to the standard

MPI-IO functions.

MPI File open: While opening a file, in addition to open

the original file, the method also opens a corresponding cache

file.

MPI File read: For each I/O read, this method first uses

the input parameters to calculate the performance using Equa-

tion 8. Next, the corresponding entry is added to the CDT

table if the request is a critical request and not in the CDT;

then the method checks whether the opened cache file contains

the requested content by looking up the DMT table. If this

condition is true, the module calculates the correct data offset,

and issues the data request using the new offset and the cache

file handle. Otherwise, the module gets the data using the

original file handle and offset. If the access data belongs to

the CDT, the method sets the C flag of the entry in the CDT

table, which will be later used by Rebuilder.

MPI File write: For each I/O write, this module uses the

input parameters to calculate the performance benefit and adds

the corresponding entry to the CDT table as necessary. Then,

the module checks whether the opened cache file contains the

requested content by initiating a lookup in the DMT table.

If this is true, the module calculates the correct data offset,

and issues the data request using the new offset and cache file

handle. Otherwise, the module determines whether the access

data belongs to the CDT. If so, the method tries to allocate

available space in the cache file for the critical write request,

updates the DMT entry, and issues a data request with the new

offset and cache file handle. Otherwise, the module writes the

data using the original file handle and offset.

MPI File close: It closes the opened cache file.

MPI File seek: It calculates the offset and conducts the

seek operation in the cache file.

When the requested data does not belong to any cache file

and is not performance-critical, this system will act the same

as the default MPI-IO implementation.

C. Data Movement Implementation Issues

In order to avoid interfering with the normal MPI I/O

operations, Rebuilder creates a new I/O helper thread in each

process to handle the background data movement. This I/O

thread is created when the process opens the first file by calling

MPI File open and destroyed after the last file is closed with

MPI File close. Each process can have multiple files opened,

but only one thread is created. Once the I/O thread is created, it

enters an infinite loop to perform the data movement operation

until it is signaled for termination. It communicates with the

main thread through shared variables that store file access

information, such as file handler, offset, etc.

V. PERFORMANCE EVALUATION

In this section, the performance of prototype implementation

of S4D-Cache is evaluated through extensive experiments.

A. Experimental Setup

The experiments were conducted on a 65-node SUN Fire

Linux cluster. Each computing node has two AMD Opteron

processors, 8GB memory and a 250GB HDD (SEAGATE

ST32502NSSUN250G). The operating system is Ubuntu 9.04

and the parallel file system is PVFS2 version 2.8.2. All nodes

are equipped with Gigabit Ethernet interconnection, and eight

nodes are equipped with an additional PCI-E X4 100GB SSD

(OCZ-REVODRIVE X2). Although a more high-end SSD

would certainly improve cache performance, this entry-level

SSD well demonstrates the effectiveness and potential of S4D-

Cache.

Among the available nodes, 32 nodes are used as comput-

ing nodes, eight are DServers, and four are CServers. Each

DServer uses the HDD as storage and each SServer uses the

SSD. DServers and CServers are separately accessed with

their PVFS2 parallel file system. MPICH2 [29] compiled with

ROMIO is used to generate the executable. When S4D-Cache

is enabled, the cache capacity is set to 20% of the application’s

data size. S4D-Cache does not benefit read performance if the

requested data have not been cached in CServers. However,

many MPI programs are executed several times and present

consistent data access patterns [17], [30]. The critical data

identified and cached by S4D-cache in the first run can

improve read performance in the later runs. Therefore, the

read performance improvement of S4D-Cache for the program

with a second run is shown in this paper. In order to show

the effectiveness of SD-Cache, the benchmarks of IOR [5],

HPIO [31], and MPI-Tile-IO [32] are used to evaluate the

performance.

519

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:47:06 UTC from IEEE Xplore. Restrictions apply.

 0

 50

 100

 150

 200

 250

 300

 350

8 16 32 64 4096

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

Request Size (KB)

stock
S4D-Cache

(a) Throughput for write

 0

 50

 100

 150

 200

 250

 300

 350

 400

8 16 32 64 4096

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

Request Size (KB)

stock
S4D-Cache

(b) Throughput for read

Fig. 6. I/O throughputs of IOR with varied request sizes.

B. The IOR Benchmark

IOR is a parallel file system benchmark developed at

Lawrence Livermore National Laboratory [5]. It provides three

APIs: MPI-IO, POSIX, and HDF5; however, only the MPI-

IO is used in this benchmark. To simulate different data

access patterns at different moments, 10 instances of IOR are

created one by one with different parameters. Among these

instances, six issue sequential I/O requests and the remaining

send random I/O requests. In each instance, the test performs

write and read operations to a shared 2GB file. During these

benchmarks, 32 processes are used and the request size is kept

to 16KB unless otherwise specified.

1) Varying Request Sizes: While varying the request size

of IOR from 8KB to 4096KB, the overall I/O performance is

measured. As shown in Figure 6(a), S4D-Cache can improve

the overall write throughput by 51.3%, 49.1%, 39.2% and

32.5% over the stock I/O system with the request size of

8KB, 16KB, 32KB and 64KB respectively. For request size

of 4096KB, S4D-Cache nearly has the same I/O throughput

as the stock I/O system. With smaller request sizes, the I/O

throughput improvement is more significant because CServers

can lead to more benefits for them. For large continuous re-

quests, as DServers has higher parallelism and the performance

gap between CServer and DServer is reduced, placing them on

CServers incurs less or no performance benefits. Thus, S4D-

Cache can bring less performance improvement.

To better understand the reasons for the performance im-

provement, the accessed addresses of requests on DServers

and CServers are tracked using IOSIG, an I/O pattern analysis

tool developed in our previous work [33]. Table III shows

the request distribution at DServers and CServers during the

five-second period of IOR execution from the 50th second

with write request sizes of 16KB and 4096KB. For 16KB

requests, most of the requests are redirected to CServers, and

DServers mostly sees sequential requests. When the request

size is 4096KB, because serving them from DServer will

lead to higher performance, all the requests are dispatched

to CServers. This result shows S4D-Cache can effectively

identify the performance-critical data and redirect to them to

CServers to improve performance.

TABLE III
REQUEST DISTRIBUTION.

Request Size DServers (%) CServers (%)

16KB 16.3 83.7

4096KB 100.0 0.0

The read test yields similar result, as shown in Figure 6(b).

S4D-Cache can increases the throughput by up to 184.1% with

the request size of 8KB. Compared to the write test, S4D-

Cache has a larger improvement in read because the SSD

performs better for reads than for writes.

2) Varying Number of Processes: Each instance of IOR

benchmark was run with 16, 32, 64, and 128 processes.

Different processes access various regions of the original file

so that no process’ data co-locates with any other’s data.

Figure 7(a) gives the results of this test for write. Similar to the

previous test, S4D-Cache improves the overall I/O bandwidth

by 35.4% to 49.5%. With the number of processes increasing,

IOR’s bandwidth gets lower because each file server needs

to serve more processes’ requests and the competition among

processes gets more severe. This result also shows S4D-Cache

has a good scalability in terms of the number of processes.

The performance trend is similar for read requests, as shown

in Figure 7(b).

3) Varying SSD Cache Capacities: In general, the capacity

of CServers is much smaller than that of DServers and

could be even smaller than the I/O working set size for the

application. According to the algorithm, S4D-Cache could

elastically replace the cached data to increase the utilization of

the SSD space. Table IV shows the write throughputs when

the SSD cache capacity is varied from 0GB to 6GB. Here

0GB means that S4D-Cache is disabled. It is observed that I/O

throughput improves by increasing the capacity of CServers,

which is because more random I/O requests can benefit from

CServers. However, when most random requests are already

cached (the capacity is above 4GB), continuously enlarging

CServers will only bring limited performance improvement.

4) Varying Numbers of SSD file servers: Finally, the num-

ber of the file servers in CServers is varied while maintaining

the same available cache space and I/O access patterns. IOR

was benchmarked with different number of SSD file servers

from zero to six. (0 means the stock I/O system is used.)

Figure 8(a) shows the results for write operations. The

overall write bandwidth is improved by 20.7% to 60.1%.

With the number of CServers increasing, the I/O bandwidth

improves because CServers can serve the redirected requests

520

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:47:06 UTC from IEEE Xplore. Restrictions apply.

 0

 20

 40

 60

 80

 100

16 32 64 128

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

Number of Processes

stock
S4D-Cache

(a) Throughput for write

 0

 20

 40

 60

 80

 100

 120

 140

16 32 64 128

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

Number of Processes

stock
S4D-Cache

(b) Throughput for read

Fig. 7. I/O throughputs of IOR with varied numbers of processes.

TABLE IV
I/O THROUGHPUTS OF IOR WITH VARIED SSD CACHE CAPACITIES.

SSD Capacity Throughput (MB/s) Speedup (%)

0GB 58.03 0

2GB 69.34 19.5

4GB 86.15 48.4

6GB 90.89 56.6

with better random performance. However, the improvement

reduces when continuously adding more nodes to CServers.

More specially, the I/O performance only slightly improves

when the number of file servers is above four. This is be-

cause only a portion of the I/O workload is random and the

improvement is bounded to these requests. Hence, choosing a

reasonable number of file servers based on the characteristic

of the I/O workload is critical to make full use of the SSDs.

For reads, the I/O throughput is higher writes, due to the better

random read performance of SSD, but it also has a plateau,

as shown in Figure 8(b).

C. The HPIO Benchmark

HPIO is a program designed by Northwestern University

and Sandia National Laboratories to systematically evaluate

I/O [31]. This benchmark can generate various data access

patterns by changing three parameters: region count, region

spacing, and region size. The region spacing is used to gener-

ate noncontiguous data access patterns. In our experiment, the

number of process is set to 16 processes; the region count is

set to 4096; the region size is set to 8KB; and region spacing

is varied from 0KB to 4KB(0KB indicates sequential access).

As shown in Figure 9(a), S4D-Cache can increase the

I/O throughput by 18%, 28%, 30%, and 33% respectively.

 40

 50

 60

 70

 80

 90

 100

0 2 3 4 5 6

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

Number of SSD I/O nodes

(a) Throughput for write

 40

 50

 60

 70

 80

 90

 100

 110

 120

0 2 3 4 5 6

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

Number of SSD I/O nodes

(b) Throughput for read

Fig. 8. I/O throughputs for the IOR benchmark with varied numbers of
CServers.

It means that S4D-Cache is effective with respect to HPIO

benchmark. However, though the I/O access of each process

is noncontiguous, it is not as random as the IOR benchmark.

Thus the improvements for HPIO are not as significant as those

for IOR. This also confirms the adaptability of S4D-Cache;

when the application’s I/O accesses have a poorer throughput

(due to the poorer data sequential locality among consecutive

accesses), more benefit is gained by using S4D-Cache. For

read operations, the performance has similar trend as presented

in Figure 9(b).

D. The MPI-Tile-IO Benchmark

MPI-Tile-IO is a test application from the Parallel I/O

Benchmarking Consortium [32]. It treats the entire data file

as a two-dimensional dense dataset and tests the performance

of noncontiguous data access patterns. Each process accesses

a chunk of data based on the size of each tile and the size of

each element. In the tests, the number of elements in the X

and Y directions are set to 10 and 10, the size of each element

is set to 32KB, and the number of processes is varied between

100 and 400.

Figure 10 shows the aggregated I/O throughputs. The ag-

gregated bandwidth increases by 21% to 33% for writes, and

18% to 31% for reads. As mentioned above, the data access

patterns of MPI-Tile-IO are nested-stride. This means, each

process has a fixed-stride access pattern and yields better data

locality than that of the IOR test. As a result, the performance

improvement of this benchmark is not as large as that of IOR,

but is still significant. This further confirms that S4D-Cache

brings additional benefits when data requests are more random

in nature.

521

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:47:06 UTC from IEEE Xplore. Restrictions apply.

 0

 20

 40

 60

 80

 100

 120

0 1 2 4

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

Region spacing (KB)

stock
S4D-Cache

(a) Throughput for write

 0

 20

 40

 60

 80

 100

 120

 140

0 1 2 4

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

Region spacing (KB)

stock
S4D-Cache

(b) Throughput for read

Fig. 9. I/O throughputs of HPIO with varied region spacings.

 0

 20

 40

 60

 80

 100

 120

100 200 300 400

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

Number of Processes

stock
S4D-Cache

(a) Throughput for write

 0

 20

 40

 60

 80

 100

 120

 140

100 200 300 400

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

Number of Processes

stock
S4D-Cache

(b) Throughput for read

Fig. 10. I/O throughputs of MPI-Tile-IO with varied number of processes.

E. System Overhead

1) Metadata Space Overhead: To track data cached in

CServers and maintain data consistency, S4D-Cache uses a file

in CServers to store the DMT Table. This insures additional

storage space overhead. The amount of space consumed is

maximized when all the request sizes are 4KB.

Assuming the available storage space of CServers is S(GB);

and each entry in our implementation occupies 6 ∗ 4B, the

��

���

���

���

���

����

����

����

� �� 	�

�
�

��
��
��
���

��
��
�

�����������������

���
�
���� !
"�

Fig. 11. Performance overhead result.

maximum number of records in DMT is S/4 ∗ 106. Thus, the

metadata space overhead is 0.6%, which is negligible.

2) Performance Overhead: As shown in Figure 3, S4D-

Cache has some additional modules which may generate

overhead. S4D-Cache is able to improve the I/O performance

of applications with performance-critical requests. However,

it may degrade the I/O performance for some applications do

not have performance-critical requests. Thus it is necessary to

evaluate the following two possible sources of overhead during

runtime.

1) During file open, the I/O identifier module needs to

initialize the DMT table in memory, and decide whether to

create a new cache file in CServers.

2) During file read/write, the Identifier and Redirector need

to calculate the access cost, perform a lookup in the CDT and

DMT, and decide whether to cache the requested data. Since

the DMT table has been loaded from CServers, most of the

operations can be done in memory.

The two overheads mentioned above are very small com-

pared with I/O operations overheads. In order to show the

overhead is negligible, IOR is benchmarked with 32 processes,

a request size which varies from 8KB to 32KB, and each

process writes a shared 10GB file in a random pattern where

all the requests intentionally miss the CServers. This causes

the Redirector to redirect all requests to DServers. Figure 11

shows these results. As expected, the overhead is almost

unobservable.

VI. CONCLUSIONS

In this study, we have introduced the Smart Selective SSD

Cache (S4D-Cache) system to combine SSD devices with

parallel I/O systems. S4D-Cache deploys a small set of SSD

file servers to cache selected performance-critical requests on

top of a large set of conventional parallel HDD file servers. The

S4D-Cache design has several merits: (1) it is cost-effective

because only a small set of SSD are deployed; (2) it is smart in

fully utilizing the value of parallelism and the newly emerged

storage media, SSDs; (3) its plug-in design is transparent

to applications; therefore, user programs do not need to be

modified; (4) its design is general and can be applied to

different parallel file systems.

The data selective functionality of S4D-Cache is supported

by three different system components: Data identifier, Redi-

522

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:47:06 UTC from IEEE Xplore. Restrictions apply.

rector and Rebuilder. Data identifier identifies performance-

critical data from I/O request streams. Redirector makes the

data selection decision of the identified critical data to fully

utilize SSDs based on the access cost analysis. Rebuilder
reorganizes the content of the SSD cache space and conducts

data movements based on the changes of I/O workload.
The S4D-Cache design is implemented under MPICH2

I/O and the PVFS2 parallel file system environment. Its

performance is evaluated with different benchmarks, namely

IOR, HPIO, and MPI-TILE-IO, on a SSD-equipped computer

cluster. Experimental results show that S4D-Cache is feasible

and effective in improving parallel I/O performance.

ACKNOWLEDGMENT

The authors are thankful to their shepherd André Brinkmann

and the anonymous reviewers for their helpful comments in

reviewing this paper. This research was supported in part by

National Science Foundation under NSF grant CNS-0751200,

CCF-0937877 and CNS-1162540.

REFERENCES

[1] M. Kandemir, S. W. Son, and M. Karakoy, “Improving I/O perfor-
mance of Applications through Compiler-DirectedCode Restructuring,”
in Proceedings of the 6th USENIX Conference on File and Storage
Technologies, 2008, pp. 159–174.

[2] P. H. Carns, I. Walter B. Ligon, R. B. Ross, and R. Thakur, “PVFS: A
Parallel Virtual File System for Linux Clusters,” in Proceedings of the
4th Annual Linux Showcase and Conference, 2000, pp. 317–327.

[3] S. Microsystems, “Lustre File System: High-performance Storage Ar-
chitecture and Scalable Cluster File System,” Tech. Rep. Lustre File
System White Paper, 2007.

[4] F. Schmuck and R. Haskin, “GPFS: A shared-disk File System for Large
Computing Clusters,” in Proceedings of the 1st USENIX Conference on
File and Storage Technologies, 2002, pp. 231–244.

[5] “Interleaved Or Random (IOR) Benchmarks.” [Online]. Available:
http://sourceforge.net/projects/ior-sio/

[6] R. Thakur, W. Gropp, and E. Lusk, “Data Sieving and Collective I/O
in ROMIO,” in The Seventh Symposium on the Frontiers of Massively
Parallel Computation, 1999, pp. 182–189.

[7] A. Ching, A. Choudhary, W.-k. Liao, R. Ross, and W. Gropp, “Efficient
Structured Data Access in Parallel File Systems,” in Proceedings of the
IEEE International Conference on Cluster Computing, 2003, pp. 326–
335.

[8] W.-k. Liao, K. Coloma, A. Choudhary, L. Ward, E. Russell, and
S. Tidemad, “Collective Caching: Application-Aware Client-Side File
Caching,” in Proceedings of the 14th IEEE International Symposium on
High PerformanceDistributed Computing, 2005, pp. 81–90.

[9] X. Ma, M. Winslett, J. Lee, and S. Yu, “Improving MPI-IO Output
Performance with Active Buffering plus Threads,” in Proceedings of
the International Parallel and Distributed Processing Symposium, 2003.

[10] Y. Xu and S. Jiang, “A Scheduling Framework that Makes any Disk
Schedulers Non-work-conserving Solely Based on Request Characteris-
tics,” in Proceedings of the 9th USENIX Conference on File and Storage
Technologies, 2011.

[11] X. Zhang, K. Liu, K. Davis, and S. Jiang, “iBridge: Improving Unaligned
Parallel File Access with Solid-State Drives,” 2013.

[12] M.Srinivasan and P. Saab, “Flashcache: A General Purpose
Writeback Block Cache for Linux,” 2013. [Online]. Available:
https://github.com/facebook/flashcache

[13] X. Zhang, K. Davis, and S. Jiang, “iTransformer: Using SSD to Improve
Disk Scheduling for High-performance I/O,” in Proceedings of 26th
IEEE International Parallel and Distributed Processing Symposium,
2012, pp. 715–726.

[14] T. Pritchett and M. Thottethodi, “SieveStore: a Highly-Selective,
Ensemble-level Disk Cache for Cost-Performance,” in Proceedings of
the 37th Annual International Symposium on Computer Architecture,
2010, pp. 163–174.

[15] F. Chen, D. A. Koufaty, and X. Zhang, “Hystor: Making the Best
Use of Solid State Drives in High Performance Storage Systems,” in
Proceedings of the international conference on Supercomputing, 2011,
pp. 22–32.

[16] Q. Yang and J. Ren, “I-CASH: Intelligently Coupled Array of SSD and
HDD,” in Proceedings of the IEEE 17th International Symposium on
High PerformanceComputer Architecture, 2011, pp. 278–289.

[17] Y. Yin, J. Li, J. He, X.-H. Sun, and R. Thakur, “Pattern-Direct and
Layout-Aware Replication Scheme for Parallel I/O Systems,” in Pro-
ceedings of 27th IEEE International Parallel and Distributed Processing
Symposium, 2013.

[18] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp, “Parallel I/O
Prefetching Using MPI File Caching and I/O Signatures,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2008, pp. 1–12.

[19] A. Ching, A. Choudhary, K. Coloma, L. Wei-keng, R. Ross, and
W. Gropp, “Noncontiguous I/O Accesses through MPI-IO,” in Pro-
ceedings of the 3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid, 2003, pp. 104–111.

[20] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson,
“Cooperative Caching: Using Remote Client Memory to Improve File
System Performance,” 1994.

[21] A.-I. A.Wang, P. Reiher, G. J. Popek, and G. H. Kuenning, “Conquest:
Better Performance through a Disk/persistent-RAM Hybrid File Sys-
tem,” in Proceedings of the 2002 USENIX Annual Technical Conference,
2002, pp. 15–28.

[22] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,
and C. Maltzahn, “On the Role of Burst Buffers in Leadership-Class
Storage Systems,” in Proceedings of the IEEE 28th Symposium on Mass
Storage Systems and Technologies, 2012, pp. 1–11.

[23] A. Moody, G. Bronevetsky, K. Mohror, and B. R. De Supinski, “De-
sign, modeling, and evaluation of a scalable multi-level checkpointing
system,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2010, pp.
1–11.

[24] H. Payer, M. Sanvido, Z. Bandic, and C. Kirsch, “Combo Drive:
Optimizing Cost and Performance in a Heterogeneous Storage Device,”
in Proceedings of the First Workshop on Integrating Solid-state Memory
into the Storage Hierarchy, vol. 1, 2009, pp. 1–8.

[25] T. Bisson and S. A. Brandt, “Reducing Hybrid Disk Write Latency with
Flash-Backed I/O Requests,” in Proceedings of the 15th International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 2007, pp. 402–409.

[26] S. He, X.-H. Sun, B. Feng, X. Huang, and K. Feng, “A Cost-Aware
Region-Level Data Placement Scheme for Hybrid Parallel I/O Systems,”
in Proceedings of the IEEE International Conference on Cluster Com-
puting, 2013.

[27] R. Thakur, W. Gropp, and E. Lusk, “On Implementing MPI-IO Portably
and with High Performance,” in Proceedings of the Sixth Workshop on
I/O in Parallel and Distributed Systems, 1999, pp. 23–32.

[28] H. Huang, W. Hung, and K. G. Shin, “FS2: Dynamic Data Replication
in Free Disk Space for Improving Disk Performance and Energy Con-
sumption,” in Proceedings of the 20th ACM Symposium on Operating
Systems Principles. New York, NY, USA: ACM, 2005, pp. 263–276.

[29] A. N. Lab, “MPICH2 : A High Performance and
Widely Portable Implementation of MPI.” [Online]. Available:
http://www.mcs.anl.gov/research/project-detail.php?id=2

[30] Y. Wang and D. Kaeli, “Profile-Guided I/O Partitioning,” in Proceedings
of the 17th Annual International Conference on Supercomputing. San
Francisco, CA, USA: ACM, 2003, pp. 252–260.

[31] A. Ching, A. Choudhary, W.-k. Liao, L. Ward, and N. Pundit, “Evalu-
ating I/O Characteristics and Methods for Storing Structured Scientific
Data,” in Proceedings of the 20th International Parallel and Distributed
Processing Symposium, 2006.

[32] “MPI-Tile-IO Benchmark.” [Online]. Available:
http://www.mcs.anl.gov/research/projects/pio-benchmark/

[33] Y. Yin, S. Byna, H. Song, X.-H. Sun, and R. Thakur, “Boosting
Application-Specific Parallel I/O Optimization Using IOSIG,” in Pro-
ceedings of the 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, 2012, pp. 196–203.

523

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:47:06 UTC from IEEE Xplore. Restrictions apply.

