
Prediction Based Run-Time Reconfiguration on
Many-core Embedded Systems

Zheng Li
School of Computer Sciences

Western Illinois University

Macomb, USA

Shuibing He
School of Computing

Wuhan University

Wuhan, China

Li Wang
LinkedIn Corporation

Sunnyvale, CA

Abstract—This paper studies prediction based run-time system
reconfiguration strategy to tolerate environment change and
hardware malfunction on many-core embedded systems. System
reconfiguration will invoke application migration, which may
significantly impact system’s timing behaviors, therefore, it is
vital important to select an appropriate migration strategy after
which the system’s performance is still acceptable. The essence
of our prediction based approach is to pre-estimate the impact
of possible migration strategies and upon which to choose the
optimal one. Our proposed approach includes data profiling,
model training and execution time prediction phases. The initial
data profiling and model training are conducted in the design
stage, and will be continuously updated as time goes on after the
system is in use. When system reconfiguration is invoked, the
most recently trained models will be used for prediction at run-
time. Extensive experiments have been set up by running multiple
benchmarks on a four-core hardware platform and experimental
results evaluate and validate our proposed approach.

Index Terms—System Reconfiguration, Performance Counters,
Application Migration, Timing Prediction

I. INTRODUCTION

Embedded systems are widely used in the consumer, au-

tomotive, commercial and military industries. According to

the white paper from GrammaTech, it is expected that the

global market of embedded systems to exceed over 190 billion

dollars by 2018. Such embedded systems integrated with a

fixed set of applications are usually considered to be used

in predictable environments [1]. In addition, as technology

advances, many-core processors are being adopted in em-

bedded systems due to the tremendous computing capacity

and high degree of explicit parallelism. In traditional embed-

ded system design, applications are statically deployed and

fine-tuned on different processing cores to meet the desired

system specification. However, the operating environments

sometimes may change in unpredictable manners. If such

modified environment changes are neglected, the systems may

suffer degraded performance. To accommodate these unknown

changes, traditionally, for the sake of performance guarantee,

the resources are reserved for deployed applications under the

consideration of extremely worst case cases. However, if these

extreme cases not always happen, the whole system will be

underutilized [2].

To overcome these shortcomings, run-time system recon-

figuration which supports dynamic application migration can

optimize the resource management and improve system’s

performance. If some application happens to workload burst

due to unprecedented environment change and the provisioned

resources are not sufficient, migrating such application to an

underutilized processing core can keep the system still running

with desired performance.

Besides the unknown upcoming environment change, hard-

ware malfunctions will also result in the application re-

deployment in the system. Recent study reveals that multi-

core processors are being used in embedded systems while

the core wear-out rate keeps increasing due to the ever-

shrinking semiconductor process size [3], [4], [5]. Therefore,

core malfunction will not be a rare case any longer and

run-time system reconfiguration has to be implemented for

reliability purpose.

However, migrating applications to a new host will not only

change timing behaviors of the migrated application, but also

alter the performance of all host applications resident on the

destination core. In addition, the running status of different

cores are varied, different application migration strategy may

impact system’s performance in different manners. Therefore,

it is essential to pre-estimate the impact incurred by the

migration process and upon on which to choose an appropriate

destination cores such that the system’s timing change is

acceptable.

The exact timing change only can be obtained after the

migration process, but some basic phenomenons give us the

intuition that there may exist potential relationships between

the performance of an application before and after the mi-

gration. For instance, the execution time of host applications

are expected to be extended since migrated applications will

compete the resources with them. In addition, comparing

with fully utilized processing cores, a computation-intensive

application migrated to the underutilized core may shorten its

execution time. With the above observations, in this paper we

are to establish analytical models to reveal these potential

relations and utilize them to predict the timing change of

impacted applications.

The rest of the paper is organized as follows. We first

summarize the related work in Section II. Our proposed run-

time system reconfiguration strategy is presented in Section III.

Experimental settings and results are discussed in Section IV.

Finally we conclude our work in Section V.

2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference

on Embedded and Ubiquitous Computing (EUC)

978-1-5386-3221-5/17 $31.00 © 2017 IEEE

DOI 10.1109/CSE-EUC.2017.210

140

2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference

on Embedded and Ubiquitous Computing (EUC)

978-1-5386-3221-5/17 $31.00 © 2017 IEEE

DOI 10.1109/CSE-EUC.2017.210

140

2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference

on Embedded and Ubiquitous Computing (EUC)

978-1-5386-3221-5/17 $31.00 © 2017 IEEE

DOI 10.1109/CSE-EUC.2017.210

140

2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference

on Embedded and Ubiquitous Computing (EUC)

978-1-5386-3221-5/17 $31.00 © 2017 IEEE

DOI 10.1109/CSE-EUC.2017.210

140

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:01 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

In traditional embedded system design, applications are stat-

ically deployed on processing units and their timing behaviors

are fine-tuned in order to meet the requirements. As many-

core platform are being used in embedded systems, extensive

research has been done about how to map applications to

many-core platform under various optimization goals. For

instance, Chou [6] analyzed the impact of communication

overhead on applications mapped to a many-core platform.

In order to minimize on-chip communication workload, the

applications to many-core platforms mapping was formulated

to an integer linear programming problem. Derin [7] discussed

another optimal mapping strategy with the objective of mini-

mizing applications’ total execution time.

With reducing feature size and increasing transistor count,

chips are becoming susceptible to permanent faults [8]. When

core wear-out happens, system reconfiguration process will

be invoked and the application deployed on the defect cores

has to be re-deployed on functional cores in order to con-

tinue the system’s service. With the objective to maximize

system’s throughput after reconfiguration, Zhang [9] proposed

a heuristic Row Rippling Column Stealing (RRCS) approach

to select proper backup cores for faulty core replacement.

From the energy consumption perspective, Das [10] pro-

posed an integer linear programming approach to minimize

communication energy consumption after the reconfiguration.

To minimize the application’s timing behavior change from

its initial deployment after reconfiguration, several heuristics

were also developed in [11], [3]. To support run-time system

reconfiguration, mixed integer quadratic programming based

approach was proposed in [12], which pre-calculated the

reconfiguration strategies of all failure scenarios and directly

used it at run-time.

The above mentioned reconfiguration strategies were based

on the assumption that enough resource was reserved under

the extreme worst-case scenario. If extreme case is rare, the

whole system will be underutilized. To address these issues,

this paper is to study run-time system reconfiguration under

continuously changing environment and the essence of is to

predict the system’s timing change incurred by application

migration process based on historical profiled data. There

were also some existing work to predict a processor’s perfor-

mance. Joesph [13], [14] applied regression-based approaches

to model processor performance. In [15], Ipek utilized artifical

neutral network to construct processor performance model

instead of regression. To predict workload’s performance on

another hardware platform with different underlying architec-

ture, Zheng [16] recently developed an offline cross-platform

prediction approach, which predicted applications’ perfor-

mance on a not-yet-available target platform by running it on

another host platform with different underlying architecture.

Different with the study in [16], our research is to predict the

timing behavior change of impacted applications invoked by

the application migration process, in addition, such prediction

strategy has to be performed at run-time.

Fig. 1: Multi-core Processor

TABLE I: Performance Counters

ID Counter ID Counter
1 CPU-cycles 8 Stalled-cycles-backends
2 Instructions 9 Page-faults
3 Cache-references 10 Context-switches
4 Cache-misses 11 LLC-loads
5 Branch-instructions 12 LLC-load-misses
6 Branch-misses 13 LLC-stores
7 Stalled-cycles-frontend 14 LLC-store-misses

III. RUN-TIME SYSTEM RE-CONFIGURATION STRATEGY

As stated above, system reconfiguration will be triggered

when operating environment changes or core malfunction,

both of which could happen at run-time. Therefore, the system

re-configuration is expected to be invoked at run-time and the

proposed timing prediction should be able to finish in short

time. In addition, the execution time of both the migrated and

host applications are impacted by migration process, therefore,

both of which need analytical models to predict their potential

timing change.

With these observations, our proposed timing predication

strategy is illustrated in Fig. 2, which can be divided into

the following steps: 1) Data Profiling 2) Analytical Model

Training and 3) Run-Time Timing Prediction.

A. Data profiling

Learning based approaches are heavily dependent on the

training data set [16]. As our prediction targets at execution

time cost, the features which potentially impact an appli-

cation’s running time should be traced. Obviously, some

specific features of the running application such as number

of instructions and cache-references are the important factors.

In addition, status of the running cores may also impact the

deployed application’s timing behavior. As shown in Fig. 1,

all the cores on many-core platform have dedicated processing

elements and caches but share the main memory. Therefore,

for a specific application, it will compete with the other

applications deployed on the same core for computing element,

cache and memory, while at the same time, it will also compete

the memory-access from all the other cores.

As application migration process impacts the execution

times of both migrated applications and host applications,

141141141141

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:01 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Profiled Features for Migrated Application Predic-

tion

Mapp-1 Mapp-8 DC-1/SC-1 DC-12/SC-12
Mapp-2 Mapp-9 DC-2/SC-2 DC-13/SC-13
Mapp-3 Mapp-10 DC-3/SC-3 DC-14/SC-14
Mapp-4 Mapp-11 DC-4/SC-4 ID-4 of other cores
Mapp-5 Mapp-12 DC-9/SC-9
Mapp-6 Mapp-13 DC-10/SC-10
Mapp-7 Mapp-14 DC-11/SC-11

TABLE III: Profiled Features for Host Application Prediction

Mapp-1 Mapp-11 Happ-7 DC-3/SC-3
Mapp-2 Mapp-12 Happ-8 DC-4/SC-4
Mapp-3 Mapp-13 Happ-9 DC-9/SC-9
Mapp-4 Mapp-14 Happ-10 DC-10/SC-10
Mapp-5 Happ-1 Happ-11 DC-11/SC-11
Mapp-6 Happ-2 Happ-12 DC-12/SC-12
Mapp-7 Happ-3 Happ-13 DC-13/SC-13
Mapp-8 Happ-4 Happ-14 DC-14/SC-14
Mapp-9 Happ-5 DC-1/SC-1 ID-4 of other cores
Mapp-10 Happ-6 DC-2/SC-2

next, we discuss the data to be profiled for both of these

applications, respectively.

1) Data Profiled for Migrated Application Timing Predic-
tion:
Table I lists some performance counters supported by system

kernel [17], which may impact an application’s execution

time. These counters can be measured at both application

level and core level. For example, the counter cache-references

measured at application level indicates the number of cache

references only invoked by this application during its execution

duration; while at core level means the total cache references

on this core within the duration of running the application.

Intuitively, an application’s execution time will be extended

if it is migrated to a busier core, while it will be shorten if the

destination core is free. Therefore, we trace the performance

counters of the migrated application, source core as well as

the destination core to make the prediction. Table II lists all

the counters to be measured for timing prediction of migrated

applications. Among which, Mapp-i, SC-i, DC-i and are the

ith performance counter measured for migrated application,

source and destination core, respectively. ID-4 of other cores

are the cache miss rate of the processing cores rather than

the source and destination, which potentially indicate the

inter-core memory-access interference. To reduce the feature

dimensions without losing information contained therein, we

use the ratio of DC-i and SC-i, i.e. DC-i/SC-i, to represent the

change of the running platform. Counters 5 - 8 are not traced

at the core level as they are application specific counters.

2) Data Profiled for Host Application Timing Prediction:
The host applications are expected to run slower after the

migration process. How much impact on the host applications

depends on the degree of resource competition from migrated

applications. Therefore, we traced the performance counters

listed in Table III. It is not hard to find that, in addition to all

the counters included in Table II, the performance counters of

host applications are also profiled.

Fig. 2: Timing Prediction Strategy

Having the data collected, our next step is utilizing these

profiled features to train analytical models, in order to predict

the execution time of both migrated and host applications.

B. Analytical Model Prediction

The intuition behind model based prediction is to find some

hidden pattern of ”similar” applications. For example, To

predict the execution time of a unknown heavy computing

application, it is more reasonable to use the profiled data

from computation-intensive applications rather than memory-

intensive ones. Therefore, before training the analytical models

for execution time prediction, we first discuss how to cluster

the applications.

1) Application Clustering: Applications deployed in em-

bedded systems can be classified into different categories (We

assume Q categories total and Q is yet to be determined)

based on their profiled performance counters. To classify an

unknown application, we have to find the centeroid of each

category and the closest one will determine its category.

To find the centeroid of each category, iterative K-mean

clustering algorithm [18] is adopted and the major steps can

be highlighted as follows:

1) Initialize the centroid of each category randomly;

2) Classify the profiled applications based on the current

centeroids;

3) Update the centeroids of currently classified clusters;

4) Repeat Step 2 - 3 until reaching the maximum iteration

times.

Application Classification:
Suppose rk = {rk1 , rk2 , ..., rkn} is the centeroid of category

k, where rki is the value of the corresponding feature. An

application xi = {xi
1, x

i
2, ..., x

i
n} will be classified to the

category with nearest centeroid, i.e.

G(xi) = k minimizes

√√√√ N∑
j=1

(xi
j − rkj)

2, k ∈ {1..Q} (1)

where G(xi) indicates the category of application xi and Q is

the total number of categories yet to be determined from the

profiled application features1.

Centeroid Update:
After the application classification, the current centeroids may

1The features of applications are their profiled perfomrance counters, both
terms are used in this paper and they are interchangeable.

142142142142

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:01 UTC from IEEE Xplore. Restrictions apply.

not still be the center points of newly classified clusters.

Therefore, each centeroid needs to be updated as the center

of all the applications clustered in the corresponding category,

i.e. rk = {rki , i ∈ {1..n}} where

rki =

∑
∪{G(xi)=k} x

k
i

| ∪ {G(xi) = k}|
where ∪{G(xi) = k} indicates the set of applications classi-

fied to category k.

2) Analytical Model Training: We assume that the exe-

cution time of the running application lies in linear relation

with selected features and and regularized linear regression

algorithm is adopted to train the model. More specifically,

suppose xk
i is the ith profiled feature of the target application

k, then its execution time can be predicted as [19]:

hk(θ, x) = θ0 + θ1x
k
1 + ...+ θnx

k
n

=
n∑

i=0

θix
k
i (2)

where n is the total number of features and θ = {θ1, ..., θn}
is the hypothesis yet to be determined.

The appropriate selection of θ will make the profiled appli-

cation data fits the linear model as close as possible. We use

yk to denote the actual execution time of targeted application

k and define the cost function of a specific hypothesis hk(θ, x)
as [20]:

E(θ) =
1

2

m∑
k=1

(hk(θ, x)− yk)2 +
λ

2m
(

n∑
i=1

θ2i) (3)

where m is the total number of profiled data records. λ is

a regularization parameter, which inherently performs feature

selection to prevent overfitting [20].

The smaller E(θ) indicates the better fit of profiled data.

The objective of the model training is to find the best θ which

minimizes E(θ) and gradient decent algorithm [19] is adopted

to search the hypothesis θ.

For self-containment, we brief the gradient decent algorithm

in the following steps:

1) Initialize θ randomly

2) Update θi = θi − α∂E(θ)
∂θi

3) Repeat the above two steps until convergence

where

∂E(θ)

∂θi
=

{
1
m

∑m
k=1(y

k − h(θ, x))xk
i if i = 0

1
m

∑m
k=1(y

k − h(θ, x))xk
i + λ

mθi if i ≥ 1

and α is the learning rate, which impacts the speed of

convergence.

It is not hard to find that the value of performance counters

are not at the same scale. For example, the number of instruc-

tions could be millions of times the context-switches. When

features differ in orders of magnitude, feature normalization

can speed up the convergence of gradient descent algorithm.

Therefore, before applying the above gradient descent algo-

rithm, we normalize the features by subtracting the mean value

first and then dividing the range, i.e.

xk
i =

xk
i − 1

m

∑m
k=1 x

k
i

max
k∈{1..m}

xk
i − min

k∈{1..m}
xk
i

Given the number of application category Q, the regular-

ization parameter λ and the learning rate α, we can follow the

above steps to obtain the prediction model for each application

category. However, different selections of Q, λ and α may

result in different prediction models. As we know, model

training is to select the one minimizing cost function using the

training data set. However, best fit of the training data does not

mean the best prediction of future data. Therefore, we adopt

cross-validation approach to evaluate the trained models [20].

In particular, the whole data set D is split into two partitions:

Dt and Dv , where Dt is used for model training and the Dv is

to validate the performance of selected model. Typically, Dv

is around 10% of total whole data set and should be randomly

selected.

The applications deployed on a specific embedded system

are relatively fixed and the total number of category Qmax

can be pre-estimated by screening all deployed applications.

In addition, we set 0 ≤ λ ≤ λmax and 0.1 ≤ α ≤ αmax

where λmax = αmax = 3 are the typical range of regularization

parameter and learning rate. To obtain the best selection of

these parameters, iterative cross-validation approach is devel-

oped and described in Algorithm 1, where step could be set

at 0.1 scale.

ALGORITHM 1: Iterative Cross-Validation

1 for Q = 1;Q ≤ Qmax; k++ do
2 for λ = 0;λ ≤ λmax;λ = λ+ step do
3 for α = 0.1;α ≤ αmax;α = α+ step do
4 Obtain the hypothesis θ using regualization

linear regression on Ds

5 Calculate the cost E(θ) (formula (3)) on Dv

6 end
7 end
8 end
9 return The hypothesis θ with the minimum E(θ)

The training procedures of execution time prediction models

for both migrated and host applications are the same except

using different features. More specifically, profiled features

included in Table II are used for migrated applications, while

Table III is used instead for host ones.

As the profiled performance counters for applications in

different category may vary vastly, the presented algorithm

will be used to train the execution time prediction models

separately for each category.

C. Run-Time Timing Prediction

Both data profiling and model training involve a large

amount of the data and usually are time consuming, which can

143143143143

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:01 UTC from IEEE Xplore. Restrictions apply.

not be applied at run-time if these two stages started after the

time instant when system reconfiguration is actually triggered.

Notice that applications deployed on embedded systems are

usually periodic, therefore, our developed approach can be

implemented in the following steps to make it applicable at

run-time:

1) Conduct initial experimental test and data profiling be-

fore system is actually in use, train the models based on

the collected data;

2) Continuously collect the selected performance counters

in Table II and Table III periodically (sampling if too

much overhead) after system is actually in use;

3) Conduct model training when enough new data is col-

lected and update the existing models;

4) Repeat the steps 2) - 3) to update the existing models

as the time goes on;

5) If environment change or core malfunction happens: a)

cluster the migrated and host applications based on their

most recent performance counters; b) Use the current

models to predict their execution times and upon which

to determine the application migration strategy.

Following the above steps, the timing prediction models

will be continuously updated and adapted to ever-changing

environment. When the system re-configuration is triggered,

the analytical models will be ready and can be adopted

immediately for timing prediction.

IV. EVALUATION

In this section, we set up experiments to evaluate our

proposed timing prediction approach.

A. Experimental Setting

Our testbed is configured with four Intel i5-520M process-

ing cores (each has 3MB cache), 6 GB main memory shared

by all the processing cores and 500 GB solid state drive.

Ubuntu operation system version 16.04 is installed on the

testbed. In addition, the applications we profiled come from

three commercially representative benchmark suites: MiBench,

MediaBench and SD-VBS. MiBench [21] is a set of commer-

cially embedded applications which can be divided into six

categories: Automotive and Industrial Control, Consumer De-

vices, Office Automation, Networking, Security, and Telecom-

munications. Each of these categories represents a specific

area of the embedded market. MediaBench [22] contains 19

applications selected from image processing, communications

and DSP applications. SD-VBS [23] is a suite of applications

from the vision domain, including nine applications with over

28 kernels, three different sets of configurations per application

and five distinct input data sets per configuration.

The performance counters of migrated applications are

profiled in the following steps:

1) Randomly select some applications and deploy them on

different cores, keep all of them running as background

processes;

2) Choose one core as the source and another one as the

destination, deploy and launch one more application (to

be migrated) on the source core, trace the performance

counters in Table II and the execution time of this

application using PERF [24]: a performance analyzing

tool in Linux.

3) Migrate the application to a destination core and profile

its execution time after the migration.

By varying the input workload of the applications and

background processes running on different cores, we traced

about 600 different data records. The same steps are followed

to generate the training data set for host applications except

that the performance counters in Table III instead.

The performance of our proposed approach are evaluated in

the following steps:

• Partition the profiled data set into three sub sets training

data set (Dt), validation data set (Dv) and prediction data

set (Dp). Among which, Dt is composed of 80% of the

whole data set, Dv and Dp are 10% each;

• Train the models using Algorithm 1 using Dt and Dv;

• Apply the obtained models to predict execution times

of applications included in Dp and compare with their

actually profiled execution times.

B. Migrated Application Timing Prediction

In this subsection, we analyze the experimental results to

predict execution times of migrated applications. Table. IV

lists a few applications randomly selected and included in Dp.

The comparisons of predicted execution times and actually

profiled data are depicted in Fig. 3. From which we can find

that, for most of the applications, such as CRC32, JPGDEC,

MAD and JDPEG, our predictions are closed to the profiled

data.

To quantify the prediction accuracy, we use the following

metric to measure the prediction error:

Err =
Profiled-Exe-Time - Predicted-Exe-Time

Profiled-Exe-Time

In order to give an overall statistics of our prediction,

we calculate the cumulative distribution function (CDF) of

prediction error on the whole data set Dp as follows:

CDFErr(x) = P (Err < x)

where CDFErr(x) represents the cumulative probability that

the prediction error less than or equal to x.

From the results given in Fig. 4, we can see that 70% of

the applications have prediction error less than 0.3, 90% of

which are less than 0.4 and almost all the prediction errors

are within 0.5.

C. Host Application Timing Prediction

The execution time prediction model of host applications is

also trained and their CDF of the prediction error is illustrated

in Fig. 5. According to Fig. 5, 80% of the prediction errors are

within 0.3, 95% of which are less than 0.4 and the maximum

value is 0.45.

144144144144

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Migrated Application Timing Prediction

Fig. 4: CDF of Migrated Application Execution Time Predic-

tion

Fig. 5: CDF of Host Application Execution Time Prediction

TABLE IV: Selected Migrated Applications for Prediction

ID Benchmark Application
1 MIBENCH CRC32
2 SD-VBS MSER
3 MEDIABENCH JPGDEC(Jpg2000dec)
4 MIBENCH STRS(StringSearch)
5 MIBENCH MAD
6 SD-VBS LDA
7 SD-VBS SVM
8 SD-VBS MO-EST(Motion-Estimation)
9 MEDIABENCH DJPEG

V. CONCLUSION

In this paper, we present prediction based run-time system

reconfiguration approach on many-core embedded systems.

To select an appropriate application migration strategy such

that the system’s timing behaviors after the migration are still

acceptable, a run-time timing prediction strategy, including

data profiling, model training and execution time prediction,

are proposed. Initial data profiling and model training are con-

ducted before the system put in use, the obtained models will

be continuously updated and adjusted to the new environment

after system is actually in use. The most recent models will

be used for timing prediction when system reconfiguration

is invoked at run-time. To evaluate the performance of our

proposed approach, we conducted extensive experiments by

deploying multiple benchmarks including MIBENCH, MEDI-

ABENCH and VD-VBS on a multi-core platform. Experimen-

tal results validate the effectiveness of our proposed approach.

Our future work will investigate non-linear analytical mod-

els and online regression strategies to further improve the

prediction performance and reduce the online computation

complexity.

ACKNOWLEDGEMENT

This work was supported by Western Illinois University

URC grant 330315.

REFERENCES

[1] F. J. Rammig, S. Grösbrink, K. Stahl, and Y. Zhao, “Designing self-
adaptive embedded real-time software–towards system engineering of
self-adaptation,” in 2014 Brazilian Symposium on Computing Systems
Engineering. IEEE, 2014, pp. 37–42.

[2] L. Almeida, S. Fischmeister, M. Anand, and I. Lee, “A dynamic
scheduling approach to designing flexible safety-critical systems,” in
Proceedings of the 7th ACM & IEEE international conference on
Embedded software. ACM, 2007, pp. 67–74.

[3] Z. Li, F. Lockom, and S. Ren, “Maintaining real-time application
timing similarity for defect-tolerant noc-based many-core systems,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 13,
no. 2s, p. 64, 2014.

[4] Z. Li, S. Li, X. Hua, H. Wu, and S. Ren, “Run-time reconfiguration to
tolerate core failures for real-time embedded applications on noc many-
core platforms,” in High Performance Computing and Communications
& 2013 IEEE International Conference on Embedded and Ubiquitous
Computing (HPCC EUC), 2013 IEEE 10th International Conference
on. IEEE, 2013, pp. 1990–1997.

[5] C. Wu, C. Deng, L. liu, J. Han, J. Chen, S. Yin, and S. Wei, “A multi-
objective model oriented mapping approach for noc-based computing
systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. PP, no. 99, pp. 1–1, 2016.

145145145145

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:01 UTC from IEEE Xplore. Restrictions apply.

[6] C.-L. Chou and R. Marculescu, “Contention-aware application mapping
for network-on-chip communication architectures,” in Proc. of IEEE
International Conference on Computer Design, ser. ICCD, oct. 2008,
pp. 164–169.

[7] O. Derin, D. Kabakci, and L. Fiorin, “Online task remapping strategies
for fault-tolerant network-on-chip multiprocessors,” in Proc. of 5th
IEEE/ACM International Symposium on Networks on Chip, ser. NoCS,
may 2011, pp. 129–136.

[8] C. Constantinescu, “Trends and challenges in vlsi circuit reliability,”
Micro, vol. 23, no. 4, pp. 14–19, 2003.

[9] L. Zhang, Y. Han, Q. Xu, and X. Li, “Defect tolerance in homogeneous
manycore processors using core-level redundancy with unified topol-
ogy,” in Proc. of IEEE/ACM Design, Automation and Test in Europe
Conference, ser. DATE, march 2008, pp. 891–896.

[10] A. Das, A. Kumar, and B. Veeravalli, “Energy-aware communication
and remapping of tasks for reliable multimedia multiprocessor systems,”
in Proc. of 18th International Conference on Parallel and Distributed
Systems, 2012, pp. 564–571.

[11] K. Yue, F. Lockom, Z. Li, S. Ghalim, S. Ren, L. Zhang, and X. Li,
“Hungarian algorithm based virtualization to maintain application timing
similarity for defect-tolerant noc,” in Proc. of 17th Asia and South Pacific
Design Automation Conference, ser. ASP-DAC, 2012, pp. 493 –498.

[12] Z. Li, S. Li, X. Hua, H. Wu, and S. Ren, “Run-time reconfiguration
to tolerate core failures for real-time embedded applications on noc
manycore platforms,” in 2013 IEEE 10th International Conference
on High Performance Computing and Communications 2013 IEEE
International Conference on Embedded and Ubiquitous Computing, Nov
2013, pp. 1990–1997.

[13] P. Joseph, K. Vaswani, and M. J. Thazhuthaveetil, “Construction and use
of linear regression models for processor performance analysis,” in High-
Performance Computer Architecture, 2006. The Twelfth International
Symposium on. IEEE, 2006, pp. 99–108.

[14] ——, “A predictive performance model for superscalar processors,” in

Proceedings of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, 2006, pp. 161–170.

[15] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz,
Efficiently exploring architectural design spaces via predictive modeling.
ACM, 2006, vol. 40, no. 5.

[16] X. Zheng, P. Ravikumar, L. K. John, and A. Gerstlauer, “Learning-
based analytical cross-platform performance prediction,” in Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS),
2015 International Conference on. IEEE, 2015, pp. 52–59.

[17] A. C. de Melo, “Performance counters on linux,” in Linux Plumbers
Conference, 2009.

[18] P.-N. Tan et al., Introduction to data mining. Pearson Education India,
2006.

[19] E. Alpaydin, Introduction to Machine Learning. [Sl]. The MIT Press,
2010.

[20] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical
learning. Springer series in statistics Springer, Berlin, 2001, vol. 1.

[21] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the Fourth Annual IEEE
International Workshop on Workload Characterization. WWC-4 (Cat.
No.01EX538), Dec 2001, pp. 3–14.

[22] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: A
tool for evaluating and synthesizing multimedia and communicatons
systems,” in Proceedings of the 30th Annual ACM/IEEE International
Symposium on Microarchitecture, ser. MICRO 30. Washington, DC,
USA: IEEE Computer Society, 1997, pp. 330–335.

[23] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia,
S. Belongie, and M. B. Taylor, “Sd-vbs: The san diego vision benchmark
suite,” in 2009 IEEE International Symposium on Workload Character-
ization (IISWC), Oct 2009, pp. 55–64.

[24] A. C. de Melo, “The new linuxperftools,” in Slides from Linux Kongress,
vol. 18, 2010.

146146146146

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:01 UTC from IEEE Xplore. Restrictions apply.

