
PHAST: Hierarchical Concurrent Log-Free Skip
List for Persistent Memory

Zhenxin Li , Bing Jiao, Shuibing He ,Member, IEEE, and Weikuan Yu

Abstract—Skip list (skiplist) is a competitive index structure that offers superior concurrency and excellent performance but with high

memory overhead and low access locality. Emerging persistent memory (PM) technologies present an opportunity to mitigate the

capacity constraint of DRAM. However, data consistency on PM typically results in excessive write overhead. In addition, fast

concurrent access to an index is critical to the throughput on high-end contemporary computer systems. In this article, we propose a

Partitioned HierArchical SkiplisTcalled PHAST, which can simultaneously reduce the skiplist height and improve its access locality,

through its hierarchy of component structures, while enabling fast parallel recovery in case of failure. To ensure high concurrency and

fast data consistency, we also have developed writelock-free concurrent insert and log-free atomic split. Furthermore, we have

developed a durable lock-free concurrent search that can discern transient structural inconsistencies and deliver highly concurrent read

operations. We have conducted an extensive evaluation of PHASTcompared to state-of-the-art studies such as NV-Skiplist, wB+-Tree,

FPTree, and FAST-FAIR. Our evaluation results show PHASToutperforms other indexing structures by up to 4.05� and 2.87� in single-

threaded inserts and searches, and 1.56� and 2.62� in concurrent inserts and searches.

Index Terms—Skiplist, persistent memory, concurrency

Ç

1 INTRODUCTION

EFFICIENT indexing technologies are essential to the orga-
nization and operation of large-scale storage systems for

them to meet the critical needs of search engines, social net-
works, and online media stores [1], [2]. For example, log-
structured merge trees [3] are popularly leveraged for key-
value stores because of their benefits to block-oriented disk
devices. In addition, B+ tree and its derivatives [4] have
been very popular for disk-based file and database sys-
tems [5], [6] because of their strengths in achieving high fan-
out, balanced tree height, and efficient performance with
minimized random disk seeks. On the other hand, indexing
structures that can cause more random accesses such as
hash tables [7] and skiplists [8] are typically employed in
the volatile cache and memory systems that are smaller in
volume but support fast random accesses.

Emerging persistent memory (PM) technologies such as
Phase Change Memory (PCM) [9], Memristor [10], and 3D
XPoint [11] have greatly changed the landscape of memory

and storage systems. They provide not only high perfor-
mance close to DRAM, but also data persistence with high-
density and low power consumption [12]. As a result, PM is
popularly used in various real-world applications, such as
Redis [13], Memcached [14], and AI-based decision sys-
tems [15]. Many research studies have been undertaken to
take advantage of persistent memory technologies in data-
intensive indexing structures, such as B+ trees [16], [17],
[18], [19], [20], hash tables [19], [21].

Compared to B+ trees and hash tables, the skiplist is a
strong contender for fast indexing. As a probabilistic linked-
list based indexing structure, skiplist achieves its excellent
performance and superior concurrency through additional
layers of pointerswithout incurring frequent balancing oper-
ations. It is widely used in large-scale databases [22] and key-
value stores [1], [23], [24]. However, the additional layers of
pointers required by skiplists lead to high memory overhead
and low access locality.

PM technologies present an opportunity for skiplist with
their large capacity and DRAM-like performance. However,
due to the hardware characteristics of the PM device and
the structural features of the skiplist, directly integrating the
skiplist and the PM device would be inefficient. There are
several challenges in designing a PM-based skiplist.

A major challenge is that the skiplist may suffer from
high random access overhead in PM. The traditional skiplist
stores only one item in each node. This design yields a low
data access locality and causes a large number of small-
sized random data accesses during the indexing of a given
item. However, the physical media access granularity in PM
is 256 bytes, implying small-sized random accesses can lead
to poor performance because of the read or write amplifica-
tion [25]. To address this issue, this paper proposes a Parti-
tioned HierArchical skiplisT, PHAST, for fast indexing of
skiplist in PM (Section 3). The idea of PHAST is to place the

� Zhenxin Li and Shuibing He are with the College of Computer Science and
Technology, Zhejiang University, Hangzhou 310027, China, and also with
Zhejiang Laboratory, Hangzhou 311100, China.
E-mail: {zhenxin, heshuibing}@zju.edu.cn.

� Bing Jiao and Weikuan Yu are with the Department of Computer Science,
Florida State University, Tallahassee, FL 32306 USA.
E-mail: {jiao, yuw}@cs.fsu.edu.

Manuscript received 22 Oct. 2021; revised 20 Apr. 2022; accepted 4 May 2022.
Date of publication 10 May 2022; date of current version 23 Aug. 2022.
This work was supported in part by the National Key Research and Develop-
ment Program of China under Grant 2021ZD0110700, in part by the National
Science Foundation of China under Grant 62172361, in part by Zhejiang Lab
Research Project under Grant 2020KC0AC01, and the Alibaba Innovative
Research Project.
(Corresponding authors: Shuibing He and Weikuan Yu.)
Recommended for acceptance by H. Huang.
Digital Object Identifier no. 10.1109/TPDS.2022.3173707

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022 3929

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:23 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7140-5070
https://orcid.org/0000-0001-7140-5070
https://orcid.org/0000-0001-7140-5070
https://orcid.org/0000-0001-7140-5070
https://orcid.org/0000-0001-7140-5070
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-8754-0311
https://orcid.org/0000-0002-8754-0311
https://orcid.org/0000-0002-8754-0311
https://orcid.org/0000-0002-8754-0311
https://orcid.org/0000-0002-8754-0311
mailto:zhenxin@zju.edu.cn
mailto:heshuibing@zju.edu.cn
mailto:jiao@cs.fsu.edu
mailto:yuw@cs.fsu.edu

inner nodes in DRAM and the leaf node in PM to reduce the
number of random accesses to PM. Besides, PHAST aug-
ments the access locality by grouping KV pairs into one
node to further reduce random PM accesses.

While the grouping of items can improve access locality, it
brings an additional concurrency control overhead com-
pared to traditional skiplists because multiple threads will
concurrently access the same node. One classic approach is
to use a per-node lock to serialize concurrent operations, like
in FAST&FAIR [26] and FPTree [18]. However, the coarse-
grained lock mechanism introduces extra waiting overhead
when concurrent threads update the same nodes. Multi-Ver-
sion Concurrency Control (MVCC) is another strategy for
thread-safe concurrent indexing operations, but it is not
practical for PM due to the high space consumption and gar-
bage collection overhead. To address this challenge, PHAST
introduces a relaxed RWLock-based concurrency control
mechanism (Section 4), which supports writelock-free inser-
tion and lock-free search to access the same nodes simulta-
neouslywithout causing data inconsistency.

Furthermore, the skiplist suffers from high write over-
head for data consistency in PM. Out-of-order writes to PM
can cause data inconsistency when system crashes. To
ensure data consistency, the persistent skiplist needs to use
cache line flush (e.g., CLFLUSH, CLFLUSHOPT, CLWB)
and memory fence (e.g., MFENCE, SFENCE) instructions to
persist data to the PM. These instructions introduce addi-
tional write overhead. To tackle this issue, PHAST adopts
writelock-free concurrent insert (Section 4.1) and log-free
atomic in-place split (Section 4.2), which support write oper-
ations without resorting to costly data logging and copy-on-
write (COW) strategies.

We have compared PHAST to recent indexing structures
including NV-Skiplist [27], wB+-Tree [16], FPTree [18], and
FAST-FAIR [26]. Our results show that PHAST has a better
performance in both single-threaded and multi-threaded
tests. PHAST outperforms other indexing structures by 1.33�
to 4.05� in single-threaded inserts and 1.22� to 2.87� in sin-
gle-threaded searches. For concurrency operations, PHAST
outperforms FAST-FAIR by up to 1.56�, 2.62�, and 1.59� in
inserts, searches, andmixed inserts/searches workloads.

2 BACKGROUND AND MOTIVATION

2.1 Persistent Memory

Persistent memory is non-volatile and byte-addressable
while providing the DRAM-like performance. With the
release of Optane DCPMM [28], PM device is popularly used
in various fields, such as file system [29], [30], transaction
processing [31], [32], and indexing structures [20], [33]. Dif-
ferent from traditional disks, PM communicates with the
memory controller in the cache line granularity (i.e., 64
bytes), while the physical media access granularity in PM is
256 bytes. Thus, the data transmission between CPU cache
and PM will result in I/O amplification due to the mis-
matched sizes in different hardware layers. Besides, out-of-
order writes to PM can cause data inconsistency when the
system crashes. To ensure data consistency, memory write
operations are typically followed by a cache line flush
instruction to explicitly flush dirty cache lines and amemory
fence instruction to avoid the instruction reordering.

To show the performance difference between PM and
DRAM, we evaluate their real performance with a micro
benchmark using 32 threads and a 64-byte access size in our
experimental platform (Section 5.1). As shown in Table 1,
the maximal read bandwidth of PM is 11 GB/s and the max-
imal write bandwidth is 2.3 GB/s, which are 5� and 8�
lower than that of DRAM. In addition, different from
DRAM, PM suffers from about 3� higher read/write
latency for random accesses than sequential accesses. As a
result, it is critical for PM-based indexes to carefully con-
sider the characteristics of PM.

2.2 Skiplist Overview

As shown in Fig. 1, a skiplist is a hierarchical data structure
composed of multiple layers of linked lists. While the bot-
tom layer is the largest and holds all items in the list, other
layers are probabilistically constructed by adding additional
forward pointers to an item. A node from one layer has a
probability of p (12 in our design) to be chosen to be part of
the adjacent higher layer. The height of a node is deter-
mined by the number of its forward pointers. Thus a skiplist
of n items will consist of logðnÞ layers, i.e., a height of logðnÞ,
with an extra storage for n=ð1� pÞ forward pointers.
Through these layers of forward pointers, a skiplist sup-
ports fast search performance while the bottom-level linked
list allows fast concurrent insertion and modification with-
out inflicting complex rebalancing operations like B-trees.
Most common operations will have an average complexity
of 1

p logðnÞ, i.e., OðlogðnÞÞ. A thorough treatment on skiplist
is available in the literature [8].

2.3 Challenges for in-PM Skiplist

PM has its characteristics such as the requirement of persis-
tent instructions, the access size of 256 bytes, and the favor
of sequential accesses. However, the idiosyncrasy of skip-
list, such as layers of links, individual nodes, and point
chasing, can not fully match the features of PM. Therefore,
directly integrating a skiplist and the PM faces the following
challenges.

High RandomAccess Overhead.Recent works [25], [34] have
revealed that PM has poor performance for accesses with
low locality, i.e., random accesses. To verify this, we test the
latency of PM with 32 threads under sequential and random
access patterns at the request size of 64 bytes in our experi-
mental platform. Fig. 2a shows that PM delivers about 3�
higher latency for random accesses than sequential accesses
for both reads and writes. As each node in traditional skip-
lists only has one item, a large skiplist requires multiple
layers to hold all the items. The read and write operations
have to travel many layers of forwarding pointers, resulting

TABLE 1
Bandwidth and Latency of DRAM and PMWith 32-Thread Tests

Bandwidth (GB/s) Latency (ns)

Read Write Read Write

Seq Rnd Seq Rnd Seq Rnd Seq Rnd

DRAM 63.9 11.1 18.5 13.4 30 172 103 142
PM 11.0 2.9 2.3 0.8 172 635 847 2559

3930 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:23 UTC from IEEE Xplore. Restrictions apply.

in low data access locality. Consequently, the PM-resident
skiplist would suffer from a longer access latency than the
DRAM-resident one [20], [35]. To address this issue, a com-
mon approach is grouping multiple items to an internal
node [27], [36], similar to the height reductionmethod in var-
ious B+ trees. Inspired by this, PHAST proposes the parti-
tioned hierarchical skiplist design (Section 3) and further
solves the concurrency problem caused by grouping.

High Concurrency Control Overhead. While item grouping
can improve locality, it leads to concurrency access conten-
tion because multiple threads may access the same node.
Concurrency is important with ever-increasing core counts
in contemporary server systems. However, most of the
existing PM indexing study does not fully demonstrate the
concurrency because of the complex programming for data
consistency and persistence. For example, NV-Tree [17], wB
+-Tree [16], and WORT [37] do not support concurrent
accesses, while FAST&FAIR [26] and FPTree [18] deploy a
per-node lock to serialize concurrent operations. However,
the coarse-grained lock mechanism introduces extra waiting
overhead when concurrent threads update the same node
simultaneously. BzTree [38] proposes a latch-free indexing
using a Multi-Words Compare And Swap (MWCAS)
instruction [39], but it needs additional resources to allocate
and reclaim MWCAS descriptors. Multi-Version Concur-
rency Control (MVCC) is another strategy for thread-safe
concurrent indexing operations. However, MVCC is not
practical for PM due to the high space consumption and
garbage collection overhead. To keep the superior concur-
rency of traditional skiplists, PHAST proposes a relaxed
rwlock-based concurrency control mechanism (Section 4).

High Write Overhead for Data Consistency in PM. PM has a
lower write bandwidth than DRAM and requires the explic-
itly calling of flush and fence instructions to keep data per-
sistency and consistency. This introduces additional high
write overhead [16], [17]. Many B+ tree based indexing
structures [16], [17], [18], [26], [35] have strived to improve
the throughput by reducing the number of PM writes and
flushes. For skiplist, however, the insertion of a node will
trigger the update of multiple nodes across several layers.
These updates introduce a large number of writes and
flushes, which degrade the performance. To verify this, we
insert 100M KVs with a single thread to an in-DRAM

skiplist and an in-PM skiplist with flush and fence instruc-
tions. After warming up using 50M KVs, we insert the
remaining 50M KVs and record the write time (i.e., create a
new node and install it to layers of linked lists) excluding
the locating time. As shown in Fig. 2b, the in-PM skiplist
delivers a 27� higher write time than the in-DRAM skiplist,
indicating the urgency to reduce the write cost of in-PM
skiplist. Besides, the commonly used approaches to main-
tain data consistency, such as data logging or copy-on-write
(COW), also bring redundant writes for PM-based indexes,
leading to high write overhead. To reduce the write over-
head, PHAST proposes writelock-free concurrent insert
(Section 4.1) and log-free atomic in-place split (Section 4.2)
techniques.

3 PARTITIONED HIERARCHICAL SKIPLIST FOR LOW

HEIGHT AND HIGH LOCALITY

We design PHAST to exploit the capacity advantage of PM
while mitigating the drawbacks of traditional skiplists for
highly concurrent indexing operations. We advocate two
principles: (1) lowering the height of skiplists for fewer ran-
dom accesses when travelling the layers and fewer pointers
to be updated when installing a new node. (2) augmenting
the locality by caching frequent keys and grouping KV pairs
wherever possible in both DRAM and PM.

Fig. 3 provides an overview of PHAST organization. A
PHAST is composed of a hierarchy of three-level components.
At the top level, a PHAST is divided into a set of partitions
based on the prefix bits of keys. Next, each partition is an
augmented skiplist of internal nodes (INodes). Third, each
INode in turn contains a set of pointers to the leaf nodes
(LNodes) in PM. A LNode is the basic unit of KV pairs. Since
DRAM has lower latency and higher throughput than PM,
we adopt the selective persistence strategy [17], [18] to
improve the throughput of PHAST: all LNodes reside in PM
while partitions and INodes are located in DRAM. Partitions
and INodes are volatile and can be reconstructed from the
LNodes in PMupon a failure recovery.

3.1 Prefix-Based Partitioning

PHAST adopts a prefix-based partitioning strategy to divide
the total range of keys. Fig. 3 shows an example of partition-
ing the keys into N (N ¼ 8) partitions based on the first
three bits. This allows a quick decision on the targeted parti-
tion for a key without key comparisons and skiplist traver-
sals. With partitioning, the number of nodes in each
partition is only a part of the total nodes, so the height of
partitions is usually lower than that of the non-partitioned
skiplist. Assuming a uniform distribution of keys and a
probability of 1

2 to increase the height of a skiplist node,

Fig. 1. Diagram for a generic skiplist with 8 nodes.

Fig. 2. (a) Latency with different access patterns in PM. (b) Write over-
head for skiplist in DRAM and PM.

Fig. 3. PHAST: Partitioned hierarchical skiplist with selective persistence.

LI ETAL.: PHAST: HIERARCHICALCONCURRENT LOG-FREE SKIP LIST FOR PERSISTENT MEMORY 3931

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:23 UTC from IEEE Xplore. Restrictions apply.

using k prefix bits for partitioning can reduce the height of
skiplist by k. This simple prefix-based partitioning embraces
our first principle to achieve lower height, and helps avoid
frequent traversal of many layers of pointers in a monolithic
skiplist. However, for a workload with a skewed key distri-
bution, it can result in uneven partitions, and diminished
benefit when some partitions are much higher than others
(Section 5.4). Thus, the actual number of partitions can be a
tradeoff depending on the actual workload. Also note that
we are not limited to k prefix bits for PHAST partitioning.
These partitioning bits can be a set of consecutive bits any-
where based on the key space and the workload.

3.2 Index Cache

Common indexing data structures, such as B+ trees and
linked lists contain internal nodes that are discontiguous in
memory. Traversing such structures renders the CPU cache
working to be ineffective. Particularly, for skiplists, layers
of pointers and a large number of low-level nodes form a
working set much bigger than the cache size. They can
cause frequent eviction of the recently-accessed search-path
pointers and the much-needed high-level nodes out of the
memory cache. As a reflection of our second design princi-
ple for high locality, we introduce an in-DRAM auxiliary
cache in each partition called Index Cache, which maps maxi-
mal keys (mIKeys in Section 3.3) of a specified skiplist layer
to their corresponding INodes. This cache helps to mitigate
the frequent misses for keys from high-level nodes and
improve memory access performance. All keys in Index
Cache are organized in a contiguous array and sorted in
ascending order to allow fast OðlogðnÞÞ lookup. Considering
an oversized cache could cause large DRAM consumption
and diminished performance benefit, we use a threshold to
control the size of Index Cache. The threshold can be deter-
mined based on the platform parameters (i.e., the available
DRAM capacity) and the workload. In our current design,
we empirically set the threshold as 1MB to achieve a moder-
ate balance between the performance benefit and its space
cost. Besides, PHAST can determine the cached layer based
on the threshold at runtime. If the cache size of the current
layer exceeds the threshold, PHAST will select the above
layer to be cached and replace the old one.

3.3 INode and LNode

In a traditional skiplist, each node stores only one KV pair.
In view of the aforementioned drawbacks of skiplist for
large-scale indexing, we deem that, besides partitioning the
skiplist, it is necessary to exploit more potential from the
node structure to further reduce the height of the skiplist.
On the other hand, we need to retain the advantage of the
skiplist for concurrent accesses and avoid inflicting addi-
tional writing overhead for failure-atomic data consistency
in PM. Thus, we organize each partition into two more lev-
els of units: the individual INodes and the LNodes, as
shown in Fig. 4. Each LNode contains up to 56 KV pairs to
reduce the skiplist height and save the data persistency and
consistency overhead (Section 3.3.2). Each INode manages a
large number of LNodes. A smaller INode reduces the num-
ber of key comparisons and multi-threaded conflicts within
an INode, but it increases the height of PHAST and the

number of INode splits. Based on our experimental analysis
(Section 5.4), we currently empirically configure each INode
to contain 128 LNodes. Together with these components,
each INode manages up to 7168 KV pairs, reducing the
height of the skiplist by nearly 13 (log 27168) levels. Com-
pared to NV-Skiplist [27] that groups multiple (64) key-
value pairs into a single node and PSL [36] that uses B-Tree
like nodes to manage internal nodes, these components can
further reduce the skiplist height. These components work
in concert to support highly concurrent operations at low
write overhead, as will be elaborated in Sections 4.1 and 4.3.

3.3.1 INode

Each INode consists of a header, one array of keys, one
array of shadow bitmap (shadowBM) and another array of
pointers to its constituent LNodes on PM. The header con-
sists of six main fields: the maximal key within the INode
(mIKey), a RWlock (read/write lock) for concurrency con-
trol, the number of levels (nLevels), i.e., the height of the
node, the number of LNodes (nLeaves), the flag indicating
whether the node (INode or LNode) is splitting (isSplit),
and an array of pointers to the next node for each level. The
array of keys contains the maximal key from each LNode
(mLKey). The shadowBM is used to indicate the empty
positions in a LNode for concurrent inserts (Section 4.1).
The beginning location of each LNode is recorded as a leaf
pointer (leafPtr) in the third array. The header and the three
arrays are all 64B aligned for efficient cache line accesses.

3.3.2 LNode

As shown by the bottom half of Fig. 4, each LNode contains
a header followed by a group of KV pairs. The LNode
header consists of a bitmap indicating the valid KV pairs in
the LNode, an array of fingerprints (each 1B), a pointer that
points to the next LNode on PM, and the maximal key
within the LNode (mLKey). The LNode organization is sim-
ilar to the leaf node in FPTree [18]. We make each LNode
contain 56 KV pairs so that its bitmap (8 bytes) and finger-
prints (56 bytes) can be persisted with one cacheline (64
bytes) instruction, reducing the data persistence overhead.
Furthermore, the bitmap can be updated with a single 8-
byte failure-atomic write instruction, saving the data consis-
tency cost. The next pointer and the mLKey are 8B each.

Fig. 4. INode and LNode in PHAST. For clarity, components are not drawn
to the scale of their sizes.

3932 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:23 UTC from IEEE Xplore. Restrictions apply.

The Key and Value are 8B each, forming a 16B pair.
Through these fields, the LNode header manages the critical
information to support efficient data persistence and highly
concurrent access to its internal KV pairs.

4 RELAXED RWLOCK-BASED CONCURRENCY

CONTROL

With the proposed hierarchical skiplist structure, multiple
threads may concurrently access the INodes or LNodes,
leading to current write, split, and read contention within
the same node. To keep data consistency and high perfor-
mance, we need efficient concurrency control mechanisms.

We have explored various concurrency strategies in
PHAST and realized that we either need to introduce more
pointers across the hierarchy of INode so that transient
changes can be made atomic through CAS operations, or
we need to protect the splitting INode or LNode within a
transaction or an exclusive lock. The former happens to be
very costly in performance due to many complex changes
to our PHAST design. The transaction approach may be
hardware specific. In our implementation, PHAST opt to use
the read-write lock mechanism (RWLock) but in a more
relaxed approach, such that more operations can be exe-
cuted concurrently.

This relaxed approach is reflected in two aspects. First,
we require each insert thread to acquire a read lock when
there is no splitting, allowing concurrent insert operations,
whereas a typical approach requires each thread to acquire
a write lock that prevents them from being executed concur-
rently. Second, we configure each read thread as lock-free,
allowing concurrent insert-search or split-search operations,
whereas a typical approach requires each thread to hold a
read lock that prevents them from being executed
concurrently.

Algorithm 1 shows the relaxed RWLock-based concur-
rency control mechanism. All operations get the target node
first (Line 1). If the thread is going to insert a KV pair, it
acquires its read lock and check the boundary to get the
right INode if the original target INode has been split (Line
2-8). Then it identifies the LNode by a binary search (Line
9). If the LNode is full, it will release the read lock and
acquire the write lock. To avoid deadlock from the competi-
tion of the write lock, PHAST controls the behavior by isSplit
flag. Only the thread that has successfully performed CAS
is allowed to acquire the write lock, other threads will
release the read lock and go to reinsert (Lines 11-17). The
thread further checks if the INode is full. If so, it splits the
INode to make room for an incoming LNode, otherwise, it
will split the LNode (Line 18-22). After that, the thread will
reset the isSplit flag, and release the write lock. Finally, the
thread can insert the LNode according to the WriteLock-
Free Concurrent Insert (WFCI, Algorithm 2) and release the
read lock (Lines 27-28). Other modification-related opera-
tions will be forwarded to different functions similar to
insert, while searches will be processed by a lock-free search
that we will discuss in Section 4.3.

Based on this RWLock-based concurrency policy, we will
discuss the concurrent insert, split, and search designs
together with consistency-related efforts in the following
three subsections.

Algorithm 1. RWLock-Based Concurrency Control(key,
val, op)

1: INode FindINodeðkeyÞ;
2: if op:IsInsertðÞ then
3: LOC_1: AcquireðINode:ReadLockÞ;
4: while INode:maxLKey < key do "find right INode
5: ReleaseðINode:ReadLockÞ;
6: INode INode:next½0�;
7: AcquireðINode:ReadLockÞ;
8: end while
9: ðLNode; shadowBMÞ BinarySearchðINode; keyÞ;
10: if LNode:IsFullðÞ then
11: if CASðINode:isSplit; False; TrueÞ then
12: ReleaseðINode:ReadLockÞ;
13: AcquireðINode:WriteLockÞ;
14: else
15: ReleaseðINode:ReadLockÞ;
16: goto LOC 1; "re-insert
17: end if
18: if INode:IsFullðÞ then
19: INodeSplitðÞ; "split INode
20: else
21: LNodeSplitðÞ; "split LNode as Fig. 6
22: end if
23: INode:isSplit False;
24: ReleaseðINode:WriteLockÞ;
25: goto LOC 1; "re-insert
26: end if
27: WFCIðshadowBM;LNode;

key; valÞ; "insert as Algorithm 2
28: ReleaseðINode:ReadLockÞ;
29: else
30: Other Operation; "e.g., read as Algorithm 3
31: end if

4.1 Writelock-Free Concurrent Insert

We design a writelock-free concurrent insert (WFCI) in two
phases to insert KV pairs in the same LNode. The relaxed
RWLock-based mechanism guarantees the insert is per-
formed in a writelock-free way to achieve high concurrency.
The failure-atomic CAS instruction is used to guarantee
data consistency. Algorithm 2 shows the step of the insert
processing. In the first phase, a thread will try to get an
open bit from shadowBM and set it by CAS (Line 2-5). As
the CAS instruction is failure-atomic, only one thread can
succeed and insert the open entry in the LNode. The KV
pair is then inserted to the corresponding entry in the
LNode and persisted to PM via a sequence of CLWB and
SFENCE instructions (Line 6-7). There is no need to persist
shadowBM to PM since it is only used for a thread to locate
the open entry in the LNode. In the second phase, the insert
thread sets the corresponding bit in the default bitmap via
another CAS (Line 9-12). The insert operation is done when
the CAS instruction is executed successfully.

Fig. 5 shows an example of two threads (T1 and T2) per-
forming concurrent insert operations. They first compete
via CAS for Bit 2 (the first available bit) from shadowBM
(SBM). Suppose that T1 wins the race. It then inserts and
persists the KV pair (30, v1), updates the fingerprint, etc. T2
tries CAS again on shadowBM and obtains Bit 3, the next

LI ETAL.: PHAST: HIERARCHICALCONCURRENT LOG-FREE SKIP LIST FOR PERSISTENT MEMORY 3933

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:23 UTC from IEEE Xplore. Restrictions apply.

available bit. It proceeds with the same instructions to insert
its KV pair (40, v2). Since threads may progress at different
paces, chances of T1 and T2 can arrive at the same time to
update the default bitmap (BM). Suppose T2 wins in the
CAS race on the bitmap. It then sets Bit 3 as 1 on the default
bitmap and marks the KV pair (40, v2) as present. T1 then
tries CAS again on the bitmap and sets Bit 2 as 1 to mark the
presence of (30, v1).

Algorithm 2.WFCI(shadowBM, LNode, key, val): Write-
Lock-Free Concurrent Insert

1: while !LNode:IsFullðÞ do
2: ðoldSBM;newSBMÞ shadowBM;
3: pos FindFirstZeroðoldSBMÞ;
4: newSBM½pos� 1;
5: if CASðshadowBM; oldSBM;newSBMÞ then
6: LNode:entries½pos� ðkey; valÞ;
7: PersistðLNode:entries½pos�Þ;
8: while True do
9: ðoldBM; newBMÞ LNode:bitmap;
10: LNode:fingerprints½pos� HashðkeyÞ;
11: newBM½pos� 1;
12: if CASðLNode:bitmap; oldBM; newBMÞ then
13: PersistðLNode:bitmapÞ;
14: Break;
15: end if
16: end while
17: Break;
18: end if
19: end while

4.2 Log-Free Atomic In-Place Split

Both INode and LNode have limited room and shall be split
to accommodate more KV pairs. With the relaxed RWLock-
based concurrency control in Section 4, PHAST ensures that
LNodes are split in an exclusive manner, i.e., without inter-
ference by concurrent threads. Since PHAST is a linked list
based data structure, it does not need to balance very often
and deal with the wandering tree problem [40], as com-
monly required for tree based data structures. FAST-
FAIR [26] supports log-free split of its nodes, but it still has
to cope with the wandering tree problem when a new node
triggers the split of parent nodes. In contrast, the simplicity
of skiplist allows us to use log-free splitting in PHAST to

support failure-atomic consistency. Furthermore, we keep
the original full node and generate only one new node in
the split process. Compared to the approaches with two
new nodes [27], [38], such an in-place split manner can
increase memory space utilization and reduce data copy
overhead in the split.

The log-free atomic in-place split is shown in Fig. 6. First,
it allocates a new LNode and copies the larger half KV pairs
and the next pointer in the full LNode to the new LNode.
And then, it changes the next pointer of the full LNode to
the new LNode using an 8-byte atomic write operation. If a
failure occurred previously, the entire system remains con-
sistent because the full LNode is not modified. After that, it
clears the bitmap in the full LNode for the migrated KV
pairs. Finally, it changes the mLKey in the LNode and the
split process is successfully completed. If a failure occurs
after the pointer changes, the system will be in an inconsis-
tent state. However, this inconsistency can be detected and
fixed when two adjacent LNodes are found to have the
same mLKey. The recovery process can complete the split
operation for the two LNodes. The consistency of the system
is then guaranteed.

The split of an INode is a memory-based operation and
has little effect on the data consistency of KV pairs on PM.
First, it will create a new INode and copy the larger half
mLKeys, corresponding leafPtrs and shadowBMs from the
full INode to the new one. Then it sets some metadata infor-
mation, e.g., nLevels, nLeaves, in the new INode. After
installing the new node to the in-memory skiplist, the old
INode’s nLeaves and mIKey will be reset. As the header
information is copied and reset in memory, the processing
is fast.

4.3 Durable Lock-Free Concurrent Search

INode and LNode keep track of the maximal key inside
them as mIKey and mLKey. These two keys need to be
updated when a LNode or INode is split. Without the pro-
tection of an exclusive lock, it is possible that a read thread
observes the two keys not yet properly updated in the mid-
dle of splitting, leading to incorrect search. Instead of using
exclusive locks to prevent a read operation from observing
the transient states, we design durable lock-free concurrent
search without any restriction. The basic idea is to equip the
read threads with the ability to validate the INode or the
LNode twice to ensure that the pertinent INode and LNode
have not changed during the search process.

Fig. 5. An example of concurrent insert operations from two threads, T1
to insert (30, v1) and T2 (40, v2). BM: bitmap; SBM: shadowBM; KV[]:
the array of KV pairs.

Fig. 6. Log-free LNode split for the insertion of key 2.

3934 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:23 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3. LockFreeSearch(key): Lock-Free Search the
Target Value From PHAST

1: INode FindINodeðkeyÞ;
2: LOC_1:
3: while INode:mIKey < key do
4: INode INode:next½0�;
5: end while
6: LNode SequentialSearchðINode; keyÞ;
7: while LNode:mLKey < key do
8: LNode LNode:next;
9: end while
10: bitmap LNode:bitmap;mLKey LNode:mLKey;
11: for each occupied position i in bitmap do
12: if LNode:fingerprints½i� ¼¼ HashðkeyÞ &&

LNode:entries½i�:key ¼¼ key then
13: value LNode:entries½i�:value;
14: Break;
15: end if
16: end for
17: if INode:isSplit or mLKey! ¼ LNode:mLKey then
18: goto LOC 1;
19: end if
20: Return value;

Algorithm 3 shows the design of the lock-free concurrent
search scheme. To search a key from PHAST, a thread first
gets an INode from the index cache. Because of potential
transient inconsistencies between INode and the index
cache, the thread will try to validate if its mIKey is still
larger than the requested key. If mIKey is no longer larger
than the requested key, the thread is going to probe the next
INode until it finds the right INode (Line 1-5). It then
obtains the right LNode by searching the mLKey array
(Line 6). Since the mLkey array is updated by shifting the
keys, the thread sequentially searches the mLKey array to
obtain the LNode. It then validates the boundary key
(mLKey) to detect whether a split has updated the mLKey
array and results in a stale view to the search thread. If this
LNode is stale, this thread will probe the next one to attain
the correct LNode (Line 7-9). To prevent the interference
from inserts, this thread makes a copy of the bitmap and
then traverses the occupied position within it (Line 10-16).
If this LNode is not splitting (the isSplit flag is false) and no
transient changes (the mLKey has not changed) are
detected, the retrieved KV pair is valid and can be correctly
returned. Otherwise, this search thread has to restart the
process from LOC_1 (Line 17-19).

4.4 Other Operations

Update and Delete. Other write operations (i.e., update and
delete) are simple variations to insert. For an update, PHAST
only needs to persist the targeted value in the LNode using
an 8-byte atomic write. For a delete, PHAST first checks
whether the KV pair can be found in a LNode. If found,
PHAST sets the corresponding key as invalid (MAX_UINT64
in our implementation). We do not clear the bit in the bit-
map because this may result in the transient change of the
bitmap, which cannot be observed by the lock-free search.
The entries marked for deletion will be reclaimed during
splitting.

Scan. The scan operation is much complex with the lock-
free method since the split of LNodes will migrate some
entries to the new LNode. The KV pairs retrieved from the
new LNode could be redundant with the old one which will
cause inconsistent views to the scan thread. Besides, the
requested key range may cross several LNodes, the com-
pelled rescan operation will bring high overhead when
observing the transient states. Therefore, PHAST still adopts
the traditional read lock in scan operations.

Index Cache Update. The index cache is a small cache of
keys in DRAM designed to expedite the lookup of INodes.
The addition of INodes at the lower levels will create stale
entries in the index cache, resulting in more cache misses.
While such misses can get resolved through the durable
lock-free concurrent search scheme, it is still important to
synchronize the index cache with the latest additions to bet-
ter exploit its caching strength. However, concurrent read/
write threads can access the index cache at the same time.
Considering the lower frequency of adding INodes, PHAST
adopts MVCC (Multi-Version Concurrency Control) to syn-
chronize the index cache for concurrent threads. When sev-
eral threads with additional INodes need to update the
index cache, each will copy and modify the original index
cache. Then they compete to install their copy as the latest
index cache via an atomic CAS operation. One of them will
succeed and the others have to retry.

Parallel Recovery. Partitions and INodes reside in DRAM
and will be lost upon a power or system failure. While the
physical KV pairs can be retrieved from the LNodes, a flat
linked list of LNodes is insufficient to reconstruct this hier-
archy efficiently, because it can force serialization of recon-
struction due to the sequential traversal of LNode pointers.
To support orderly and expedient construction of PHAST,
we initialize an array of partition pointers on PM when
PHAST is first created, shown as “Master” in Fig. 3. Each
pointer is used to locate the beginning LNode of a partition.
With the Master, each thread can proceed in parallel to
reconstruct the INodes based on its constituent LNodes.
Our reconstruction also performs a sanity validation on the
recovered hierarchical structures, such as recalculation of
fingerprints for all KV pairs, and the metadata consistency
of LNode headers, INode headers and Index caches.

To avoid persistent memory leakage, we leverage exist-
ing PM atomic allocators from PMDK [41] to reclaim
unused objects. PMDK creates a pool when the program
starts running and allocates objects from the pool. During
the recovery, we can get the allocated objects by scanning
the whole pool and release the objects that are not added to
linked lists of LNodes.

5 EVALUATION

5.1 Experimental Setup

System Configurations. Our experiments run on a server with
two Intel Xeon Gold 6148 CPUs. Each CPU has 40 logical
cores, 27.5 MB L3 cache, 64 GB DDR4 DRAM, and two Intel
Optane DCPMMs (256GB in total). The OS is Ubuntu-18.04.
Every pair of PMMs attached to a CPU is configured to be a
single 256 GB namespace in App Direct mode, and is
mounted with ext4-dax file system. To avoid NUMA effects,
we perform all experiments on one CPU by pinning threads

LI ETAL.: PHAST: HIERARCHICALCONCURRENT LOG-FREE SKIP LIST FOR PERSISTENT MEMORY 3935

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:23 UTC from IEEE Xplore. Restrictions apply.

to a NUMA node accessing the local PMMs. All objects on
PM are allocated by libpmemobj of PMDK [41] and persisted
by the pmemobj_persist function. The real bandwidth and
latency of the DRAM and PM devices in our hardware plat-
form are listed in Table 1 of Section 2.1.

Comparisons and Configurations. We compare PHAST with
the state-of-the-art indexing structures for PM: NV-Skip-
list [27], wB+-Tree [16], FPTree [18], FAST-FAIR [26], and
WORT [37]. These indexing structures use different strategies
to trade-off among structure height, access locality, persis-
tence overhead, and access concurrency. In the experiments,
we use the following default parameters reported in the
related paper to configure each indexing structure. For NV-
Skiplist, the number of KV pairs in each leaf node is 64. For
wB+-Tree, FPTree, and FAST-FAIR, their fanouts of the inter-
nal node are 7, 256, and 30, respectively. Accordingly, the
number of KV pairs in their leaf nodes is 7, 64 and 30, respec-
tively. For WORT, the fanouts of the internal and leaf node
are 16 and 1, respectively. For PHAST, the number of partitions
is 128 and the size threshold of Index Cache is 1MB. Each
INode contains 128 LNodes and each LNode contains 56 KV
pairs. For all tests, both the key and value sizes are 8B. To
show the performance benefits from the partitioned hierarchi-
cal skiplist structure, we implement PHAST in a single-
threaded version without concurrency-control fields includ-
ing RWLock and shadowBM. To verify the effectiveness of
the relaxed concurrency control mechanism, we also imple-
ment a concurrent version of PHAST with all structural fields
enabled (Section 3.3.1).

5.2 Single-Threaded Performance

Microbenchmarks. We evaluate PHAST using microbe-
nchmarks with keys and values in a uniform distribution.
For insert tests, we first randomly insert 50M entries to
warm up the structures and then measure the throughput
for inserting the next 50M entries. For other tests, we mea-
sure the throughput for 50M random searches/updates/
scans on a KV store with 100M entries. The scan tests are
configured to retrieve 50 entries from a start key. Fig. 7
shows the single-threaded throughput.

For insert operations, PHAST has the best performance
that outperforms NV-Skiplist, wB+-Tree, FPTree, FAST-
FAIR, and WORT, by 2.56�, 3.76�, 1.33�, 1.61�, and 4.05�,
respectively. PHAST delivers the best throughput because it
has better search and data persistence performance owing
to its lower height, higher locality, and log-free persistence
technique. An insert operation incurs the leaf node search-
ing time (LeafSearch), the entry writing time in the leaf
node (EntryWrite), and the data persistence time (Flush). As
shown in Fig. 8a, PHAST cuts off much of the LeafSearch
time and the Flush time. Because of the different number of

entries in leaf nodes, PHAST takes a longer EntryWrite time
compared to FAST-FAIR but similar to FPTree. WORT has
the longest EntryWrite time because it has the samllest leaf
node (i.e., one KV pair) which results in more object alloca-
tions from PMDK and persistence overhead.

For search operations, PHAST outperforms FPTree, FAST-
FAIR, NV-Skiplist and wB+-Tree by 1.22�, 1.30�, 2.42� and
2.87�, respectively. PHAST gets high throughput owing to the
use of the index cache to improve locality. To verify this, we
evaluate the Insert and Search throughputs of PHAST with
and without the index cache. As Fig. 8b shows, although the
index cache slightly degrades the insert throughput by 3.1%
because of index synchronization (Section 4.4), it increases the
search throughput by 13.8%.We also note thatWORT has the
best search throughput because it does not need comparisons
of keys during searching. For update operations, they require
additional KV write and CLWB operations compared to
search operations. Thus the throughputs are generally lower
than those of the search operations.

For scan operations, PHAST outperforms NV-Skiplist and
wB+-Tree because of its fast search performance. PHAST is
slower than FAST-FAIR because it has more unsorted keys
in the LNode, while keys in the leaf node of FAST-FAIR are
sorted. The performance of FPTree and PHAST is lower than
FAST-FAIR by 29.0% and 33.0% respectively. However,
keeping the ordering of entries will offset FAST-FAIR’s
insert performance, as previously shown. We also note that
PHAST is comparable to FPTree because they both have a
similar size of leaf nodes and need to sort KVs when return-
ing to the client.

Note that we do not report the search and scan through-
puts of WORT in Fig. 7 because the released code of WORT
does not support such operations. In addition, WORT has
shown much lower scan throughput compared to wB+ Tree
and FPTree [37]. Due to these reasons, we exclude WORT
from the rest of the evaluation.

YCSB-Benchmark.We then evaluate PHAST using YCSB [42]
macrobenchmarks, including six default workloads as listed
in Table 2. For the Load workload, we insert 100M entries as
generated by YCSB in its load phase andmeasure the through-
put. Thenwemeasure the performance of all workloads using
50M entries in run phase.

Similar to previous microbenchmark tests, Fig. 9 shows
PHAST delivers an overall better throughput compared to
other index structures. For Load, PHAST outperforms NV-
Skiplist and FPTree by 3.27� and 1.38�, respectively. Note
that Workloads A, B, C, and F in YCSB have a skewed distri-
bution of keys. PHAST also achieves the highest performance
for these workloads. In the scan-dominated workload E,
PHAST has a better performance than NV-Skiplist and wB
+-Tree, but is slower than FPTree and FAST-FAIR.

Fig. 7. Microbenchmark single-threaded performance.
Fig. 8. Insert latency breakdown and the effects of index cache.

3936 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 10 shows the CDF of tail latencies of different index-
ing structures under different YCSB workloads. YCSB
workloads have similar patterns in terms of tail latency.
Thus we only show the results of Workload C and Load,
which have 100% search and insert operations, respectively.
As shown in Fig. 10a, FPTree delivers better tail latencies
than PHAST, for up to 97.5% of the operations. Beyond that,
its tail latency degrades rapidly, and becomes much worse
than PHAST. This is because the log-free design of PHAST
can largely reduce persistence overhead in slot splitting and
thus helps tail latency and the overall throughput. For
Workload C, Fig. 10b shows that PHAST achieves better tail
latencies than all other schemes. This demonstrates that the
design of PHAST with low height and high locality is effec-
tive to improve the access speed of skiplists.

5.3 Concurrency Performance

For concurrent tests, we compare PHAST only with FAST-
FAIR because (1) NV-Skiplist does not focus on concurrency
and its released code does not work for concurrent opera-
tions; (2) FAST-FAIR has shown its much higher perfor-
mance than FPTree and wB+-Tree for concurrent operations
in the evaluation results [26].

Microbenchmarks. We evaluate PHAST by expanding the
benchmark to a concurrent version. We use three work-
loads: Insert, Search, and Mixed, similar to the test of FAST-
FAIR. For the Insert workload, we first perform 50M inserts
to warm up the indexing structures, then all threads evenly
share 50M entries and insert them concurrently. We record
the time until all threads finish their loads. In Search work-
load, each scheme performs 50M search operations in 100M
entries. These 50M search operations are also evenly
divided among threads. For the Mixed workload, we also
warm up the store with 50M entries, then perform 50M
inserts and 200M searches using concurrent threads. All KV
pairs are generated via a uniform distribution.

Fig. 11a shows PHAST outperforms FAST-FAIR by up to
1.56� in inserts, and both PHAST and FAST-FAIR gain the best
throughput around 16 threads. PHAST’s superiority comes

from our WFCI technique allowing concurrent insert opera-
tions and does not have the cost of balancing a tree, while
FAST-FAIR uses an exclusive lock (write lock in its implemen-
tation) to synchronizemultiple inserts of a leaf node.

Fig. 11b shows PHAST outperforms FAST-FAIR signifi-
cantly for concurrent search, from 1.33� (1 thread) to 2.62�
(32 threads). This is because PHAST benefits from the grouping
keys strategy and the index cache to achieve better memory
access locality, while FAST-FAIR has to dereference address
pointers and incur more last level cache (LLC) misses. We
have examined the LLC cache misses using the perf tool [43].
Fig. 11d shows LLC miss ratios with a varying number of
threads. The actual number of misses in millions is provided
on top of each bar. The result shows FAST-FAIR’s miss ratio
is higher and the miss count is almost the double that of
PHAST’s. This indicates FAST-FAIR incurs more LLC cache
misses, degrading its average search performance.

Fig. 11c shows PHAST also performs better than FAST-
FAIR for the read/write mixed workload by up to 1.59�
with 32 threads. Besides, the comparison between the two is
similar in pattern like that of the Insert workload. The rea-
son is that both PHAST and FAST-FAIR support lock-free
search and perform similarly for search operations. Thus,
for the mixed workload, the performance difference from
their insert operations dominates over the difference from
the search operations.

YCSB-Benchmark. We also evaluate the concurrency per-
formance using multi-threaded YCSB workloads, compa-
ring PHAST with FAST-FAIR. Due to the limit of the space,
we only show Load, Workload A, andWorkload C here. The
experimental configurations are the same as the single-

TABLE 2
YCSB Workloads

Workload Operations Distribution

LOAD 100% insert uniform
A 50% read, 50% update zipfian
B 95% read, 5% update zipfian
C 100% read zipfian
D 5% insert, 95% read latest
E 5% insert, 95% scan zipfian
F 50% read, 50% read-modify-write zipfian

Fig. 9. YCSB single-threaded performance.

Fig. 10. Tail latency for single-threaded YCSB workloads.

Fig. 11. Microbenchmark concurrency performance.

LI ETAL.: PHAST: HIERARCHICALCONCURRENT LOG-FREE SKIP LIST FOR PERSISTENT MEMORY 3937

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:23 UTC from IEEE Xplore. Restrictions apply.

threaded YCSB tests except that, for each workload, the total
number of operations is evenly divided among all the
threads.

As shown in Figs. 12a, 12c, and 12e, PHAST outperforms
FAST-FAIR for Load, Workloads A and C by up to 1.49�,
1.90�, and 2.40�, respectively. The relative performance
gains are higher than those from the single-threaded YCSB
tests. As we mentioned before, PHAST gets benefits from
WFCI in concurrent inserts and a lower height which results
in a better insert performance. Workloads A and C both
benefit from PHAST’s efficient lock-free concurrent search.
PHAST’s performance in Workload A is not as good as it in
Workload C, this is because updates require an additional
persistent operation. Also, note that the throughput of
PHAST scales well with an increasing number of threads
while the throughput of FAST-FAIR is getting to be satu-
rated around 16 threads in Workload A and C.

We have analyzed the distribution of tail latency from the
multi-threaded YCSB tests. We use a suffix to denote differ-
ent numbers of threads. As shown in Figs. 12b, 12d, and 12f,
PHAST-2 represents the distribution of tail latency for PHAST
with 2 threads. In Load, PHAST achieves better tail latencies
than FAST-FAIR in 2 threads and 16 threads respectively.
This is because PHAST benefits from our WFCI technique for
concurrent inserts while threads in FAST-FAIR have to
compete for the exclusive clock, resulting in longer tail
latencies. With FAST-FAIR, the tail latency gets increased
sharply when we increase the number of threads from 2 to
16. This is because of the intense competition from multiple
threads on the exclusive lock.

For search-dominated Workload C, Fig. 12f shows that
PHAST and FAST-FAIR have similar tail latencies for up to

30% operations. Beyond 30%, the latency quickly increases
due to the cache misses. Note that the tail latency of PHAST
scales gracefully with 16 threads, compared to the same for
FAST-FAIR. This is because PHAST incurs much fewer num-
ber of LLC cache misses for search operations (see Fig. 11d)
and its lock-free search scheme. For Workload A, due to
50% update operations, PHAST’s superiority is not as much
Workload C, but the latency is still better than FAST-FAIR
in both 2 and 16 threads.

5.4 Other Tests

INode Size Impact. The INode size (i.e., the number of LNo-
des in an INode) impacts both the search and insert perfor-
mance. Specifically, a smaller INode reduces the number of
key comparisons and multi-threaded conflicts within an
INode, while a larger INode can lower the height of PHAST
and reduce the number of INode splits. Fig. 13 shows the
performance of PHAST when executing concurrent tests
with various INode sizes. The experimental setting is the
same as the microbenchmark test in Section 5.3 except that
we vary the number of LNodes among 32, 64, 128, 256, 512,
and 1024. We can find both search and insert throughput
decrease significantly when the number of LNodes is
greater than 256. For searches, PHAST gets the highest
throughput with 64 or 128 LNodes. For inserts, the highest
throughput is achieved at 128 or 256 LNodes. To obtain
moderate performance for both search and insert opera-
tions, we empirically set the number of LNodes to 128.

LNode Size Impact. The LNode size (i.e., the number of
KVs in an LNode) is associated with the data persistence
and consistency overhead. To study the impact of LNode
sizes, we fix the INode size to 128 and vary the LNode size
among 16, 32, 56, and 64. Fig. 14 shows the normalized
throughput for the insert operation in the microbenchmark.
We can find that, when the size is smaller than 56, the
throughput increases linearly as the size increases. This is
because a larger LNode triggers fewer splits, resulting in
less write and flushing time. However, when the size is
larger than 56, the bitmap and fingerprints can not be com-
pressed in one cache line thus need extra cache line flushes,
leading to performance degradation. Therefore, we set the
LNode size to 56 to achieve the best performance.

Fig. 12. YCSB concurrency performance.

Fig. 13. Performance with different INode sizes.

3938 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:23 UTC from IEEE Xplore. Restrictions apply.

Partition Number Impact. To avoid the bias from the parti-
tioning design and index cache, we design an extreme
workload to populate the skiplist with a distribution that all
keys are distributed to 1% key space out of 100M keys. This
makes only one partition take effect in PHAST. The subse-
quent operations are randomly distributed upon the
skewed keys, as the tests in Fig. 7. Fig. 15a shows that the
throughput of all schemes declines, but PHAST still has the
best performance in all operations. PHAST outperforms
FPTree (the second best one) by 1.18�, 1.07�, and 1.07� in
insert, search and update, respectively.

Large Dataset. Fig. 15b shows the single-threaded
throughput with a dataset of one billion KVs. The experi-
mental configurations are the same with Fig. 7 except that
we populate the indexing structure with a larger dataset.
Compared to Fig. 7, the absolute throughput is dropped for
all the index structures, but the relative superiority is not
changed. In insert workload, PHAST outperforms FPTree
and FAST-FAIR by 1.15� and 1.56�. By leveraging index
cache, PHAST still superiors to FPTree and FAST-FAIR in
search and update workloads by 1.26� and 1.61�, 1.16�
and 1.41�, respectively.

Variable-Size Values. Same to prior works [16], [17], [18],
PHAST can use indirection pointers to support variable-size
KVs. That is, the index structure only contains pointers,
which refer to the locations of actual variable-size keys or
values stored in extra data areas. Fig. 15c shows the results
of the variable-size values with microbenchmarks under a
single thread. The values are randomly generated with sizes
between 8 to 256 bytes. We can find the performance degra-
dation for all the indexes because such an approach brings
additional pointer chasing overhead. In addition, more PM
writes and flush instructions are needed to persist both the
indirection pointers and actual KVs. However, it does not
affect the advantages of PHAST over other indexes. PHAST
still outperforms other indexes by up to 1.51� for insert
operations and 2.65� for search operations.

Recovery Time. Fig. 15d shows the recovery time of PHAST
with 100M entries. No comparisons have been provided
because the released code packages for NV-Skiplist, wB
+-Tree, FPTree, and FAST-FAIR do not support recovery.

With an increasing number of threads, the recovery time
goes down gradually until the reconstruction speed is
nearly saturated from 16 threads and beyond. The recovery
time is reduced by more than 8� from 1 thread to 16
threads, demonstrating that PHAST’s structural hierarchy is
well organized for expedient parallel recovery.

DRAM Consumption. With the hierarchical design, PHAST
can significantly reduce the number of INodes, thus reduc-
ing the DRAM consumption. Table 3 shows the DRAM foot-
print of INodes for a generic skiplist (Skiplist, only bottom-
layer nodes on PM), NV-Skiplist, and PHAST (according to
the configuration in Section 5.1). The INode of the Skiplist
and NV-Skiplist consists of a key (8B), a child pointer (8B),
and the forward pointers (8*dlog 2ðNÞe, where N is the num-
ber of INodes). PHAST has the metadata information (3096B
according to the Fig. 4) and the same forward pointers
(8*dlog 2ðNÞe). For 100M KV pairs, the DRAM consumption
is 10.4 GiB, 365.5 MiB, and 76.1MiB for Skiplist, NV-Skiplist,
and PHAST, respectively. These results show that PHAST has
the lowest DRAM overhead of storing INodes. PHAST also
brings additional DRAM overhead in the index cache. Its
size is linearly related to the number of INodes and can be
calculated as N � 16B. For 100M KV pairs, the index cache
size is 0.38 MiB, which is acceptable.

6 RELATED WORK

Skiplists. Fomitchev et al. [44] add a marker and pointer in
leaf nodes of singly-linked lists to improve deletion concur-
rency. But it focuses inter-node concurrency while PHAST
on intra-node concurrency. Crain et al. [45] boost insert con-
currency in internal nodes by delaying the raising of them
and using a specified thread to promote them later. PSL [36]
enhances skiplist locality by grouping multiple entries in
index nodes and leverages single instruction multiple data
to perform parallel traversal. S3 [46] introduces an addi-
tional indexing layer to boost search performance and stores
two unordered keys in one leaf node to optimize write effi-
ciency. All these works are designed for DRAM memory.
NV-Skiplist [27] is the skiplist designed for PM. It groups

Fig. 14. Insert performance with different LNode sizes.

Fig. 15. Performance for other tests. (a) One partition test using skewed distribution. (b) Large dataset test with 1 billion entries. (c) Varying the size of
value from 8 bytes to 256 bytes. (d) Recovery time with 100M entries.

TABLE 3
INode Footprint WithM KV Pairs,N Denotes the Number of

INodes

of INodes INode Size (Bytes)

Skiplist dM2 e 16þ 8 � dlog 2ðNÞe
NV-Skiplist d M

0:75�64e 16þ 8 � dlog 2ðNÞe
PHAST d M

0:75�56�0:75�128e 3096þ 8 � dlog 2ðNÞe

LI ETAL.: PHAST: HIERARCHICALCONCURRENT LOG-FREE SKIP LIST FOR PERSISTENT MEMORY 3939

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:23 UTC from IEEE Xplore. Restrictions apply.

multiple keys in one leaf node and uses log-free persistence
approach. However, NV-Skiplist creates two new LNodes
in splits whereas PHAST generates only one. Besides, PHAST
uses new index structure and concurrency techniques to
further improve performance.

Other Persistent Indexing Structures. wB+-Tree [16] stores
both internal and leaf nodes on PM, but it relies on costly
undo-redo logs when a split occurs. NV-Tree [17] stores its
internal nodes in DRAM and the leaf nodes on PM, but all
internal nodes are stored in consecutive memory blocks,
leading to costly rebuilds when an internal node overflows.
FPTree [18] also only stores leaf nodes on PM. WORT [37] is
a radix tree and adopts costly copy-on-write for both merge
and split of nodes. David et al. [47] propose three log-free
techniques for concurrent data structures to reduce consis-
tency overhead. RECIPE [48] explores the crash consistency
principle to convert in-memory indexes to in-PM indexes.
But RECIPE requires some conditions and can’t apply to
PHAST. FAST-FAIR [26] proposes failure-atomic shifts and
failure-atomic in-place rebalancing to reduce cache line
flushes in data persistence. Its KV pairs in the leaf nodes are
ordered, leading to high write overhead. LB+-Tree [35] per-
forms more word writes in a cache line to reduce cache line
flushes and keeps the node size 256B-aligned to best utilizes
3D XPoint’s internal bandwidth. These techniques are com-
plementary to PHAST.

Concurrent Indexing Structures. There are three main strat-
egies for concurrent indexing operations, lock-based solu-
tions [26], [27], multi-version concurrency control [17], [49],
and lock-free compare-and-swap [50] or LL/SC implemen-
tations. FPTree [18] employs hardware transnational mem-
ory to handle the concurrency of in-memory internal nodes
and fine-grained locks for in-PM leaf nodes. Non-blocking
implementations of indexing structures have been provided
for various lists and trees [51], [52], [53]. PALM [50] per-
forms batched index operations in an atomic manner on
lock-free concurrent B+ trees. FAST-FAIR [26] uses lock-free
read transactions to allow read operations to happen during
concurrent writes. But it restricts read queries to proceed in
a specified order. In addition, FAST-FAIR does not support
lock-free write operations. In contrast, PHAST performs
writelock-free concurrent inserts, lock-free concurrent
searches, and log-free split operations.

7 CONCLUSION

In this paper, we propose the design and implementation of
a high-performance skiplist, PHAST, which leverages persis-
tent memory to tackle the memory overhead and boost
indexing performance. PHAST consists of equipped techni-
ques including writelock-free concurrent insert and log-free
atomic split for fast write operations and durable lock-free
concurrent search for highly concurrent read operations.
Our results show that PHAST efficiently reduces indexing
overhead and outperforms other indexing schemes for a
wide range of operations with high concurrency.

ACKNOWLEDGMENTS

Zhenxin Li and Bing Jiao have equal contribution. Shuibing
He and Weikuan Yu are co-corresponding authors.

REFERENCES

[1] Facebook, “RocksDB,” 2019. [Online]. Available: https://rocksdb.
org/

[2] A. Lakshman and P. Malik, “Cassandra: A decentralized struc-
tured storage system,” ACM SIGOPS Oper. Syst. Rev., vol. 44,
no. 2, pp. 35–40, 2010.

[3] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-struc-
tured merge-tree (LSM-Tree),” Acta Informatica, vol. 33, no. 4,
pp. 351–385, 1996.

[4] D. Comer, “Ubiquitous B-Tree,” ACM Comput. Surv., vol. 11, no. 2,
pp. 121–137, Jun. 1979.

[5] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L.
Vivier, “The new Ext4 filesystem: Current status and future
plans,” in Proc. Linux Symp., 2007, pp. 21–33.

[6] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and
G. Peck, “Scalability in the XFS file system,” in Proc. USENIX
Annu. Tech. Conf., 1996, Art. no. 1.

[7] W. D. Maurer and T. G. Lewis, “Hash table methods,” ACM Com-
put. Surv., vol. 7, no. 1, pp. 5–19, Mar. 1975.

[8] W. Pugh, “Skip lists: A probabilistic alternative to balanced trees,”
Commun. ACM, vol. 33, no. 6, pp. 668–676, 1990.

[9] H.-S. P. Wong et al., “Phase change memory,” Proc. IEEE, vol. 98,
no. 12, pp. 2201–2227, Dec. 2010.

[10] J. J. Yang and R. S. Williams, “Memristive devices in computing
system: Promises and challenges,” ACM J. Emerg. Technol. Comput.
Syst., vol. 9, no. 2, pp. 1–20, 2013.

[11] Intel andmicron produce breakthroughmemory technology, 2020.
[Online]. Available: https://newsroom.intel.com/news-releases/
intel-and-micron-produce-breakthrough-memory-technology/

[12] A. Badam, “How persistent memory will change software sys-
tems,” Computer, vol. 46, no. 8, pp. 45–51, 2013.

[13] Intel, “Redis-PM,” 2018. [Online]. Available: https://github.com/
pmem/redis/tree/3.2-nvml

[14] Lenovo, “Memcached-PM,” 2018. [Online]. Available: https://
github.com/lenovo/memcached-pmem

[15] C. Chen et al., “Optimizing in-memory database engine for AI-
powered on-line decision augmentation using persistent memo-
ry,” Proc. VLDB Endowment, vol. 14, no. 5, pp. 799–812, 2021.

[16] S. Chen and Q. Jin, “Persistent B+-Trees in non-volatile main
memory,” Proc. VLDB Endowment, vol. 8, no. 7, pp. 786–797, 2015.

[17] J. Yang, Q.Wei, C. Chen, C.Wang, K. L. Yong, and B. He, “NV-Tree:
Reducing consistency cost for NVM-based single level systems,” in
Proc. 13th USENIXConf. File Storage Technol., 2015, pp. 167–181.

[18] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, andW. Lehner, “FPTree:
A hybrid SCM-DRAM persistent and concurrent B-Tree for storage
classmemory,” in Proc. Int. Conf.Manage. Data, 2016, pp. 371–386.

[19] F. Xia, D. Jiang, J. Xiong, and N. Sun, “HiKV: A hybrid index key-
value store for DRAM-NVM memory systems,” in Proc. USENIX
Annu. Tech. Conf., 2017, pp. 349–362.

[20] Y. Chen, Y. Lu, K. Fang, Q. Wang, and J. Shu, “uTree: A persistent
B+-tree with low tail latency,” Proc. VLDB Endowment, vol. 13,
no. 12, pp. 2634–2648, 2020.

[21] M. Nam, H. Cha, Y.-R. Choi, S. H. Noh, and B. Nam, “Write-opti-
mized dynamic hashing for persistent memory,” in Proc. 17th
USENIX Conf. File Storage Technol., 2019, pp. 31–44.

[22] A. Prout, “The story behind MemSQL’s skiplist indexes,” 2017.
[Online]. Available: https://laptrinhx.com/the-story-behind-
memsql-s-skiplist-indexes-814186695/

[23] LevelDB, 2020. [Online]. Available: https://github.com/google/
leveldb

[24] G. Huang et al., “X-Engine: An optimized storage engine for large-
scale E-commerce transaction processing,” in Proc. Int. Conf. Man-
age. Data, 2019, pp. 651–665.

[25] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson,
“An empirical guide to the behavior and use of scalable persistent
memory,” in Proc. 18th USENIX Conf. File Storage Technol., 2020,
pp. 169–182.

[26] D. Hwang, W.-H. Kim, Y. Won, and B. Nam, “Endurable transient
inconsistency in byte-addressable persistent B+-Tree,” in Proc.
16th USENIX Conf. File Storage Technol., 2018, pp. 187–200.

[27] Q. Chen, H. Lee, Y. Kim, H. Y. Yeom, and Y. Son, “Design and
implementation of skiplist-based key-value store on non-volatile
memory,” Cluster Comput., vol. 22, no. 2, pp. 361–371, 2019.

[28] Intel Optane persistent memory, 2019. [Online]. Available:
https://www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html

3940 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:23 UTC from IEEE Xplore. Restrictions apply.

https://rocksdb.org/
https://rocksdb.org/
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/
https://github.com/pmem/redis/tree/3.2-nvml
https://github.com/pmem/redis/tree/3.2-nvml
https://github.com/lenovo/memcached-pmem
https://github.com/lenovo/memcached-pmem
https://laptrinhx.com/the-story-behind-memsql-s-skiplist-indexes-814186695/
https://laptrinhx.com/the-story-behind-memsql-s-skiplist-indexes-814186695/
https://github.com/google/leveldb
https://github.com/google/leveldb
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

[29] R. Kadekodi et al., “WineFS: A hugepage-aware file system for
persistent memory that ages gracefully,” in Proc. ACM SIGOPS
28th Symp. Oper. Syst. Princ., 2021, pp. 804–818.

[30] Y. Chen, Y. Lu, B. Zhu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dus-
seau, and J. Shu, “Scalable persistent memory file systemwith ker-
nel-userspace collaboration,” in Proc. 19th USENIX Conf. File
Storage Technol., 2021, pp. 81–95.

[31] D. Castro, A. Baldassin, J. Barreto, and P. Romano, “SPHT: Scal-
able persistent hardware transactions,” in Proc. 19th USENIX
Conf. File Storage Technol., 2021, pp. 155–169.

[32] K. Wu, J. Ren, I. Peng, and D. Li, “ArchTM: Architecture-aware,
high performance transaction for persistent memory,” in Proc.
19th USENIX Conf. File Storage Technol., 2021, pp. 141–153.

[33] Y. Chen, Y. Lu, F. Yang, Q. Wang, Y. Wang, and J. Shu, “FlatStore:
An efficient log-structured key-value storage engine for persistent
memory,” in Proc. 25th Int. Conf. Architect. Support Program. Lang.
Oper. Syst., 2020, pp. 1077–1091.

[34] S. Gugnani, A. Kashyap, and X. Lu, “Understanding the idiosyn-
crasies of real persistent memory,” Proc. VLDB Endowment,
vol. 14, no. 4, pp. 626–639, 2020.

[35] J. Liu, S. Chen, and L. Wang, “LB+Trees: Optimizing persistent
index performance on 3DXPoint memory,” Proc. VLDB Endow-
ment, vol. 13, no. 7, pp. 1078–1090, 2020.

[36] Z. Xie, Q. Cai, H. V. Jagadish, B. C. Ooi, and W.-F. Wong,
“Parallelizing skip lists for in-memory multi-core database sys-
tems,” in Proc. IEEE 33rd Int. Conf. Data Eng., 2017, pp. 119–122.

[37] S. K. Lee, K. H. Lim, H. Song, B. Nam, and S. H. Noh, “WORT:
Write optimal radix tree for persistent memory storage systems,”
in Proc. 15th USENIX Conf. File Storage Technol., 2017, pp. 257–270.

[38] J. Arulraj, J. Levandoski, U. F. Minhas, and P.-A. Larson, “BzTree:
A high-performance latch-free range index for non-volatile mem-
ory,” Proc. VLDB Endowment, vol. 11, no. 5, pp. 553–565, Jan. 2018.

[39] T. L. Harris, K. Fraser, and I. A. Pratt, “A practical multi-word
compare-and-swap operation,” in Proc. 16th Int. Conf. Distrib.
Comput., 2002, pp. 265–279.

[40] M. Rosenblum and J. K. Ousterhout, “The design and implemen-
tation of a log-structured file system,” ACM Trans. Comput. Syst.,
vol. 10, no. 1, pp. 26–52, Feb. 1992.

[41] Persistent memory development kit, 2020. [Online]. Available:
http://pmem.io/

[42] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R.
Sears, “Benchmarking cloud serving systems with YCSB,” in Proc.
1st ACM Symp. Cloud Comput., 2010, pp. 143–154.

[43] Perf Wiki, 2020. [Online]. Available: https://perf.wiki.kernel.org/
index.php/Main_Page

[44] M. Fomitchev and E. Ruppert, “Lock-free linked lists and skip
lists,” in Proc. 23rd Annu. ACM Symp. Princ. Distrib. Comput., 2004,
pp. 50–59.

[45] T. Crain, V. Gramoli, and M. Raynal, “No hot spot non-blocking
skip list,” in Proc. IEEE 33rd Int. Conf. Distrib. Comput. Syst., 2013,
pp. 196–205.

[46] J. Zhang et al., “S3: A scalable in-memory skip-list index for key-
value store,” Proc. VLDB Endowment, vol. 12, no. 12, pp. 2183–2194,
2019.

[47] T. David, A. Dragojevic, R. Guerraoui, and I. Zablotchi, “Log-free
concurrent data structures,” in Proc. USENIX Annu. Tech. Conf.,
2018, pp. 373–386.

[48] S. K. Lee, J. Mohan, S. Kashyap, T. Kim, and V. Chidambaram,
“RECIPE: Converting concurrent DRAM indexes to persistent-
memory indexes,” in Proc. 27th ACM Symp. Oper. Syst. Princ.,
2019, pp. 462–477.

[49] K. A. Bailey, P. Hornyack, L. Ceze, S. D. Gribble, and H. M. Levy,
“Exploring storage class memory with key value stores,” in Proc.
1st Workshop Interact. NVM/FLASH Oper. Syst. Workloads, 2013,
Art. no. 4.

[50] J. Sewall, J. Chhugani, C. Kim, N. Satish, and P. Dubey, “PALM:
Parallel architecture-friendly latch-free modifications to B+ trees
on many-core processors,” Proc. VLDB Endowment, vol. 4, no. 11,
pp. 795–806, Aug. 2011.

[51] F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel, “Non-block-
ing binary search trees,” in Proc. 29th ACM SIGACT-SIGOPS
Symp. Princ. Distrib. Comput., 2010, pp. 131–140.

[52] A. Natarajan and N. Mittal, “Fast concurrent lock-free binary
search trees,” in Proc. 19th ACM SIGPLAN Symp. Princ. Pract. Par-
allel Program., 2014, pp. 317–328.

[53] J. J. Levandoski, D. B. Lomet, and S. Sengupta, “The Bw-Tree: A B-
Tree for new hardware platforms,” in Proc. IEEE Int. Conf. Data
Eng., 2013, pp. 302–313.

Zhenxin Li received the bachelor’s degree from
Sichuan University, in 2020. He is currently working
toward the PhD degree with the College of Com-
puter Science and Technology, Zhejiang University.
His research interests include parallel I/O systems,
file and storage systems, and key-value stores.

Bing Jiao received the bachelor’s degree from
FuyangNormalUniversity, in 2015, and themaster’s
degree from Hunan University, in 2018. He is cur-
rentlyworking toward thePhDdegreewith theCom-
puter Architecture and SysTems Research
Laboratory, Department of Computer Science, Flor-
ida State University. His research interests include
file and storage systems, key-value stores, and high
performance computing.

Shuibing He (Member, IEEE) received the PhD
degree in computer science and technology from
the Huazhong University of Science and Technol-
ogy, in 2009. He is now a ZJU100 Young professor
with theCollege of Computer Science and Technol-
ogy, ZhejiangUniversity. His research areas include
parallel I/O systems, file and storage systems, key-
value stores, high-performance, and distributed
computing. He is amember of the ACM.

Weikuan Yu received the bachelor’s degree in
genetics from Wuhan University, Wuhan, China,
and the master’s degree in developmental biol-
ogy from Ohio State University, Columbus, Ohio,
where he also received the PhD degree in com-
puter science, in 2006. He is currently a full pro-
fessor with the Department of Computer Science,
Florida State University, Tallahassee, Florida. His
research areas include cloud computing, parallel
file and storage systems, deep learning, and data
analytics.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

LI ETAL.: PHAST: HIERARCHICALCONCURRENT LOG-FREE SKIP LIST FOR PERSISTENT MEMORY 3941

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:23 UTC from IEEE Xplore. Restrictions apply.

http://pmem.io/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

