
559

Abstract Graphics processing units (GPUs) have been used in the general-purpose
computation field. Sparse matrix–vector multiplication (SpMV) algorithm is one of
the most important scientific computing kernel algorithms. In this paper, we discuss
implementing optimizing sparse matrix–vector multiplication on GPUs using CUDA
programming model. We used methods and strategy which including mapping thread,
merging access, reusing data, and avoiding the branch. The experimental results show
that the optimizations strategy to improve SpMV performance.

Keywords  Sparse  matrix–vector  multiplication  (SpMV)  •  Compute  unified 
device  architecture  (CUDA)  •  Graphics  processing  unit  (GPU)  •  Performance 
optimizations strategy (POS)

Mengjia Yin, Xianbin Xu, Hua Chen, Shuibing He and Jing Hu

Chapter 71
Parallel Optimization for Sparse
Matrix–Vector on GPU

Z. Zhong (ed.), Proceedings of the International Conference on Information
Engineering and Applications (IEA) 2012, Lecture Notes in Electrical Engineering 217,
DOI: 10.1007/978-1-4471-4850-0_71, © Springer-Verlag London 2013

M. Yin (*) · X. Xu · S. He · J. Hu
School of Computer, Wuhan University, Wuhan 430074, People’s Republic of China
e-mail: hbyinmj@163.com

X. Xu
e-mail: xbxu@whu.edu.cn

S. He
e-mail: hesbingxq@163.com

J. Hu
e-mail: hujing031115@126.com

M. Yin
School of Computer and Information Science, Hubei Engineering University,
XiaoGan, People’s Republic of China

X. Xu
School of Computer Science, Wuhan Donghu University, Wuhan,
People’s Republic of China

H. Chen
Agricultural Bank of China Software Development Center Guangzhou Sub-center, Yingbin
Road, Dashi section 519 Agricultural Bank of China Science and Technology Park, Panyu,
Guangzhou, Guangdong, People’s Republic of China
e-mail: chenhuakfgd@abchina.com

S. He
Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of
Education, Beijing 10000, People’s Republic of China

560 M. Yin et al.

71.1 Introduction

With the rapid growth of computing complexity and data, general CPU comput-
ing power has failed to meet its needs. The rapid development of GPU is greatly
exceed the speed of Moore’s Law, the development of computing power, memory
bandwidth is far exceed CPU. As modern GPUs have become increasingly power-
ful, inexpensive and relatively easier to program through high level API functions,
they are increasingly being used for non-graphic or general-purpose applications
(called GPGPU computing).

Sparse matrix–vector multiplication (SpMV) operation is widely used in solv-
ing large-scale linear system and solving matrix eigenvalues problems [1], espe-
cially in iterative method, it is key steps of influence the arithmetic performance.
SpMV is typical of memory bottleneck operations, namely computing/memory is
low, ALU seriously unsaturated, it is difficult to achieve the throughput of high
floating point operations. SpMV has the nature of parallelism, and use of mod-
ern multi-processor platform to improve the performance is one of the feasible
direction.

According to the deficiency of the traditional parallel strategies, we present
the more efficient performance optimization strategy: mapping thread, merging
access, reusing data, avoiding branch, optimization thread block. The experimental
results show that these strategies can realize SpMV efficient parallel computing,
and effectively improve the performance of the system.

The rest of this paper is organized as follows: Sect. 71.2 introduces related
work, SpMV parallel mode is detailed in Sect. 71.3, performance optimization
strategy is present in Sects. 71.4, 71.5 contains our results and evaluation, conclu-
sion and future work is shown in Sect. 71.6.

71.2 Related Work

The bottleneck problems of memory are those algorithm that each floating point
operation needs to multiple access memory, SpMV is a kind of this algorithm
[2]. In the past 20 years, there have been a lot of work for the optimization of the
SpMV algorithm [3, 4], from the point of view of the memory; optimization is
mainly to improve the computational performance [5], which most of the opti-
mization work is focused on generalization system structure similar to CPU [6].
But the optimization technology cannot be directly used in GPU system structure.
GPU is massively parallel system; it has multi-stage storage system structure.
In order to play the advantages of GPU memory high bandwidth, we need to
accord with the characteristics to design different optimization strategies.

In reference [7], Nathan Bell and Michael Garland provide data structures
and algorithms for SpMV that are efficiently implemented on CUDA platform
for the fine-grained parallel architecture of the GPU. They emphasize memory

56171 Parallel Optimization for Sparse Matrix–Vector on GPU

bandwidth efficiency and compact storage formats when given the memory-
bound nature of SpMV. They also develop methods to exploit several common
forms of matrix structure while offering alternatives which accommodate greater
irregularity.

In reference [8], with indirect and irregular memory accesses resulting in
more memory access per floating point operation, Baskraran proposed optimiza-
tions to effectively develop a high-performance SpMV kernel on NVIDIA GPUs.
The optimizations include exploiting synchronization-free parallelism, optimized
thread mapping based on the affinity toward optimal memory access pattern, opti-
mized off-chip memory access to tolerate the high access latency, exploiting data
reuse.

Based on the above, this paper emphasizes its optimization strategy in the pro-
cess of SpMV algorithm on GPU, the optimization strategy is aimed at the system
structure of the GPU, and considers the GPU complex storage management and
the mapping optimization between threads.

71.3 Parallel Acceleration for SpMV Model Based on GPU

71.3.1 GPU Programming with CUDA

CUDA is a parallel computing architecture developed by NVIDIA Corporation
[3] and allows writing and running general-purpose applications on the NVIDIA
GPU’s. CUDA uses threads for parallel execution, and GPU allows 1,000 of
threads for parallel execution at the same time.

On the GPU, there is a hierarchy of memory architecture to program on it; we
present the memories in our implementation: Registers, Shared Memory, Global
Memory, Constant Memory, and Texture Memory. In the memory architecture, the
fastest memories are the shared memories and registers. The other memories are
all located on the GPUs main RAM. The constant memory is favorable when mul-
tiple processor cores load the same value from cache. Texture cache has higher
latency, but it has a better acceleration ratio for accessing large amount of data and
non-aligned accessing. The memory architecture of GPU is described in Fig. 71.1.
To gain better performance, we must manage the shared memory, registers, and
global memory usage.

The CUDA programming model greatly simplified the difficulty of using the
GPU for general-purpose computing, but compared to isomorphic to the systems
only included CPU; it is more complicated to program in the heterogeneous sys-
tem based on the CPU–GPU; the program’s performance optimization is even
more difficult. Generally affect the performance of CUDA program includes the
main three factors: memory access latency, load balance, and global synchronous
spending [9]. In different computing platforms,the causes and the corresponding
optimization methods of these factors are not same.

562 M. Yin et al.

71.3.2 Sparse Matrix Format

In scientific computing, SpMV has been proven to be a special important of
numerical algorithm [10], it has the characteristics of high intensity calculation,
high parallel degree, and simply control, so matrix calculation is very suitable for
GPU for parallel computing. How to play the powerful computing ability of GPU
in sparse matrix–vector algorithm is need to deal with.

Sparse matrix has several storage formats such as DIA, ELL, COO, CSR, HYB,
and PKT. These storage formats are described detailed in [11]. Each format is dif-
ferent in storage requirements, calculation characteristics, access and operation of
the matrix element method. Different storage formats are determined by the sparse
matrix mode, that is, the distribution of non-zero elements in the coefficient matrix.
In this paper, we base our approach on the vector SpMV kernel for CSR sparse matrix
and discuss optimization to adapt CSR storage format to suit the GPU architecture.

CSR format is the more popular storage format [11, 12]; it is a line of com-
pressed format which alter storing two-dimensional array of sparse matrix into
3 one-dimensional arrays: A,Col_Idx,Row_Ptr. Scan follows the line width
for the sparse matrix, and will stored the zero elements in array A; An array of
Col_Idx stored column index of non-zero elements in array A corresponding loca-
tion in the original matrix; An array of Row_Ptr stored an index of every row in
the first non-zero elements in an array of A Col_Idx in primitive sparse matrix.
For M * N matrix, the length of Row_Ptr array is M + 1, the offset of ith row stored in

Host

Shared Memory

Block(0,0)

Register Register

Thread(0,0) Thread(0,0)

Local
Memory

Local
Memory

Global Memory

Constant Memory

Texture Memory

Grid 0

Shared Memory

Block(0,0)

Register Register

Thread(0,0) Thread(0,0)

Local
Memory

Local
Memory

Fig. 71.1 Memory architecture of CUDA

56371 Parallel Optimization for Sparse Matrix–Vector on GPU

Row_Ptr [I], the last Row_Ptr [M] in sparse matrix stored the total number of non-zero
elements. We give an example of 5 * 4 sparse matrixes, as shown in Figs. 71.2, 71.3,
how to use the CSR storage formats to show the original sparse matrix.

71.3.3 Parallel Computing for SpMV Model Based on GPU

The serial algorithm based on the Compression row storage (CSR) format as
follows: this algorithm is realized its parallelization in multiple processors,
parallelism is realized in outer loop, so the single processors is responsible for
computing the row of matrix.
Serial algorithm based on the CSR format:

{for i = 0 to rows
{y(i) = 0;
for j = Row_Ptr(i) to (Row_Ptr(i + 1)-1)
{y(i) = y(i) + A(j-1)*x(Col_Idx(j-1));}}}

N. Bell and M. Garland proposed two CSR format of SpMV kernel: Scalar-CSR
kernel and Vector-CSR kernel [8]. The realization of Scalar-CSR kernel in CUDA
is simple and direct: use a thread is responsible for computing one line element
in sparse matrix. The performance of the Scalar-CSR is affected by various fac-
tors, non-zero elements in each row and its column index is stored, but cannot be
accessed at the same time. Vector-CSR overcomes this shortcoming of the Scalar-
CSR: using a Warp thread responsible for computing one line element in sparse
matrix. The kernel of Vector-CSR continuously accesses to the index and data, so
overcome the problem of inefficiency in the Scalar method. In this paper, the reali-
zation of the CSR format SpMV kernel is also a reference to Vector SpMV kernel.

Here, the parallelism of the method is as follows: use a Warp thread to responsible
for computing non-zero elements in sparse matrix, do not need filling zero elements to

Fig. 71.2 5 * 4 sparse matrix

Fig. 71.3 CSR storage format of sparse matrix

564 M. Yin et al.

align, intermediate results put on sharing memory, and then accumulate the intermediate
results through reduction summation, finally through thread 0 to get the final results.
Vector SpMV kernel for the CSR sparse matrix:

{_global_void spmv_csr_Kernel(const int num_rows,const int * Row_Ptr, const
int *Col_Idx, const Float * A, const Float * x, Float* y)

{__shared__ Float vals[];
int thread_id = blockDim.x*blockIdx.x + threadIdx.x;
int Warp_id = thread_id/32;
int lane = thread_id & (32-1);
int row = Warp_id;
if(row < num_rows)

{int row_start = Row_Ptr[row], row_end = Row_Ptr[row + 1];
vals [threadIdx.x] = 0;
for(int j = row_start +lane; j < row_end; j +=32)
{vals [threadIdx.x] += data[j] * x[indices[j]];}
if (lane < 16) vals [threadIdx.x] += vals [threadIdx.x + 16];

if (lane < 8) vals [threadIdx.x] += sdata[threadIdx.x + 8];
if (lane < 4) vals [threadIdx.x] += vals [threadIdx.x + 4];
if (lane < 2) vals [threadIdx.x] += vals [threadIdx.x + 2];
if (lane < 1) vals [threadIdx.x] += vals [threadIdx.x + 1];
if (lane == 0) y[row] += vals [threadIdx.x];}}

71.4 Optimizations for SpMV Model Based on GPU

71.4.1 Optimization Method

According to circle, CSR-Vector with a Warp complete computing one line of ele-
ments, and in the process of calculation, in order to get the results of output vector,
we reduction summation in sharing storage. However, if the number of non-zero
elements in the row is less than 32, the performance of the CSR-Vector will drop.
When the number of non-zero elements is bigger, often more than 32, it can be
get the best computing performance in non-zero elements of matrix each row con-
tained relatively large, often greater than 32. According to the various insufficient
of CSR-Vector kernel, based on the proposed all sorts of optimization strategy,
here a few of the optimization of the CSR format SpMV: threads mapping, merg-
ing access, data reuse, avoiding divergence, optimization thread block.

71.4.2 Improve CSR SpMV Optimization Algorithm

The achievements of kernel first need several threads that responsible for comput-
ing an element of the output vector. When the number of non-zero elements that

56571 Parallel Optimization for Sparse Matrix–Vector on GPU

one line contains is less, or is not multiple of 16, this strategy will cause wasting
the thread to calculate the resources. In this paper, we proposed a new calculation
method: array A in CSR sparse matrix is divided into certain length fragments,
the length of the fragment is an integer multiple of the number of threads in the
thread blocks, a thread block calculates element of an array fragment. The inter-
mediate results stored in shared memory, and finally through accumulated calcu-
lation the intermediate results to complete the output element y [13]. This method
is equally distributed computing tasks, and can effectively improve the operation
efficiency.

As there is difference in the number of non-zero elements of sparse matrix each
row, CSR SpMV kernel is difficult to the average computing tasks are assigned to
each thread and cause computing resources free. To solve this problem, this paper
takes the method that each thread block calculates the 1,024 non-zero elements;
the last fragment is filled with 0, as shown in Fig. 71.4.

On the base of the CSR data structure, we added a int2 type array Bound, the
length of array Bound is the number of array fragments that are divided (the num-
ber of thread block). Bound [i] corresponds to thread blocks that index is i, the
members of x stored row number where the first element corresponding thread
block, the members of y stored row number where tail element. This paper only
generates Bound array through a simple judgment on each element value in
Row_Ptr, as shown in Fig. 71.5.

Fig. 71.4 Each thread block
calculates the 1,024 non-zero
elements

Block0:

0 1023

Block1:

1024 2047

BlockN:

1024*N 1024*N+1023

Fragmen
t i

The first element in
row a

The last element in
row b

bound[i].x=a, bound[i].y=b

Fig. 71.5 Generate bound array

566 M. Yin et al.

The above process by the two kernel function: the first step calculates the
incomplete result and auxiliary vector result_aid; the second step merged the
result_aid into the result, so obtain the final result.
The first kernel:

1. Calculate the product of 1,024 elements and the corresponding vector ele-
ments, saved to the shared memory.

2. According to the boundary row number that Bound recorded, read the value
of rpos. Assume the fragment contains 100 lines, then the adjacent 100 Half-
Warp thread read. If the number of line is more than Half-Warp number,
through the cycle solution.

3. Assuming that this fragment contains 100 lines, so first 100 Half-Warp will
products accumulate corresponding single element to the registers. Then, the first
and last row that corresponding Half-Warp will accumulate results in a result_
aid, the rest of the corresponding Half-Warp will write the result. The number of
line is more than the number of Half-Warp, also used the method of cycle.

The second kernel:

1. thread i corresponding Bound[i]
2. if(Bound[i].x == Bound[i-1].y) thread is not work;
else if(Bound[i].x! = Bound[i-1].y)
{thread work;
while (Bound[i].y == Bound[i + 1].x) i ++;}

71.5 Experimental Results

We experimentally evaluated our system using NVIDIA Tesla C1060, connected
to Windows 7 system. The development environment is VS2010 IDE. The CUDA
kernels were compiled using NVIDIA CUDA Complier (nvcc) to generate the
device code that was then launched from the GPU. The host programs were com-
piled using the C language. We used CUDA used version 4.0 for our experiment.
The architectural configurations are presented in Table 71.1.

According to the difference in the SpMV sparse matrix format, we, respec-
tively, marked SpMV as CSR-R-GPU, CSR-B-GPU. CSR-R-GPU is not optimized
SpMV kernel. CSR-B-GPU is realized by a new algorithm that proposed in this
paper, which is introduced a new data structure contains Bound (Figs. 71.6, 71.7).

Through the analysis, we can get the following conclusion: for CSR-B-GPU
kernel, the performance in the matrix Protein, PEM/Spheres, FEM/Cantilever,
and FEM/Accelerator is obviously lower than other kernel. But, in Economics,
Epidemiology, and Web base matrix, the performance of CSR-B-GPU kernel is
higher than other kernel, especially in Web base matrix. When the average number
of non-zero elements in each line is little, the performance is higher than other
kernel. But when the average number of non-zero elements in each line is more,

56771 Parallel Optimization for Sparse Matrix–Vector on GPU

its performance is not ideal. One of the reasons is the kernel use many shared
memory, so the optimization algorithm also needs to improve

71.6 Conclusion

This paper takes memory bottlenecks algorithm SpMV as an example, combines
the characteristics of the problem with a special system of the GPU, using thread
mapping, merging access, data reuse, avoiding branch and thread optimization,

Table 71.1 Test matrix sets

Matrix Row (column) The number of non-zero The number of non-zero each line

Protein 36,417 4,344,765 119.3
PEM/spheres 83,334 6,010,480 72.1
FEM/cantilever 62,451 4,007,383 64.1
Economics 206,500 1,273,389 6.1
Epidemiology 525,825 2,100,225 3.9
FEM/accelerator 121,192 2,624,331 21.6
Web base 1,000,005 3,105,536 3.1

Fig. 71.6 Computing performance based on CSR SpMV kernel on GPU

0
1
2
3
4
5
6
7
8
9

Pro
tei

n

PEM/S
ph

er
es

FEM/C
an

tile
ve

r

Eco
no

mics

Epid
em

iol
og

y

FEM/A
cc

ele
ra

tor

W
eb

ba
se

CSR-R
CSR-B

Fig. 71.7 Execution time based on CSR SpMV kernel on GPU

568 M. Yin et al.

optimization GPU computing on the sparse matrix storage format CSR. From the
experiment, we can see these optimization strategies to be effective, there are still
areas for improvement, need to be more refined.

References

 1. Shereshevsky M, Cukic B, Crowel J, et al (2003) Software aging and multifractality of mem-
ory resources proceedings of DSN 2003, vol 21. IEEE Computer Society, USA, pp 721–730

 2. V’azquez F, Garz’on EM, Fern’andez JJ (2010) A matrix approach to tomographic recon-
struction and its implementation on GPUs. J Struct Biol 170:146–151

 3. Bik AJC, Wijshoff HAG (1996) Automatic data structure selection and transformation for
sparse matrix computations. IEEE Trans Parallel Distrib Syst 7(2):109–126

 4. Im EJ, Yelick K (2010) Optimizing sparse matrix-vector multiplication on SMPs, vol 21(04).
Computer Science Division, University of California, Berkeley, pp 56–58

 5. Lee BC, Yelick RW, Demmel JW, Katherine A (2006) Yelick performance model for evalua-
tion and automatic tuning of symmetric sparse matrix-vector multiply, vol 14(03). Computer
Science Division, University of California, Berkeley, pp 79–84

 6. Fatahaian K, Sugerman J, Hanrahan P (2004) Understanding the efficiency of GPU algo-
rithms for matrix-matrix multiplications. In: Graphics hardware, vol 04, pp 133–138

 7. Bell N, Garland M (2008) Efficient sparse matrix-vector multiplication on CUDA NVIDIA
technical report NVR-20080004, NVIDIA Corporation

 8. Baskaran MM, Bordawekar R (2009) Optimizing sparse matrix-vector multiplication on
GPUs. IBM research report RC24704 04:5405–5408

 9. Chen B (2010) Research on performance optimization of heterogeneous platform based
on CPU-GPU and multicore parallel programming model, University of Science and
Technology of China, Anhui, pp 30–45

 10. Shahnaz R, Usman A, Chugtai IR (2011) Review of storage techniques for sparse matrices.
Pakistan Inst Eng Appl Sci 9:118–123

 11. Barrett R et al (1994) Templates for the solution of linear systems: building blocks for itera-
tive methods, vol 35. SIAM Press, Philadelphia, pp 623–627

 12. Chen H (2012) Parallel technology for implementing sparse matrix vector on GPU, vol 11.
School of Computer. Wuhan University, Wuhan, pp 44–47

 13. Williams S et al (2009) Optimization of sparse matrix-vector multiplication on emerging
multicore platforms. Parallel Comput 35(3):178–194

