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Abstract—The underlying storage of hybrid parallel file sys-
tems (PFS) is composed of both SSD-based file servers (SServer)
and HDD-based file servers (HServer). Unlike a traditional
HServer, an SServer consistently provides improved storage
performance but lacks storage space. However, most current data
layout schemes do not consider the differences in performance
and space between heterogeneous servers, and may significantly
degrade the performance of the hybrid PFSs. In this paper, we
propose PSA, a novel data layout scheme, which maximizes the
hybrid PFSs performance by applying adaptive varied-size file
stripes. PSA dispatches data on heterogeneous file servers not
only based on storage performance but also storage space. We
have implemented PSA within OrangeFS, a popular parallel file
system in the HPC domain. Our extensive experiments using a
representative benchmark show that PSA provides superior I/O
throughput than the default and performance-aware file data
layout schemes.

Index Terms—Parallel I/O System; Parallel File system; Data
Layout; Solid State Drive

I. INTRODUCTION

Recently, many large scale applications in science and

engineering have become more and more data-intensive [1],

and I/O performance is regarded as a critical bottleneck of

high performance computing (HPC) domain. To address this

problem, parallel file systems (PFS), such as OrangeFS [2],

Lustre [3], and GPFS [4], have been proposed to achieve

high aggregate I/O throughput by leveraging the parallelism of

multiple file servers with hard disk drives (HDD). However,

fully utilizing the underlying file servers is still a challenging

task.

At the same time, flash-based solid state drives (SSD)

have been deployed in storage systems to further improve

performance [5]. SSDs have orders of magnitude higher per-

formance, lower power consumption, and a smaller thermal

footprint over traditional HDDs [6]. While being an ideal

storage media for PFSs, SSDs are not an economical option

in HPC to completely replace HDDs in a large-scale deploy-

ment. Therefore, hybrid PFSs, which consist of HDD-based

file servers (HServer) and SSD-based file servers (SServer),

provide practical solutions for data-intensive applications [7],

[8]. This type of hybrid PFS is common in large-scale I/O

systems, which are cost constrained and old hardware must

be used efficiently.

In parallel file systems, the stripe-based data layout scheme

is commonly used to distribute data among all available file

servers. This traditional scheme dispatches a large file across

multiple file servers with a fixed-size stripe in a round-robin

fashion. While this scheme results in uniform data placement

on servers, the I/O load of each server may be imbalanced

because of the non-uniform access distribution in the work-

loads [9]. In order to alleviate this issue, numerous different

strategies have been studied on data layout optimization, such

as adjusting the file stripe sizes to rearrange loads among

servers [10], [11] or optimizing the file stripe distribution

method according to the data access patterns [12]. However,

these approaches mainly focus on homogeneous PFSs with

identical HServers, and may not work well in hybrid PFSs

due to the following reasons.

First, the storage performance of each file server is not

differentiated in existing layout schemes. HServer and SServer

can have different storage performance behaviors due to their

distinct internal structure [6]. A high-speed SServer can finish

storing data in a local SSD faster than a low-speed HServer;

thus, HServer is often the straggler in the service of a large file

request in parallel environments. When directly applied to the

hybrid PFSs, existing layout schemes will result in severe load

imbalance among file servers even under uniform workloads,

which can significantly degrade the performance of the hybrid

I/O system.

Second, traditional layout schemes have an assumption that

each file server has an identical, sufficient storage space to

accommodate file data. However, most current SSDs have

relatively smaller capacities than HDDs because they’re more

expensive [13]. Existing data layout schemes focus on pro-

moting the performance balance among servers with little

attentions paid on the space balance [14]. Consequently, SSDs

may quickly run out of their limited space when more data

are dispatched on them. These one-sided designs may have

hidden flaws that may impair their potential effectiveness for

improving the overall I/O performance for prolonged time.

In order to address these problems, we propose PSA, a per-

formance and space-aware data layout scheme which carefully

arranges data layout to improve the hybrid PFS performance.

Unlike traditional schemes, PSA distributes file data on differ-

ent types of servers using adaptive stripe sizes. Additionally,

PSA dispatches large file stripes on HServers than SServers,

so that more file requests are allowed to be served by hybrid

servers (comprised of HServers and SServers) rather than only

HServers within a given SSD capacity. Since the hybrid servers

are likely to provide better I/O performance than HServers,
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Fig. 1. Traditional data layout scheme with fixed-size stripe on file servers

PSA leads to improvement in the overall performance of

all file requests. The proposed data layout scheme creates

a better balance between storage performance and space of

heterogeneous file servers, and can be extended to systems

with various categories of file servers, system configuration,

and I/O patterns.

Specifically, we make the following contributions.

• We extend an analytical model to evaluate the I/O com-

pletion time of each request on file servers with HServers

and SServers and file servers with only HServers.

• We propose a performance and space-aware algorithm

based on the model to determine the appropriate file stripe

sizes for HServer and SServers in hybrid PFSs.

• We implement the prototype of the PSA scheme under

OrangeFS, and have conducted extensive tests to verify

the benefits of the PSA scheme. Experiment results illus-

trate that PSA can significantly improve I/O performance.

The rest of this paper is organized as follows. Background

and motivation are presented in Section II. The design and

implementation of PSA is described in section III. Section IV

presents the performance evaluation. Section V discusses the

related work, and Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Fixed-size Striping Data Layout

In order to keep pace with the processing capabilities in

HPC clusters, PFSs such as OrangeFS [2] and Lustre [3] are

designed to improve the performance of I/O subsystems. Files

in PFSs are often organized in fixed-sized stripes, and they

are dispatched onto the underlying servers in a round-robin

fashion. Figure 1 illustrates the idea of the traditional data

layout in PFSs. By providing even data placement in file

servers and good I/O performance in many situations, this

layout scheme is widely used in many PFSs. For example,

in OrangeFS it is the default layout method, which is named

“simple striping”.

B. Motivation Example

While traditional data layout strategies are suitable for

homogeneous PFSs, they may significantly degrade the overall

I/O performance of hybrid PFSs.

Figure 1 demonstrates a representative example of the fixed-

size file striping data layout and a typical file access pattern in
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Fig. 2. Using fixed-size file stripe, SServer finishes the sub-requests faster
than HServer, leading to a load imbalance.

current HPC systems. For simplicity, we assume to have three

processes (P0-2), six file requests (R0-5), and each process has

two requests. We also assume that there are two HServers and

one SServer. To be specific, we assume each request size is

three times the file stripe size, so that all servers can contribute

to the overall I/O performance.

By the default fixed-size layout method, each request is

divided into three sub-requests. For example, R0 is served

by sub-request #0-2 and R1 by sub-request #3-5, as shown in

Figure 1. While each sub-request has the same size, their I/O

completion time is significantly different due to the existing

performance disparity in HServers and SServers. For example,

I/O time of sub-request #2 is smaller than that of sub-request

#0, as shown in Figure 2. Because I/O completion time of a

request is determined by the slowest sub-request, each request

time equals that of the sub-request’s time on HServer. As

we can see, due to the existing file striping assignment, each

SServer continues to stay idle in the service of file requests,

which results in severe I/O performance degradation.

There exists a possible solution to overcome this problem

by taking the file server performance into consideration when

deciding the stripe size of each file server [14]. As illustrated

in Figure 3, by assigning SServer with a larger stripe than

HServers, all servers can finish their sub-requests simultane-

ously and the load imbalance is alleviated. However, some

SSDs often have relatively smaller space than HDDs. The one-

sided design will make SSDs quickly run out of their limited

space; thus all the remaining requests are only served by the

low-speed HServers, which can provide relatively low I/O

performance. To show the difference, we classify all requests

in the hybrid PFS as hybrid requests and pure requests. Hybrid

requests are served by both HServers and SServers, and pure

requests are served only by the slow HServers. Generally,

hybrid requests can lead to better I/O performance than pure

requests as they are involved in more hardware resources.

Therefore, if we can increase the ratio of hybrid requests over

all file requests through optimized data layouts, the overall file

system performance can be largely improved.

III. DESIGN AND IMPLEMENTATION

In this section, we first introduce the basic idea of our

proposed data layout scheme. Then we describe the cost model

424242
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Fig. 3. Performance-aware data layout scheme. High-speed HServers are
assigned with larger stripes, so that all servers finish their sub-requests almost
simultaneously. However, SServers run out their limited space quickly and the
remaining requests will be served only by HServers .

and algorithm used to determine the optimal stripe size for

each server. Finally, we present the implementation of PSA.

A. The Basic Idea of PSA

Our proposed data layout scheme (PSA) aims to improve

hybrid PFSs with performance and space-aware adaptive file

stripes. Instead of assigning SServers with larger file stripes as

performance-aware strategy, the basic idea of PSA is to assign

HServer with larger file stripes and SServers with smaller

stripes. Since the space of SServer is consumed more gradu-

ally, numerous hybrid requests are involved in the clients data

accesses. As a result, we can get global optimal performance

for all file requests rather than the local optimization for certain

requests.

As explained previously, we assume that HServer has

enough space to accommodate data and SServer only has

limited space for file requests. Figure 4 illustrates the file

data distribution on the underlying servers after we assign

the stripe sizes for HServers and SServers using our strategy.

To show the performance comparison, we assume that there

are 20 file requests from clients. For performance-aware data

layout scheme (PA), we assume each SServer has space for 6

sub-requests, as shown in Figure 3. Thus, there are 6 hybrid

requests and 14 pure requests among all requests. For the

proposed performance and space-aware scheme (PSA), we

assume each SServer can absorb 20 sub-requests as each

SServer is allocated with smaller stripe size. In this case, all

file requests belong to hybrid requests. While the performance

of hybrid file requests in PSA layout cannot be better than that

of PA, PSA leads a large number of hybrid file requests. We

assume the I/O time for hybrid requests under PA and PSA

strategy is 2T and 4T respectively, and the I/O time for pure

requests in PA is 8T , then the overall I/O time for all requests

under PA and PSA strategy is 2T × 6 + 8T × 14 = 124T
and 4T ×20 = 80T , respectively. This validates that PSA can

improve the overall file system performance.

Notice that in our strategy, it is not necessary to require

all file requests to be served by hybrid file servers. We only

attempt to increase the number of hybrid requests, when
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Fig. 4. Performance and space-aware data layout scheme. SServers are
assigned with smaller stripes, so that there are more requests served by hybrid
file servers. With a given SSD capacity, the overall I/O performance of file
requests can be improved.

TABLE I
PARAMETERS IN COST ANALYSIS MODEL

Symbol Meaning

p Number of client processes

c Number of processes on one I/O client node

m Number of HServers

n Number of SSServers

h Stripe size on HServer

s Stripe size on SServer

S Data size of one request

e Cost of single network connection establishing

t Network transmission cost of one unit of data

αh Startup time of one I/O operation on HServer

βh HDD transfer time per unit data

αs Startup time of one I/O operation on HServer

βs SSD transfer time per unit data

there is a possibility of performance optimization. In practice,

determining appropriate file stripe sizes based on storage

performance and space is not easy for many reasons. First, the

performance of each file server can be impacted significantly

by both I/O patterns and storage media. Even under the same

I/O patterns, HServer and SServer have different performance

behaviors. Second, for given file requests and SSD space,

different stripe sizes lead to various proportion of hybrid

requests to pure requests, which can largely impact the overall

parallel file system performance.

B. An Analytic Data Access Cost Model

To identify the optimal data layout with appropriate pair

of stripe sizes for each HServer and SServer, we built an

analytical cost model to evaluate the data access time in a

parallel computing environment. The critical parameters are

in Table I. Since SServers and HServers have distinct storage

media, they have different storage characteristics. First, Ts

for SServer is much smaller than HServer’s. Second, βs is

several times smaller than βh, which means SServers have a

434343
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Condition
Network cost TNET Storage cost TSTOR

Establish TE Transfer TX Startup TS + R/W TT( + ) ( + ) max { , , } p max { + , + }> ( + ) max { , , } p max { + , + }
Fig. 5. Cost formulas for requests on all Hservers and SServers

Condition
Network cost TNET Storage cost TSTOR

Establish TE Transfer TX Startup TS + R/W TTmax { , / } p +> max { , / } p +
Fig. 6. Cost formulas for requests on all HServers

performance advantage over HServers for large requests, but

not as significant for small requests. Finally, write performance

of SServer is lower than read performance because write

operations on SSDs lead to numerous background activities,

including garbage collection and wear leveling. Due to these

device-aware critical parameters, the cost model can effec-

tively reflect the performance of various type of requests on

heterogeneous file servers.

The cost is defined as the I/O completion time of each data

access in hybrid PFSs, which mainly includes two parts: the

network transmission time, TNET , and the storage access time,

TSTOR. Generally, TNET consists of TE , which is the network

connection for data transmission, and TX , which is the data

transferring time on network. TSTOR consists of TS and TT ,

the former is the startup time, and the latter is the actual data

read/write time on storage media.

Since hybrid requests and pure requests exist in hybrid PFSs

due to the limited space of SServers, we calculate their I/O

costs respectively. For hybrid file requests, we use previous

cost model [14] to evaluate the data access cost. We assume

the requests are fully distributed on all HServers and Servers

as Figure 4, namely m×h+n×s = S, then the cost model can

be calculated as in Figure 5. More details about constructing

the data access cost can be found in our previous research [14].

Previous model [14] does not work for pure requests. For

these requests, we assume they are distributed only on all

HServers with stripe size of S/m, which leads to optimal I/O

performance. The cost is defined as the formulas in Figure 6.

Our model considers the space limitation of SServer and is an

extension of previous model [14].

C. Optimal Stripe Size for File Servers

Based on the cost model, we devise a heuristic iterative al-

gorithm to determine the appropriate stripe sizes for HServers

and SServers, as displayed in Algorithm 1. Starting from sh
equaling S/(M +N), the loop iterates sh in step increments

while sh is less than S/M . Different from previous work [14]

where SServer serves larger sub-requests, this configuration

intends to make SServer serves smaller sub-requests so that

SServer can contribute more file requests to improve the over-

all I/O performance. The extreme configuration we do consider

is where h is S/M , which means dispatching file request

data only on HServers may obtain better I/O performance.

For each pair of stripe sizes configuration, the loop iterates to

calculate the total access cost of all file I/O requests, either

with formulas in Figure 5 if the request is distributed on the

hybrid file servers or formulas in Figure 6 if they are only on

HServers. Finally, the pair of stripe sizes that leads to minimal

total data access cost is chosen. The ‘step’ value, as shown in

line 3 of Algorithm 1, is 4KB. The user can choose finer ‘step’

values resulting in more precise Sh and Ss values, but with

increased cost calculation overhead. However, computational

overhead for executing this algorithm is acceptable because the

calculations are simply arithmetic operations and run off-line.

Algorithm 1: Stripe Size Determination Algorithm

Input : File requests: R0, R1, ..., Rk−1, SServer Capacity: Cs,
Output: optimal stripe sizes: SH for HServer, SS for SServer

1 l← S
m+n

;

2 h← S
m

;
3 step← 4KB;
4 for sh ← l; sh ≤ h; sh ← sh + step do
5 ss ← (S −m ∗ sh)/n;

6 j ← Cs
Ss

/*j is the number of hybrid requests*/;

7 for i← 0; i < k; i← i+ 1 do
8 Determine request type of Ri based on its offset,

length, and j;
9 if Ri is a hybrid request then

10 /* Ri is distributed on m+ n servers */;
11 Ti ← Calculate access cost of Ri according to the

formulas in Figure 5 ;
12 else
13 /* Ri is distributed only on m HServers*/;
14 Ti ← Calculate access cost of Ri according to the

formulas in Figure 6 ;
15 end
16 Total cost← Total cost+ Ti;
17 end
18 if Total cost < Opt cost then
19 Opt cost← Total cost;
20 SH ← sh;
21 SS ← ss;
22 end
23 end

Once the optimal stripe sizes for HServers and SServers are

determined, PFSs can distribute file data with the optimal data

layout to improve the hybrid PFSs performance.

D. Implementation

Many HPC applications access their files with predictable

access patterns and they often run multiple times [15]–[17].

This provides an opportunity to achieve the performance and

space-aware data layout based on I/O trace analysis. We

implemented the performance and space-aware data layout

scheme in OrangeFS [2], which is a popular parallel file

system in the HPC domain. The procedure of the PSA scheme

includes the following three phases.
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In the estimation phase, we obtain the related parameters in

the cost model. For a given system, the network parameters,

such as e and t, the storage parameters, such as αh,βh,αs,βs,

and the system parameters, such as m and n can be regarded

as constants. We use one file server in the parallel file system

to test the storage parameters for HServers and SServers with

sequential/random and read/write patterns. We use a pair of

one client node and one file server to estimate the network

parameters. All these tests are repeated thousands of times,

and we use the average values in the cost model.

In the layout determination phase, we use a trace collector

to obtain the run-time statistics of data accesses during the

application’s first execution. Based on the I/O trace, we obtain

the application’s I/O pattern related parameters, such as c,
p, and S. Combined with the parameters obtained in the

estimation phase, we use the cost model and Algorithm 1

to determine the optimal file stripe sizes for HServers and

SServers.

In the data placement phase, we distribute the file data

with the optimal data layout for later runs of the applications.

The OrangeFS file system supports an API for implementing

specific variable stripe distribution. The variable stripe distri-

bution is similar to simple stripe, except the stripe size can be

configured differently on various file servers. In OrangeFS,

parallel files can either be accessed by the PVFS2 or the

POSIX interface. For PVFS2 interface, we utilize the “pvfs2-

xattr” command to set the data distribution of directories where

the application files are located. When a new file is created,

we use the “pvfs2-touch” command with the “-l” option to

specify the order of the file servers, so that the proper file

stripe size can be applied to the corresponding file servers.

For POSIX interface, we use the “setfattr” command to reach

the similar data layout optimization goal.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

data layout scheme with benchmark-driven experiments.

A. Experimental Setup

We conducted the experiments on a 65-node SUN Fire

Linux cluster, where each node has two AMD Opteron(tm)

processors, 8GB memory and a 250GB HDD. 16 nodes are

equipped with additional OCZ-REVODRIVE 100GB SSD. All

nodes are equipped with Gigabit Ethernet interconnection. The

operating system is Ubuntu 9.04, and the parallel file system

is OrangeFS 2.8.6.

Among the available nodes, we select eight as client com-

puting nodes, eight as HServers, and eight as SServers. By

default, the hybrid OrangeFS file system is built on four

HServers and four SServers. As discussed, a parallel file will

be divided into two parts if SServers run out of space. The

first part is distributed on all file servers, and the other part

is placed only on HServers. We compare PSA with other

two data layout schemes: the default scheme (DEF) and the

performance-aware scheme (PA). In DEF, the first part of the

file is placed across all servers with a fixed-size stripe of
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Fig. 7. Throughputs of IOR under different layout schemes with different
I/O modes

64KB; in PA, the stripe sizes for HServers and SServers in the

first part of the file are determined by storage performance as

discussed in [14]. For the second part of the file, all schemes

distribute the file on HServers with a stripe size of S/m, where

S is the request size and m denotes the number of HServers.

We use the popular benchmark IOR [18] to test the perfor-

mance of the parallel file system. IOR is a parallel file system

benchmark providing three APIs, MPI-IO, POSIX, and HDF5.

We only use MPI-IO interface in the experiments. Unless

otherwise specified, IOR runs with 16 processes, each of which

performs I/O operations on a 16GB shared file with request

size of 512KB. To simulate the situation that SServers have

relatively smaller space than HServers, we limit the storage

space of each SServer to 1GB. For simplicity, we will use

stripe size pair <h, s> to denote that the stripe sizes on

HServers and SServers are h and s respectively.

B. Experiment Results

1) Different Type of I/O Operations: First we test IOR with

sequential and random read and write I/O operations. From

Figure 7, we observe that PSA has optimal I/O performance

compared to the other data layout schemes. By using the

optimal stripe sizes for HServers and SServers, PSA improves

read performance up to 66.9% over DEF with all I/O access

patterns, and write performance up to 77.1%. Compared with

PA, PSA improves the performance up to 39.8% for reads

454545
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and 29.7% for writes. For PA, the optimal stripe sizes for

sequential and random read and write, are <28KB, 100KB>,

<20KB, 108KB>, <24KB, 104KB>, and <36KB, 92KB>
respectively. For PSA, the optimal stripe sizes for sequential

and random read and write, are <120KB, 8KB>, <120KB,

8KB>, <116KB, 12KB>, and <120KB, 8KB> respectively.

This demonstrates both PA and PSA schemes adopt various

file stripes for different I/O operations. However, by allocating

small stripe sizes for SServers, PSA can makes better trade-off

between SSD’s performance and space to improve the overall

I/O performance. PSA’s read performance exceeds its write

performance because SSDs performs better for read operations

than write, as described in Section III-B. The experiments

prove PSA performs optimally and the stripe size determining

formula is effectiv.

2) Different Number of Processes: The I/O performance is

also evaluated with different number of processes. The IOR

benchmark is executed under the random access mode with 8,

32 and 64 processes.

As displayed in Figure 8, the result is similar to the previous

test. PSA has the best performance among the three schemes.

Compared with DEF, PSA improves the read performance

by 62.8%, 59.5%, and 36.7% respectively with 4, 32 and

64 processes, and write performance by 74.3%, 70.9%, and

66.7%. Compared with PA, PSA improves read performance

by 36.2%, 41.9%, and 27.1% with 4, 32 and 64 processes,

and write performance by 32.1%, 25.4%, and 22.3%. As the

number of processes increase, the performance of the hybrid

PFS decrease because more processes lead to severer I/O

contention in HServers. These results show that PSA has

excellent scalability with the number of I/O processes.

3) Different Request Sizes: In this test, the I/O performance

is examined with different request sizes. The IOR benchmark

is executed with request sizes of 128KB and 1024KB and

the number of processes is fixed to 16. From Figure 9(a),

we can observe that PSA can improve the read performance

by up to 68.7%, and write by up to 74.4% in comparison

with DEF scheme. Compared with PA, PSA also has better

performance: the read performance is increased by up to

43.4%, and write performance is increased by up to 38.9%. We

also find that PSA provides higher performance improvement

for large request size because large requests benefit more

from the hybrid file servers than the pure HServers. These

results validate that PSA can choose appropriate stripe sizes

for HServers and SServers when facing different request sizes.

4) Different Server Configurations: The I/O performance is

examined with different ratios of SServers to HServers. The

OrangeFS is built using HServers and SServers with the ratios

of 5:3, and 3:5.

Figure 10 shows the I/O bandwidth of IORwith different file

server configurations. Based on the results, PSA can improve

I/O throughput for both read and write operations. When the

ratio is 5:3, PSA improves the read and write performance by

up to 58.6% and 68.2% respectively, when compared to DEF.

Compared with PA scheme, PSA increases the read perfor-

mance by 35.3%, and write performance by 28.6%. When the
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Fig. 8. Throughputs of IOR with varied number of processes
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Fig. 10. Throughputs of IOR with varied file server configurations

ratio is 3:5, we can observe that PSA has similar behavior. In

the experiments, read and write performance improve as the

number of SServers increase because the I/O performance of

hybrid requests benefits more from more SServers. By using

the optimal stripe sizes determined by the performance and

space-aware layout method in this paper, PSA can significantly

improve the hybrid file system performance with every file

server configuration.

All these experiment results have confirmed that the pro-

posed PSA scheme is a promising method to improve the

data layout of the hybrid PFSs. It helps parallel file system

provide high performance I/O service to meet the growing

data demands of many HPC applications.

V. RELATED WORK

A. Data Layout in HDD-based File Systems

Data layout optimization is an effective approach to im-

prove the performance of file systems. Parallel file systems

generally provide several data layout strategies for different

I/O workloads [12], including simple stripe, two dimensional

stripe, and variable stripe. Widely adopted techniques for data

partition [15], [19] and replication [12], [20], [21] are utilized

to optimize data layout depending on I/O workloads.

Simple stripe layout schemes are unable to obtain high

performance for applications that access I/O systems errati-

cally. Segment-level layout scheme logically divides a file into

several sections such that an optimal stripe size is assigned for

each section with non-uniform access patterns [10]. Server-

level adaptive layout strategies adopt various stripe sizes on

different file servers to improve the overall I/O performance of

parallel file systems [11]. PARLO utilizes various data layout

polices to accelerate scientific applications with heterogeneous

access patterns at I/O middleware layer [22]. However, these

efforts are suitable for heterogeneous file servers. AdaptRaid

addresses the load imbalance issue in heterogeneous disk

arrays [23] with adaptive number of blocks, which can not

be obtained in PFSs.

B. Data Layout in SSD-based File Systems

SSDs, which exhibit noticeable performance benefits over

traditional HDDs, are commonly integrated into parallel file

systems to improve I/O performance. Currently, most SSDs

are used as a cache to traditional HDDs, e.g. Sievestore [24]

and iTransformer [25]. SSD-based hybrid storage is another

popular method which utilizes the full potential of SSDs, such

as I-CASH [26] and Hystor [27]. Yet, the vast majority of these

techniques are done on single file servers. Our earlier work

CARL [8] selects and places file regions with high access

costs onto the SSD-based file servers at the I/O middleware

layer, but the HDD-based and SSD-based file servers work

independently. PADP [14] uses varied-size stripes to improve

the performance of hybrid PFSs, but the stripe sizes are only

optimized for server storage performance.

These techniques are effective in improving the performance

of PFSs. meager amount of effort is devoted to data layout in

a hybrid PFS, yet this knowledge is commonly needed when

aging HDD file servers are replaced by new SSD-base file

servers. Hybrid PFSs will lead issues of performance and space

disparities between heterogeneous servers, and this work helps

to deal with these challenges in hybrid storage architecture.

VI. CONCLUSIONS

With the availability of solid state drives (SSD), HDD-SSD

hybrid parallel file systems (PFS) have become common in

engineering practice. Compared to a traditional HDD, an SSD

commonly has higher storage performance but smaller storage

space. In this study, we have proposed a performance and

space-aware data layout (PSA) scheme, which distributes data

across HDD-based and SSD-based file servers with adaptive

stripe sizes. PSA determines file stripe size on each server

not only based on storage performance but also space. We

have developed and presented the proposed PSA data layout

optimization scheme in OrangeFS. In essence, PSA provides a

better matching of data access characteristics of an application

with the storage capabilities of file servers in a hybrid file

system. Experimental results show that PSA is feasible and

promising. PSA improves the I/O performance by 36.7% to

74.4% over the default file data layout scheme, and it provides

20.6% to 43.5% better I/O performance than the performance-

aware data layout scheme. We plan to extend the data layout

scheme to any hybrid PFS with two or more file server

performance profiles and complex I/O access patterns in our

future work.
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