
Journal of Systems Architecture 95 (2019) 47–54

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Run-time timing prediction for system reconfiguration on many-core

embedded systems

Zheng Li a , ∗ , Shuibing He

b

a Computer Science Program, School of Business, Stockton University, Galloway, NJ, USA
b School of Computing, Wuhan University, Wuhan, Hebei, China

a r t i c l e i n f o

Keywords:

Timing
Prediction
System reconfiguration
Real-Time
Many-core

a b s t r a c t

Many-core embedded systems usually have real-time constrains, which may work in hostile environment and
operate continuously without supervision. However, system execution mode change and hardware malfunction
could alter deployed applications’ response time and result in the violation of system’s real-time constraints. To
accommodate such incidents, run-time system reconfiguration, which invokes dynamic application migration,
needs to be supported on many-core embedded systems. As different migration strategies will impact system’s
timing behaviors in different manners, it is vital to choose an appropriate one such that the system’s timing
performance after the migration is still acceptable. The focus of this research is to predict system’s timing change
induced by any migration strategy, which can be utilized to select the optimal migration strategy among all the
possible choices. To be more specific, a two-stage timing prediction approach is investigated in this paper, where
the offline stage is to train the initial model using historical data and the online stage is to fine tune the model at
run-time. Extensive experiments have been conducted and the results validate the effectiveness of our proposed
approach.

1

o

p

f

a

a

a

C

t

s

c

c

p

c

s

c

d

c

p

d

t

E

m

p

a

m

s

e

t

b

c

i

t

d

i

w

s

h

o

e

h
R
A
1

. Introduction

With the advance of tremendous computing capacity and high degree
f explicit parallelism, many-core processors, which integrate tens or
ossibly hundreds of cores on the same die, are being widely considered
or embedded systems [4] . To improve the system resource utilization
nd reduce production cost, mixed-criticality design with both critical
nd non-critical applications sharing the same many-core platform, is
lso an increasing design trend for future embedded systems [3,27,28] .
ritical applications, such as flight control applications, are crucial for
he entire system and a deadline miss will result in catastrophic con-
equences, to ensure systems safety, hardware resources such as CPU
ycles and memory channel/bank are reserved under the worst case
onsideration. Though resource reservation can guarantee applications’
erformance, it is cost-ineffective. To improve resource utilization, non-
ritical applications are usually designed to compete the available re-
ources and run simultaneously to provide best-effort service [11] . Non-
ritical applications are not safety-critical, but their performance degra-
ation will impact system’s quality-of-service (QoS) [19,20] .

In traditional embedded system design, these applications are stati-
ally mapped to processing cores and all the possible use cases are ex-
lored to ensure the desired QoS can be achieved [14] . However, embed-
ed systems may work in a continuously changing environment, hence,
∗ Corresponding author.
E-mail addresses: zheng.li@stockton.edu (Z. Li), heshuibing@whu.edu.cn (S. He).

ttps://doi.org/10.1016/j.sysarc.2019.03.004
eceived 10 October 2018; Received in revised form 12 March 2019; Accepted 14 M
vailable online 14 March 2019
383-7621/© 2019 Elsevier B.V. All rights reserved.
esting and verifying all the possibilities is time and effort unaffordable.
vent if all the use-cases can be explored, if predefined cases do not
atch the real-world execution scenarios, the system may still suffer
erformance degradation.

In addition to execution scenario changes, hardware malfunction is
nother challenge on many-core systems. Due to technology advances,
ore and more cores are being integrated into a single chip. Recent

tudy reveals that the core wear-out rate keeps increasing due to the
ver-shrinking feature size and growing transistor count integrated on
he chip [17] . In case of core wear-out, system must be reconfigured
y migrating applications on faulty cores to functional ones in order to
ontinue the service.

Embedded systems are expected to keep running without stopping,
n order to accommodate execution scenario changes and core malfunc-
ion, application migration should be conducted at run-time. However,
ifferent migration strategies may affect the system’s timing behaviors
n different manners. But if such timing changes can be foreseen, upon
hich we are able to choose an appropriate migration strategy to meet

ystem requirements after the reconfiguration.
Application timing behaviors are determined by various factors and

eavily influenced by scheduling policies. As Operating systems based
n Linux kernel are widely used in embedded systems such as consumer
lectronics, industrial automation and spacecraft flight [16] , in this
arch 2019

https://doi.org/10.1016/j.sysarc.2019.03.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2019.03.004&domain=pdf
mailto:zheng.li@stockton.edu
mailto:heshuibing@whu.edu.cn
https://doi.org/10.1016/j.sysarc.2019.03.004

Z. Li and S. He Journal of Systems Architecture 95 (2019) 47–54

p

l

f

a

g

b

p

a

fi

e

t

m

c

i

r

i

p

r

t

s

d

S

F

2

s

a

l

t

w

t

o

t

s

p

a

t

e

p

p

t

s

n

r

w

t

p

I

f

l

t

t

a

d

c

a

n

a

u

o

g

d

e

T

a

m

i

c

o

i

s

I

t

3

d

c

a

t

i

g

d

c

a

i

t

t

t

D

p

a

d

s

t

t

i

d

d

Fig. 1. Application Migration Scenario.
aper, we adopt the default scheduler in Linux kernel since 2.6.23 re-
ease, i.e. the Completely Fair Scheduler (CFS) which gives all processes
air chance to execute on processors [25] to schedule our non-critical
pplications.

Theoretically, the exact timing impacts induced by application mi-
ration can only be tracked after the migration process is completed,
ut some simple facts reveal that which may be predicted by exploring
otential predictors. For instance, under the same scheduling policy,
 computation-intensive task migrated to a less busy core usually can
nish earlier. Inspired by these observations, in this paper, we are to
xplore the predictors and establish an analytical model to predict sys-
em’s timing changes incurred by an application migration process on
any-core embedded systems. Since critical applications run on dedi-

ated resources and their service are guaranteed, the focus of this paper
s to predict the timing of non-critical applications which simultaneously
un on shared many-core processors scheduled by CFS. It’s worth point-
ng out that application migration overhead is not considered in this
aper, as recent study reveals such overhead is insignificant for most
eal-time applications [2,26] .

The rest of the paper is organized as follows. We first summarize
he related work in Section 2 . An offline timing prediction model is pre-
ented in Section 3 . To keep the timing prediction mode always up-to-
ate at run-time, our proposed online model update strategy is studied in
ection 3.3 . Experimental settings and results are discussed in Section 4 .
inally we conclude our work in Section 5 .

. Related work

As many-core platform are being used in embedded systems, exten-
ive research has been done on how to statically deploy applications on
 many-core platform with various optimization goals. Chou [5] ana-
yzed the impact of communication overhead on applications mapped
o a many-core platform. In order to minimize on-chip communication
orkload, applications to many-core platforms mapping was formulated

o an integer linear programming problem. Derin [8] discussed another
ptimal mapping strategy with the objective of minimizing applications’
otal execution time.

To achieve system performance optimization in case of execution
cenario changes, Benini [14] proposed a semi-static approach to com-
ute and store the application allocations and scheduling solutions for
ll possible use-cases offline. When system use case changes, applica-
ions will be migrated dynamically based on the stored solutions. How-
ver, the time and space complexity of this semi-static approach is ex-
onential to the number of applications and cores. In addition, if the
redefined use cases do not match the real-world execution scenarios,
his strategy may suffer performance degradation. To overcome such
hortcoming, application migration strategy should be determined dy-
amically instead.

In order to dynamically determine the application migration, the
elated timing prediction techniques need to be studied first. There
ere some existing work regarding to applying learning-based predic-

ion techniques to estimate a processor’s performance. Joesph [13] ap-
lied regression-based approaches for performance prediction. In [12] ,
pek utilized artifical neutral network to construct a processor’s per-
ormance prediction model instead of regression. To predict a work-
oad on another hardware platform with different underlying architec-
ure, Zheng [29] recently developed an offline cross-platform predic-
ion approach, which predicted applications’ performance on a not-yet-
vailable target platform by running it on an available platform but with
ifferent underlying architecture. Zheng’s approach assumed that appli-
ation’s performance lied in a linear relationship with the predictors
nd hence the prediction accuracy may suffer if such assumption was
ot invalid.

To explore the potential non-linear relation between the target vari-
ble and its predictors, kernel-based regression methods are commonly
tilized [1] . Considering training data instances arrived sequentially, in
48
rder to minimize the computation overhead, online kernel-based re-
ression techniques which learn one data instance at a time were intro-
uced in [22] . As computer systems usually have limited storage, some
xisting data instances need to be pruned before the new one comes in.
o address the data pruning problem, a sliding-window method which
lways throws away the oldest data instance was developed in [21] . To
inimize the prediction error by data removal, an intelligent data prun-

ng technique was further proposed in [6] . To predict timing behavior
hanges of the migrated application invoked by system reconfiguration
n many-core embedded systems, our preliminary work was presented
n [30] . In this paper, we extend the topic and apply kernel based regres-
ion techniques to predict the timing impact of all involved applications.
n addition, extensive experimental results from a real-world many-core
esting bed are also provided to validate our proposed approach.

. Timing prediction for dynamic application migration

Consider an application migration scenario on a many-core platform
epicted in Fig. 1 , the application (app1) is migrated from core 1 to
ore N. For this migration process, core 1 and core N are the source
nd destination, respectively. We classify these applications involved in
he migration process into three categories: source application (Sapp),
.e. the application remains on the source core before and after the mi-
ration; migrated application (Mapp), i.e. the one to be migrated; and
estination application (Dapp), i.e. the one remains on the destination
ore before and after the migration. In this example, app1, app2 and
pp3 are Mapp, Sapp and Dapp, respectively.

Clearly an application migration process will alter the timing behav-
ors of Mapp, Sapp as well as Dapp, and hence we need to estimate
he impact of all involved applications as to determine if such migra-
ion strategy is feasible. In the following, we first focus on predicting
he timing change of Mapp, and then extend the discussion to Sapp and
app.

We adopt model-based strategy to predict the response time of im-
acted applications, which consists of two stages: offline model training
nd online model update. The first stage is to train an initial timing pre-
iction model using historical data set; after the system is actually in
ervice, online update stage is to dynamically tune the prediction model
o match the current system status.

Model-based prediction strategy is to discover the relation between
he outcome variable and predictors by learning from collected data
nstances. Therefore, the foremost step is to investigate potential pre-
ictors which may impact Mapp’s response time and trace the related
ata to be used for model training.

Z. Li and S. He Journal of Systems Architecture 95 (2019) 47–54

3

t

p

p

i

o

t

T

m

m

a

t

t

n

h

n

i

a

w

a

e

t

p

a

s

r

c

i

t

t

c

m

1

c

i

i

a

p

c

t

w

p

t

M

c

i

b

o

d

c

s

r

t

b

o

r

3

v

M

a

r

𝑓

.1. Training data profiling

Though an application’s response time is impacted by various fac-
ors, a few simple facts reveal that it may still be predictable. For exam-
le, an application with more instructions may take longer time if de-
loyed on the same hardware platform; while for the same computation-
ntensive application, it may run faster on a high-speed processor than
n a low-speed one. In addition, if multiple applications deployed on
he same processing unit, their response times usually will be extended.
hings can be more complicated on many-core systems. All the cores
ay have dedicated processing units and caches but share the main
emory, therefore, memory-access interferences from other cores may

lso impact an application’s timing behaviors as well. These observa-
ions imply that, in order to accurately predict an application’ response
ime, the status of both the target application and hardware platform
eed to be taken into consideration.

For human beings, their health conditions are usually indicted by
eart beat, blood pressure, temperature and etc. Analogously, the run-
ing status of applications and computer systems can be reflected by
ndicators such as CPU utilization, cache miss rate and etc. Fortunately,
 list of performance counters (shown in Table 1) are implemented in
hich can be profiled to track the status of a computing system as well
s the deployed applications [7] . To save the space, the explanation of
ach counter is not included in this paper, but can be found in [7] .

These counters tracked at system level indicate how well the sys-
em is performing; while counters traced at application level reveal the
erformance of the target application (counters 11–14 in Table 1 are
pplication specific and can only be traced at system level). For in-
tance, cache-references of an application indicates the number of cache
eferences invoked by this application only; while the cache-references
ounter measured for a processing core indicates total cache references
nvoked by all the applications deployed on this core. Since an applica-
ion’s response time is heavily impacted by the hardware platform, we
race the performance counters for the target application and its pro-
essing core as potential prediction indicators.

Table 2 lists the counters we have identified to quantify the perfor-
ance of an application running on a specific platform. Among which,
Table 1

Performance counters.

ID Counter ID Counter

1 CPU-cycles 8 LLC-store-misses
2 Instructions 9 Page-faults
3 Cache-references 10 Context-switches
4 Cache-misses 11 Branch-instructions
5 LLC-loads 12 Branch-misses
6 LLC-load-misses 13 Stalled-cycles-frontend
7 LLC-stores 14 Stalled-cycles-backends

Table 2

Application performance indicator.

ID Counter ID Counter

1 CPU-cycles-app 15 CPU-cycles-core
2 Instructions-app 16 Instructions-core
3 Cache-references-app 17 Cache-references-core
4 Cache-misses-app 18 Cache-misses-core
5 LLC-loads-app 19 LLC-loads-core
6 LLC-load-misses-app 13 LLC-load-misses-core
7 LLC-stores-app 14 LLC-stores-app-core
8 LLC-store-misses-app 22 LLC-store-misses-core
9 Page-faults-app 23 Page-faults-core
10 Context-switches-app 24 Context-switches-core
11 Branch-instructions-app 25 Cache-misses-other-cores
12 Branch-misses-app 26 App-response-time
13 Stalled-cycles-frontend-app
14 Stalled-cycles-backends-app

w

t

t

o

a

c

𝐸

w

[

l

r

h

r

f

t

p

l

w

𝜅

w

s

49
–14 are the counters of the target application. As the application’s
ounters depend on its deployed platform, the counters of its process-
ng core (i.e. 15–24) are also traced. To take the inter-core memory
nterferences into consideration, the cache-miss rates of other cores are
lso profiled as an indicator (i.e. 25). Our objective is to predict an ap-
lication’s response time after future migration process, therefore, the
urrent response time should also be traced as a very informative predic-
or (i.e. 26). In addition, an application’s response time after migration
ill also be determined by how much resource the destination core can
rovide, therefore, performance counters (ID 1–10 listed in Table 1) of
he destination core should also be traced as part of the predictors for
app.

As we mentioned above, model based prediction approach is to dis-
over the relation between the outcome variable and predictors by train-
ng the traced data. More specifically, the traced data instances should
e collected as input-output data pairs (x i , y i), where x i and y i are the
bservations for predictors and outcome variables, respectively. To pre-
ict the execution time of Mapp after migration, x i collected for Mapp
onsists of its performance counters (i.e. counters in Table 2) on the
ource and destination core, while y i is the observation of the Mapp’s
esponse time after the migration.

Such data pairs (x i , y i) can be collected offline by conducting ex-
ensive testing of application deployment and migration on the system
efore it is actually in service. With the collected data instances(x i , y i),
ur next step is to establish an analytical model to predict the Mapp’s
esponse time after migration by training these traced data pairs.

.2. Offline timing prediction model training

Mathematically, modeling the relationship between an outcome
ariable and its predictors belongs to regression problem. Assuming the
app’s response time lies in the linear relation with its predictors, for
 specific observation 𝐱 ∗ = [𝑥 ∗ (1) , 𝑥 ∗ (2) , … , 𝑥 ∗ (𝐷)] 𝑇 , the corresponding
esponse time can be estimated using linear regression as [1] :

(𝐱 ∗) = 𝑤 (0) + 𝑤 (1) 𝑥 ∗ (1) + …+ 𝑤 (𝐷) 𝑥 ∗ (𝐷)

=

𝐷 ∑
𝑖 =0

𝑥 ∗ (𝑖) 𝑤 (𝑖) = 𝐱 𝑇 ∗ 𝐰 (1)

here 𝐰 = [𝑤 (0) , 𝑤 (1) , 𝑤 (2) , … , 𝑤 (𝐷)] 𝑇 is a coefficient vector to be de-
ermined, D denotes the number of predictors and 𝑥 ∗ (0) = 1 .

The appropriate selection of w will make the linear model fits the
raining data as close as possible. Suppose the training data set consists
f N collected data pairs (x 1 , y 1), (x 2 , y 2), ..., (x N , y N) with y i as the
ctual response time of targeted application i , the cost function can be
alculated as [9] :

(𝐰) = ‖𝐲 − 𝐗𝐰 ‖2 + 𝜆‖𝐰 ‖2 (2)

here y is a vector with 𝐲 = [𝑦 1 , 𝑦 2 , … , 𝑦 𝑁] 𝑇 , X is a matrix with 𝐗 =
 𝐱 𝑇 1 , 𝐱

𝑇
2 , … , 𝐱 𝑇

𝑁
] , ‖w ‖ indicates the L2-norm of vector w , and 𝜆 is a regu-

arization parameter which imposes smoothness of coefficients [9,22] .
The smaller E (w) indicates the better fit and gradient decent algo-

ithm [1] can be used to search the best coefficient w to minimizes E (w).
Though linear regression technique is easy to apply, it usually ex-

ibits high bias and underfits the truth target due to the strict linear
elationship assumption between predictors and the target [1] . There-
ore, to explore the potential nonlinear models, kernel based regression
echniques are adopted in this study. The key idea is to map the traced
redictors to a high-dimensional space with the expectation that a non-
inear relation between the predictors and the outcome variable can be
ell formulated [22] .

There exists different kernel functions, but Gaussian kernel

(𝐱 𝑖 , 𝐱 𝑗) = exp (− 𝛾‖𝐱 𝑖 − 𝐱 𝑗 ‖2) (3)

hich implies infinite dimension mapping, is commonly used in regres-
ion analysis [23] . Among which, 𝛾 is a problem-specific parameter to

Z. Li and S. He Journal of Systems Architecture 95 (2019) 47–54

i

i

(

b

𝑓

w

fi

t

𝜶

w

w

o

h

s

c

s

s
w

t

K

𝐊

w

𝐊

w

x

t

p

a

H

m

a

e

n

v

3

F

t

a

i

b

d

e

f

i

m

a

c

Fig. 2. Online timing model update.

Fig. 3. Data pruning procedure.

T

a

o

d

i

w

m

f
a

t

c

o

n

[

c

i

m

ndicate the covariance of Gaussian kernel, i.e. how far of a single train-
ng data can influence its surroundings [18] .

With the kernel-based technique, given the training data set as pairs
 x i , y i), the unknown output corresponding to a new observation x ∗ can
e estimated as [21] :

(𝐱 ∗) = 𝐤 ∗ 𝑇 𝜶 (4)

here k ∗ ∈R

N ×1 and 𝐤 ∗ (𝑖) = 𝜅(𝐱 ∗ , 𝐱 𝑖) and vector 𝜶 ∈R

N ×1 are the coef-
cients yet to be determined.

By training the collected data instances, the optimal 𝜶 can be ob-
ained as [22] :

= (𝐊 + 𝜆𝐈) −1 𝐲 (5)

here I indicates an identity matrix, K ∈R

N ×N is called the kernel matrix
ith 𝐾 𝑖,𝑗 = 𝜅(𝐱 𝑖 , 𝐱 𝑗) .

Solving formula (5) involves inverse of an N ×N matrix, which is
f O (N

3) computation complexity and N is usually large. To avoid the
eavy computational matrix inversion, recursive kernel-based regres-
ion method is often adopted instead [21] . Rather than directly re-
alculating (𝐊 + 𝜆𝐈) −1 , recursive kernel-based regression method recur-
ively updates (𝐊 + 𝜆𝐈) −1 by training only one data pair at a time.

Denoting K n as the n th iteration of 𝐊 + 𝜆𝐈 , the general idea of recur-
ive regression method is to obtain 𝐊

−1
𝑛

from previous calculated 𝐊

−1
𝑛 −1

ith minimal extra effort.
Recursive regression method trains one data instance at a time and

he n th iteration is to train x n , therefore, according to the definition of
 n , we have [21] :

 𝑛 =

[
𝐊 𝑛 −1 𝐛
𝐛 𝑇 𝑑

]

here 𝐛 = { 𝜅(𝐱 𝑛 , 𝐱 1) , 𝜅(𝐱 𝑛 , 𝐱 2) , … , 𝜅(𝐱 𝑛 , 𝐱 𝑛 −1)} 𝑇 , 𝑑 = 𝜅(𝐱 𝑛 , 𝐱 𝑛) + 𝜆.
Following algebra theory, 𝐊

−1
𝑛

can be calculated as [21] :

−1
𝑛

=

[
𝐊

−1
𝑛 −1 + 𝑔𝐞𝐞 𝑇 − 𝑔𝐞
− 𝑔𝐞 𝑇 𝑔

]
(6)

here 𝑒 = 𝐊

−1
𝑛 −1 𝐛 and 𝑔 = 1∕(𝑑 − 𝐛 𝑇 𝐞) .

By applying formula (6) recursively on collected data instances
 1 , x 2 , ..., x N one at a time, the obtained 𝐊

−1
𝑁

will be plugged in
o formula (5) to get the 𝜶, which is used in formula (4) for timing
rediction.

The above recursive regression method can be adopted to establish
n initial prediction model by training the offline traced data instances.
owever, embedded systems may experience unprecedented environ-
ent change and hence new data pairs should be continuously observed

nd trained to keep the timing prediction model up-to-date. However,
mbedded systems usually have very limited hardware resources, in the
ext section, we are to present our online model update strategy under
arious resource constraints.

.3. Online timing prediction model update

Our proposed online model update strategy can be illustrated in
ig. 2 . The initial model and training data instances obtained during
he offline stage are saved in the storage first. As embedded applications
re usually periodic, after the system is in service, the new training data
nstances will be traced periodically.

If a system has unlimited storage, new coming data instances can
e saved in the storage and trained using formula (5) and (6) to up-
ate the model. However, an embedded system’s storage is limited,
ventually, some existing training data instance will be removed be-
ore accepting the new one. However, removing different training data
nstances may impact the timing prediction performance in a different
anner.

Formula (4) is to predict the response time, which can also be viewed
s a linear combination of 𝜅(x ∗ , x i) and 𝛼(i). Larger 𝛼(i) indicates more
ontribution of the observed data instance x to the timing prediction.
i

50
herefore, a straightforward approach is to remove the data instance
ssociated with minimal weight, i.e. the one with smallest absolute value
f 𝛼(i) [6] . To further reduce the approximation error introduced by the
ata removal, the minimal adjusted weight strategy is also proposed
n [6] , which is to remove the one with smallest value of 𝛼𝑖 ∕[(𝐊

−1
𝑛
)] 𝑖𝑖 ,

here [(𝐊

−1
𝑛
)] 𝑖𝑖 is the i th diagonal element of 𝐊

−1
𝑛

.
As illustrated in Fig. 3 , after the storage limit (M) is reached, mini-

al weight and adjusted minimal weight strategy will have to take the
ollowing two steps for each incoming data instance: first, calculate 𝐊

−1
𝑛

nd 𝜶 to determine which data pair to be removed; second, remove
he selected data pair from the training set. When new data instance
omes in, the corresponding matrix 𝐊

′−1
𝑛

needs to be re-calculated in
rder to use recursive regression method, i.e. formula (6) to train the
ext incoming data. We adopt a fast calculation algorithm presented in
23] to calculate 𝐊

′−1
𝑛

based on 𝐊

−1
𝑛

. The time complexity of this cal-
ulation is of O (M

2). Following the procedure in Fig. 3 , training each
ncoming data instance with O (M

2) time cost can keep the prediction
odel up-to-date.

Z. Li and S. He Journal of Systems Architecture 95 (2019) 47–54

s

t

(

p

i

u

t

t

a

o

d

i

u

i

b

E

a

t

(

l

p

p

c

i

G

i

b

r

𝜃

T
w
w

i

n

k

f

w

m

t

d

a

L

t

p

m

c

d

a

t

t

l

m

3

d

e

b

s

d

f

t

S

a

t

w

f

a

4

4

a

s

m

p

s

t

r

i

S

l

applications.
However, as we mentioned, embedded systems have limited re-
ources and hence we should minimize the computation overhead to
he utmost.

Suppose new data pairs come in order as {(𝐱 ′1 , 𝑦
′
1) , (𝐱

′
2 , 𝑦

′
2) ,

 𝐱 ′3 , 𝑦
′
3) , … , (𝐱 ′

𝑁
, 𝑦 ′
𝑁
)} , following the above data pruning procedure, it is

ossible that (𝐱 ′1 , 𝑦
′
1) is first trained and added in the training data set but

mmediately replaced by (𝐱 ′2 , 𝑦
′
2) , and then replaced by (𝐱 ′3 , 𝑦

′
3) and so on,

ntil (𝐱 ′
𝑁
, 𝑦 ′
𝑁
) . If such case happens, the first 𝑁 − 1 data instances are

rained first but then removed immediately from the training data set,
herefore, the computing effort spent on these data instances is wasted
s it does not update the prediction model.

To save the computation cost for these short lived data instances,
ur delayed model update approach is proposed. Instead of directly up-
ating the model for each incoming data instance, we save these data
nstances to a replacement map first and delay the model update process
ntil the map size reach a predefined limit.

In a replacement map, the key is index of the to-be-removed data
nstance in the training set and the value is new incoming data pair to
e added in. An example of replacement map is illustrated in Example 1 .

xample 1. Suppose we have a replacement map with key-value pairs
s Ω = [1 → (𝐱 ′1 , 𝑦

′
1) , 3 → (𝐱 ′2 , 𝑦

′
2)] , then the first and third instances in the

raining data set are to be replaced by the new data pairs (𝐱 ′1 , 𝑦
′
1) and

 𝐱 ′2 , 𝑦
′
2) , respectively.

The objective of using the replacement map is to filter out the short
ived data instances before model update and avoid unnecessary com-
utation overhead. The remaining question is, how to create such re-
lacement map and filter out the incoming short lived data instances.

As we know, the data instance selected for removal is expected to
ause least effect on model training. Since redundant data is usually least
nformative and it is the optimal candidate. Recapping the definition of
aussian kernel function given in formula (3) , a larger value of 𝜅(x i , x j)

ndicates x i and x j are more similar to each other, i.e. more redundancy
etween x i and x j .

To quantify how much a data instance x i can be represented by the
est in the training data set, we define a new metric 𝜃(i) as follows:

(𝑖) = max
𝑗 ∈{1 , …,𝑀}∧𝑗 ≠𝑖

𝜅(𝐱 𝑖 , 𝐱 𝑗) +

∑
𝑗 ∈{1 , …,𝑀}∧𝑗 ≠𝑖

𝜅(𝐱 𝑖 , 𝐱 𝑗)

𝑀 − 1
(7)

he first term of right hand side indicates the maximum similarity of x i
ith a single instance and the second term indicates how similar of x i
ith the other training instances. The data instance with the largest 𝜃(i)

s supposed to be least informative and hence will be replaced by the
ext incoming one.

Suppose the replacement map is denoted as Ω and the key list is
ey (Ω) , our proposed maximum redundancy based map update strategy
or each incoming data (𝐱 ′∗ , 𝑦

′
∗) can be illustrated in Algorithm 1 . Among

Algorithm 1: Max_R_Map_Update(Ω, S , 𝜽, (𝐱 ′∗ , 𝑦
′
∗)).

1 find 𝜓 = { 𝑖 |argmax 𝑖 ∈{1 , …,𝑀} 𝜃(𝑖)} ;
2 if ∃𝑘 ∈ 𝜓 ∧ key (Ω) then

3 update Ω(𝑘) = (𝐱 ′∗ , 𝑦
′
∗) ;

4 end

5 else

6 randomly select a 𝑘 ∈ 𝜓 and set Ω(𝑘) = (𝐱 ′∗ , 𝑦
′
∗) ;

7 end

8 Update 𝜃(𝑘) using formula (7);
9 for 𝑖 ∈ {1 …𝑀} ∧ 𝑖 ≠ 𝑘 do

10 update 𝜃(𝑖) using formula (7);
11 end

12 return {Ω, 𝛉} .

hich, we first find the indexes of all the data instances (𝜓) having the
aximum redundant value (line 1). If any k ∈𝜓 is already set as a key in
51
he replacement map, the corresponding value Ω(k) will be a short lived
ata instance and should be replaced by (𝐱 ′∗ , 𝑦

′
∗) (line 2); otherwise, add

 new mapping entry to store (𝐱 ′∗ , 𝑦
′
∗) in the replacement map (line 6).

ines 8–11 are to update the array 𝜃, which will be used as the input of
he algorithm to process next incoming data instance.

Using Algorithm 1 to update the replacement map takes O (M) com-
utation cost, which will remove short lived data instances from the
ap (line 3) before actually joining the training data set, and hence it

ould save O (M

2) time cost used for model update on these short lived
ata instances.

When the replacement map reaches predefined limit, we first remove
ll the data instances indexed by key (Ω) from training data set. After
hat, recursive regression method can be used to update the model by
raining the new instances stored as value in the replacement map Ω.

It’s worth pointing out that, if the replacement map size M is super
arge, a waiting time threshold should be enforced in order to keep the
odel updated in time.

.4. Timing prediction for Sapp and Dapp

In the above section, our proposed timing prediction strategy was
etailed to predict the response time of Mapp after migration. How-
ver, the migration process not only impacts the migrated application,
ut also will alter the timing behaviors of applications deployed on the
ource and destination core, i.e. Sapp and Dapp. hence, we extend the
iscussion to predict response times of Sapp and Dapp after migration.

The timing change of migration process is incurred by moving Mapp
rom source to destination and hence the impact of Mapp should be well
raced to make the prediction. Therefore, to predict the response time of
app after migration, the performance counters of Mapp, Sapp as well
s source core will be traced as the training data set. While for Dapp,
he performance counters of Mapp, Dapp, source and destination core
ill be traced instead.

In the next section, we are to set up a many-core experimental plat-
orm to evaluate the performance of our proposed timing prediction
pproaches.

. Evaluation

.1. Experimental setting

To evaluate our proposed timing prediction approach for Sapp, Mapp
nd Dapp, our testbed is configured with 20-core platform with 16GB
hared main memory. Applications selected from three different bench-
ark suites: MiBench [10] , MediaBench [15] and SD-VBS [24] are de-
loyed. Among which, MiBench consists of selected applications repre-
enting six specific areas of embedded market: Automotive and Indus-
rial Control, Consumer Devices, Office Automation, Networking, Secu-
ity, and Telecommunications; MediaBench contains applications from
mage processing, communications and digital signal processing; and
D-VBS is a suite of diverse vision applications.

The training data instances for Mapp are collected through the fol-
owing steps:

1. Randomly select some of the above applications and deploy them on
different cores, keep all of them running periodically on the deployed
cores;

2. Randomly choose one application as the Mapp and a processing core
other than the deployed one as the destination, trace the counters
listed in Table 2 of the Mapp and counters in Table 1 of the destina-
tion for one period as a x i ;

3. Migrate the Mapp to selected destination and then trace its response
time as a y i ;

4. Repeat the steps 1–3 by varying the input workload and selected

Z. Li and S. He Journal of Systems Architecture 95 (2019) 47–54

Fig. 4. Test CDF with limited storage.

Fig. 5. Convergence of regression cost.

i

t

m

d

c

p

t

t

D

D

a

e

s

E

d

D

C

w

t

4

p

Fig. 6. Impact of different storage capacity for Sapp.

d

a

d

u

t

t

b

w

p

I

f

The counters and response times are traced using PERF [7] , which
s a performance analyzing tool in linux. The similar steps are adopted
o collect corresponding x i and y i for Sapp and Dapp, respectively.

As we know, training data sets are used to discover the prediction
odel and then the obtained model will be applied to predict unseen
ata. Since training data instances have been learned, they can not be
laimed as unseen. In order to evaluate the performance of obtained
rediction models, we have to use data instances not included in the
raining data sets. Therefore, we partition the collected data set into
wo sub sets: training data set (D r) and test data set (D t). Among which,
 r , composed of 80% of the collected data, is used for model training;
 t , the remaining 20% of the data set, is for performance evaluation.

It is worth mentioning that the two free parameters 𝛾 (in formula (3))
nd the 𝜆 (in formula 2) are problem specific, we conduct extensive
xperimental search and set 𝛾 = 3 and 𝜆 = 0 . 01 .

To quantify the model accuracy, the following metric is used to mea-
ure the prediction error:

rr =

|Traced-Exe-Time - Predicted-Exe-Time |
Traced-Exe-Time

In order to give an overall statistics of our prediction, the cumulative
istribution function (CDF) of prediction error on the entire test data set
 t is calculated as follows:

DF Err (𝑥) = 𝑃 (Err < 𝑥)

here CDF Err (𝑥) represents the cumulative probability that the predic-
ion error less than or equal to x .

.2. Timing prediction evaluation with limited storage

To mimic the real-world scenario, we set the storage limit and re-
lacement map size to 100 and 20 data instances, respectively. In ad-
52
ition, the first 100 data instances are assumed to be collected offline
nd trained using recursive regression method. The remaining training
ata are assumed to arrive sequentially when the system is actually in
se, since the storage is already full, these subsequent instances are fil-
ered by the replacement map first and then trained recursively once
he map is full. As we mentioned, the replacement map can be updated
y three algorithms, i.e. minimal weight (m-wt) [6] , adjusted minimal
eight (adj-m-wt) [6] and maximum redundancy based algorithm im-
lemented in Algorithm 1 (max-r), but with different time complexity.
n our experiments, all these three algorithms are implemented for per-
ormance comparison.

Z. Li and S. He Journal of Systems Architecture 95 (2019) 47–54

Fig. 7. Test CDF with unlimited storage.

c

t

d

t

a

s

e

w

p

s

p

w

p

w

d

i

d

A

A

s

c

4

c

t

fl

m

t

i

h

a

o

o

p

t

a

b

e

w

w

5

t

g

a

s

i

t

r

d

e

p

D

i

c

p

i

p

R

[

[

[
We first train the model to predict the response time of Sapp and
alculate the regression cost (i.e.formula (2)) on data set D r . As illus-
rated in Fig. 5 a, the overall trend of cost keeps decreasing with more
ata instances are trained. Different algorithms will be applied to update
he replacement map after the storage limit is reached, therefore, only
fter 100 iterations the three lines exhibit differently but within a very
mall range. After training all the data instances in D r , the prediction
rror of obtained models on test data set D t is depicted in Fig. 4 a, from
hich we can see that the our proposed max-r approach has very closed
rediction performance with max-wt and max-adj-wt algorithms. The
imilar observations are found by analyzing the experimental results for
redicting the response times of Mapp and Dapp. From Figs. 5 and 6 ,
e can conclude that, although max-r based algorithm has lower com-
utation cost, it still can achieve similar timing prediction performance
ith the other two compared approaches.

To evaluate the impact of storage limit on our proposed timing pre-
iction strategy, we vary the storage capacity from 100 to 300 data
nstances and re-train the prediction model for Sapp using maximum re-
undancy based algorithm (max-r), the results are illustrated in Fig. 6 .
s we expect, larger storage capacity results in more accurate model.
ccording to Fig. 6 , the prediction error is reduced by increasing the
torage capacity from 100 to 200, which is further decreased when the
apacity is increased to 300.

.3. Timing prediction evaluation with unlimited storage

In this subsection, we assume the system has unlimited storage
apacity to further evaluate our proposed prediction techniques. Due
o unlimited storage, all the data instances collected online and of-
ine are saved in the storage and trained using recursive regression
ethod.

The response time prediction models of Sapp, Mapp and Dapp are
rained and the CDF of corresponding prediction errors are illustrated
n Fig. 7 . According to Fig. 7 a, we can see that over 60% of tested Sapps
ave prediction error less than 0.1, 70% of which are less than 0.15
nd 90% of which are within 0.3. The timing prediction performance
n Dapp is similar with that of Sapp, as shown in Fig. 7 c, around 90%
f tested Dapps with prediction error less than 0.3. The performance on
redicting Mapps’ response times is less inspiring, but still can achieve
hat over 75% of tested applications with prediction error less than 0.3
nd 60% of which are less than 0.2 (Fig. 7 b).

It is worth pointing out that this is an ideal case as the storage in em-
edded systems is always limited. However, these results can be used to
valuate the performance impact induced by storage limitation, which
ill help the system designer to allocate appropriate storage capacity
ithout significant prediction performance degradation.
53
. Conclusion

In this paper, we studied kernel regression based prediction approach
o predict the system’s timing change incurred by a given application mi-
ration process. We first investigated potential predictors to be traced
s training data instances and then proposed a two-stage approach to
et up timing prediction models. The offline stage was used to train the
nitial model and online stage was for dynamic model update. To fur-
her reduce the time complexity of online model update, a maximum
edundancy based replacement map was developed to filter short lived
ata instances and hence avoid unnecessary computation overhead. To
valuate the performance of our proposed approach, we conducted ex-
eriments by deploying multiple benchmarks including MIBENCH, ME-
IABENCH and VD-VBS on a 20-core platform. Experimental results val-

date the effectiveness of our proposed approach.
Our next step is to extend our experiments to AMD and ARM pro-

essors equipped with more processing cores. In addition, further im-
rovement of our proposed regression strategies to achieve higher tim-
ng prediction accuracy and less computation complexity will also be
art of the future work.

eferences

[1] E. Alpaydin , Introduction to Machine Learning. [Sl], The MIT Press, 2010 .
[2] J. Balasubramanian , A. Gokhale , A. Dubey , F. Wolf , C. Lu , C. Gill , D. Schmidt , Mid-

dleware for resource-aware deployment and configuration of fault-tolerant real-time
systems, in: 2010 16th IEEE Real-Time and Embedded Technology and Applications
Symposium, 2010, pp. 69–78 .

[3] J. Barhorst , T. Belote , P. Binns , J. Hoffman , J. Paunicka , P. Sarathy , J. Scoredos ,
P. Stanfill , D. Stuart , R. Urzi , A research agenda for mixed-criticality systems, Cy-
ber-Physical Systems Week, 2009 .

[4] A. Burns , R.I. Davis , Mixed criticality systems: a review, Technical Report MCC-1(b),
Department of Computer Science, University of York, East Lansing, Michigan, 2013 .

[5] C.-L. Chou , R. Marculescu , Contention-aware application mapping for net-
work-on-chip communication architectures, in: Proc. of IEEE International Confer-
ence on Computer Design, in: ICCD, 2008, pp. 164–169 .

[6] B.J. de Kruif , T.J.A. de Vries , Pruning error minimization in least squares support
vector machines, IEEE Trans. Neural Netw. 14 (3) (2003) 696–702 .

[7] A.C. de Melo , The new linuxperftools, Slides from Linux Kongress, 18, 2010 .
[8] O. Derin , D. Kabakci , L. Fiorin , Online task remapping strategies for fault-tolerant

network-on-chip multiprocessors, in: Proc. of 5th IEEE/ACM International Sympo-
sium on Networks on Chip, in: NoCS, 2011, pp. 129–136 .

[9] J. Friedman , T. Hastie , R. Tibshirani , The elements of statistical learning, 1, Springer
series in statistics Springer, Berlin, 2001 .

10] M.R. Guthaus , J.S. Ringenberg , D. Ernst , T.M. Austin , T. Mudge , R.B. Brown ,
Mibench: a free, commercially representative embedded benchmark suite, in: Pro-
ceedings of the Fourth Annual IEEE International Workshop on Workload Charac-
terization. WWC-4 (Cat. No.01EX538), 2001, pp. 3–14 .

11] J.L. Herman , C.J. Kenna , M.S. Mollison , J.H. Anderson , D.M. Johnson , Rtos support
for multicore mixed-criticality systems, in: 2012 IEEE 18th Real Time and Embedded
Technology and Applications Symposium, 2012, pp. 197–208 .

12] E. Ïpek , S.A. McKee , R. Caruana , B.R. de Supinski , M. Schulz , Efficiently Exploring
Architectural Design Spaces via Predictive Modeling, 40, ACM, 2006 .

http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0005
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0005
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0005
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0006
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0006
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0006
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0007
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0007
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0009
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0009
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0009
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0009
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0012

Z. Li and S. He Journal of Systems Architecture 95 (2019) 47–54

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

13] P. Joseph , K. Vaswani , M.J. Thazhuthaveetil , A predictive performance model for
superscalar processors, in: Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, IEEE Computer Society, 2006, pp. 161–170 .

14] D.B. L. Benini , M. Milano , Resource management policy handling multiple use-cases
in mpsoc platforms using constraint programming, in: ICLP, 2008, pp. 470–484 .

15] C. Lee , M. Potkonjak , W.H. Mangione-Smith , Mediabench: a tool for evaluating and
synthesizing multimedia and communicatons systems, in: Proceedings of the 30th
Annual ACM/IEEE International Symposium on Microarchitecture, in: MICRO 30,
IEEE Computer Society, Washington, DC, USA, 1997, pp. 330–335 .

16] H. Leppinen , Current use of linux in spacecraft flight software, IEEE Aerosp. Electron.
Syst. Mag. 32 (10) (2017) 4–13 .

17] Z. Li , F. Lockom , S. Ren , Maintaining real-time application timing similarity for
defect-tolerant noc-based many-core systems, ACM Trans. Embed. Comput. Syst.
(TECS) 13 (2s) (2014) 64 .

18] A. Müller , S. Guido , Introduction to Machine Learning with Python: a Guide for Data
Scientists, O’Reilly Media, 2016 .

19] R.M. Pathan , Improving the quality-of-service for scheduling mixed-criticality sys-
tems on multiprocessors, in: M. Bertogna (Ed.), 29th Euromicro Conference on Re-
al-Time Systems (ECRTS 2017), volume 76 of Leibniz International Proceedings in
Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 2017, pp. 19:1–19:22 .

20] H. Su, D. Zhu, An elastic mixed-criticality task model and its scheduling algorithm,
in: 2013 Design, Automation Test in Europe Conference Exhibition (DATE), 2013,
pp. 147–152, doi: 10.7873/DATE.2013.043 .

21] S.V. Vaerenbergh , J. Via , I. Santamaria , A sliding-window kernel rls algorithm and
its application to nonlinear channel identification, in: 2006 IEEE International Con-
ference on Acoustics Speech and Signal Processing Proceedings, 5, 2006 . V–V.

22] S. Van Vaerenbergh, I. Santamaría, Online Regression with Kernels, Machine Learn-
ing & Pattern Recognition Series, Chapman and Hall/CRC, New York, pp. 477–501.

23] S. Van Vaerenbergh , I. Santamaría , W. Liu , J.C. Príncipe , Fixed-budget kernel recur-
sive least-squares, in: Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE
International Conference on, IEEE, 2010, pp. 1882–1885 .

24] S.K. Venkata , I. Ahn , D. Jeon , A. Gupta , C. Louie , S. Garcia , S. Belongie , M.B. Taylor ,
Sd-vbs: The san diego vision benchmark suite, in: 2009 IEEE International Sympo-
sium on Workload Characterization (IISWC), 2009, pp. 55–64 .

25] C.S. Wong , I. Tan , R.D. Kumari , F. Wey , Towards achieving fairness in the linux
scheduler, SIGOPS Oper. Syst. Rev. 42 (5) (2008) 34–43 .

26] Y. Zhang , C. Gill , C. Lu , Real-time performance and middleware for multiproces-
sor and multicore linux platforms, in: 2009 15th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, 2009, pp. 437–446 .
54
27] Q. Zhao , Z. Gu , H. Zeng , Design optimization for autosar models with preemption
thresholds and mixed-criticality scheduling, J. Syst. Archit. Embed. Syst.Des. 72
(2017) 61–68 .

28] Q. Zhao , Z. Gu , H. Zeng , N. Zheng , Schedulability analysis and stack size minimiza-
tion with preemption thresholds and mixed-criticality scheduling, J. Syst. Archit.
Embed. Syst.Des. 83 (2017) 57–74 .

29] X. Zheng , P. Ravikumar , L.K. John , A. Gerstlauer , Learning-based analytical cross–
platform performance prediction, in: Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), 2015 International Conference on, IEEE, 2015,
pp. 52–59 .

30] H.W. Zheng Li , S. He , Timing prediction for dynamic application migration on mul-
ti-core embedded systems, in: The 4th IEEE International Conference on High Per-
formance and Smart Computing, 2018 .

Zheng Li received the B.S. degree in Computer Science and
M.S. degree in Communication and Information System from
University of Electronic Science and Technology of China, and
Ph.D. degree from Illinois Institute of Technology, in USA.
He is currently an assistant professor of Computer Science at
Stockton University. His research interests include real-time
system design, many-core computing and recongurable com-
puting.

Shuibing He received the Ph.D. degree in computer science
and technology from Huazhong University of Science and
Technology, in 2009. He is currently an associate professor
at the School of Computer Science, Wuhan University. His re-
search areas include parallel I/O systems, file and storage sys-
tems, high-performance and distributed computing.

http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0013
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0013
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0013
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0013
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0014
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0014
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0014
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0019
https://doi.org/10.7873/DATE.2013.043
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0026
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0026
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0026
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0026
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0029
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0029
http://refhub.elsevier.com/S1383-7621(18)30496-X/sbref0029

	Run-time timing prediction for system reconfiguration on many-core embedded systems
	1 Introduction
	2 Related work
	3 Timing prediction for dynamic application migration
	3.1 Training data profiling
	3.2 Offline timing prediction model training
	3.3 Online timing prediction model update
	3.4 Timing prediction for Sapp and Dapp

	4 Evaluation
	4.1 Experimental setting
	4.2 Timing prediction evaluation with limited storage
	4.3 Timing prediction evaluation with unlimited storage

	5 Conclusion
	References

