
PRS: A Pattern-Directed Replication Scheme
for Heterogeneous Object-Based Storage

Jiang Zhou , Yong Chen , Wei Xie, Dong Dai , Shuibing He ,Member, IEEE, and Weiping Wang

Abstract—Data replication is a key technique to achieve high data availability, reliability, and optimized performance in distributed

storage systems. In recent years, with emerged new storage devices, heterogeneous object-based storage systems, such as a storage

system with a mix of hard disk drives, solid state drives, and other non-volatile memory devices have become increasingly attractive

since they combine the merits of different storage devices to deliver better promises. However, existing data replication schemes do not

well consider distinct characteristics of heterogeneous storage devices yet, which could lead to suboptimal performance. This article

introduces a new data replication scheme called Pattern-directed Replication Scheme (PRS) to achieve efficient data replication for

heterogeneous storage systems. Different from traditional schemes, the PRS selectively replicates data objects and distributes replicas

to various storage devices based on their characteristics. It aggregates objects that have I/O correlation into object groups by

calculating object distance and makes replication for grouped objects according to application’s data access pattern identified. In

addition, the PRS uses a pseudo random algorithm to optimize replica placement by considering the storage device performance and

capacity features. We have evaluated the pattern-directed replication scheme with extensive tests in Sheepdog, a typical object-based

storage system. The experimental results confirm that it is a highly efficient replication scheme for heterogeneous storage systems. For

instance, the read performance was improved by 105 percent to nearly 10x compared with existing replication schemes.

Index Terms—Data replication, heterogeneous storage, object-based storage, access pattern, data distribution

Ç

1 INTRODUCTION

THE object-based storage model, which abstracts files as
multiple data objects stored in object-based devices,

becomes increasingly important for distributed storage sys-
tems in data centers [1]. It has beenwidely adopted in produc-
tion systems like Lustre [2], Ceph [3], and Sheepdog [4].
Recently, heterogeneous object storage systems that take
advantages of emerged new devices, such as non-volatile
memory (NVM) including solid state drives (SSDs), phase
change memory (PCM) [5], resistive RAM (ReRAM) [6], in
addition to conventional hard disk drives (HDDs), have
gained increasing attention. These storage systems leverage
different storage devices and combine the merits of them to
deliver an efficient storage solution. On the other hand, replica-
tion remains a key technique to achieve desired data availabil-
ity and reliability in many storage systems [2], [3], [4], [7], [8].
Its core concept is to automatically replicate data objects and
distribute them tomultiple devices.With replication, data can
be retrieved from other replicas if one copy is not accessible or

corrupted. Replication can also be used to improve I/O per-
formance by coordinating clients to access a local or near copy
of the data object [9], [10], [11], or by amortizing I/Oworkload
to achieve load balance among multiple copies [12], [13].

Although numerous studies have been devoted to the
design and development of data replication schemes, there has
been little work on data replication for heterogeneous, object-
based storage systems.As the performance and capacity of het-
erogeneous devices are different, it is critical to place replicas
concerning their characteristics. Existing replication strategies
mainly distribute data on heterogeneous devices according to
device types/tiers, e.g., placing replicas on HDD storage and
NVM storage separately [14], [15], [16], [17], [18], [19]. How-
ever, these strategies focus only on one characteristic of devices
(e.g., the capacity), while ignoring other features, such as band-
width. They do not distinguish different characteristics of het-
erogeneous devices and do not work well for heterogeneous
storage systems. Our research study presented in this paper
addresses this challenge to achieve an efficient, heterogeneous
data replication strategy by considering both device character-
istics (e.g., capacity and bandwidth) and data reliability.

Whenmaking data replication on storage systems, under-
standing data-access patterns is an efficient way to improve
storage system performance [20], [21], [22], [23], [24]. Cur-
rent replication strategies primarily use frequency or sequen-
tiality to work with heterogeneous storage, in which they
place replicas of the hot, frequently accessed objects on fast
devices (e.g., NVMs), while the cold, sequentially accessed
objects on slower devices (e.g., HDDs) [16]. Several distribu-
tion methods have also been used to model data-access pat-
terns, e.g., the distribution of access counts on files of a
system or file popularity [25], [26]. Although numerous prior

� J. Zhou and W. Wang are with the Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China.
E-mail: {zhoujiang, wangweiping}@iie.ac.cn.

� Y. Chen and W. Xie are with the Department of Computer Science, Texas
Tech University, Lubbock, TX 79401. E-mail: {yong.chen, wei.xie}@ttu.edu.

� D. Dai is with the Department of Computer Science, College of Computing
and Informatics, University of North Carolina at Charlotte, Charlotte, NC
28223. E-mail: dong.dai@uncc.edu.

� S. He is with the College of Computer Science and Technology, Zhejiang
University, Hangzhou 310058, China. E-mail: heshuibing@zju.edu.cn.

Manuscript received 22 Apr. 2019; revised 29 Oct. 2019; accepted 12 Nov.
2019. Date of publication 19 Nov. 2019; date of current version 10 Mar. 2020.
(Corresponding author: Yong Chen.)
Recommended for acceptance by A. Sorniotti.
Digital Object Identifier no. 10.1109/TC.2019.2954089

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 4, APRIL 2020 591

0018-9340� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:37 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7687-5896
https://orcid.org/0000-0002-7687-5896
https://orcid.org/0000-0002-7687-5896
https://orcid.org/0000-0002-7687-5896
https://orcid.org/0000-0002-7687-5896
https://orcid.org/0000-0002-9961-9051
https://orcid.org/0000-0002-9961-9051
https://orcid.org/0000-0002-9961-9051
https://orcid.org/0000-0002-9961-9051
https://orcid.org/0000-0002-9961-9051
https://orcid.org/0000-0003-4078-8149
https://orcid.org/0000-0003-4078-8149
https://orcid.org/0000-0003-4078-8149
https://orcid.org/0000-0003-4078-8149
https://orcid.org/0000-0003-4078-8149
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-7075-4153
mailto:zhoujiang@iie.ac.cn
mailto:wangweiping@iie.ac.cn
mailto:yong.chen@ttu.edu
mailto:wei.xie@ttu.edu
mailto:dong.dai@uncc.edu
mailto:heshuibing@zju.edu.cn

work explored sequential locality or access frequency for
performance improvement, they place replicas in a way
ignorant of other patterns, such as data-access correlation.
For instance, two strongly correlated objects (e.g., two objects
that are often successively accessed together but in a varying
order) might be placed into NVM (e.g., SSD) and HDD,
respectively. If one object is all replicated on NVMs and the
other is all replicated on HDDs, it will lead to poor perfor-
mance when this same access pattern appears again in the
future. Even if the replica of the successive objects is placed
together on NVMs, it is up to the read policy that selects rep-
licas for reading data that decides the read performance.
Besides, it is difficult to determine data-access sequence
(sequential or random) in object-based storage for node/
server-side tracing because one file is divided into multiple
objects, which are distributed on different nodes. When a
sequential access occurs on a file, the I/O requests can dis-
perse on different nodes. Even merging all node/server-side
traces cannot get the accurate patterns because the time
when an I/O request reaches a target node is affected by the
network traffic and the local time of the target node. Our
study addresses this challenge by finding object correlation
via analyzing data-access behaviors. We further aggregate
the objects that have I/O correlation into one object group
for fast access. Specifically, grouping objects with temporal
correlation also improves the read performance since it
improves data location and ensures sequential accesses.

In this paper, we propose a new replication scheme called
pattern-directed replication scheme (PRS) for heterogeneous
object-based storage systems. The PRS analyzes applications’
access patterns and distributes replicas by considering data-
access patterns and heterogeneous device characteristics. It
groups objects based on their local pattern, namely temporal
correlation, or global pattern, namely frequency correlation, and
merges them for replication. A new object will be created as
the replica for object group to reduce I/Oaccess times and ben-
efit spatial locality. Data access sequence within object groups
is also considered. Specifically, a pseudo random distribution
algorithm is designed to optimize replica layout according to
device bandwidth while keeping data balance for capacity uti-
lization. The storage system can benefit from performance
improvement for future data accesses with the replication by
exploiting the full potentials of fast devices. Compared with
the preliminary, conceptual overview of pattern-directed rep-
lication scheme presented in our earlier study [27], we intro-
duce the complete design and methodology of PRS in this
paper including data-access pattern analysis, object replication
for access patterns, and pattern-directed replication strategy.
The proof-of-concept prototype we have built and the evalua-
tion we have conducted confirm that the PRS scheme can sig-
nificantly improve the I/O performance while achieving fair
utilization and data redundancy for heterogeneous object-
based storage. As far as we know, there are no existing data
replication schemes that leverage data-access correlation to
place replicas based on heterogeneous device characteristics.

The contributions of this study are four-fold:

� We introduce a pattern-directed replication scheme
that can achieve efficient data distribution for hetero-
geneous storage systems by understanding data-
access patterns.

� We introduce a pattern analysis method to identify
local or global data-access pattens for objects and clus-
ter objects into groups based on their I/O correlations.

� We design a data replication algorithm to distribute
object groups with identified patterns and optimize
replica placement with a pseudo random algorithm
that fully considers different node characteristics.

� We implement a prototype of the pattern-directed rep-
lication scheme based on the Sheepdog storage system.
Experimental results confirm that the PRS can signifi-
cantly improve the I/O performance and effectively
distribute replicas among heterogeneous devices.

The rest of this paper is organized as follows. Section 2
presents the background and motivation of this research.
Section 3 describes the key designs of the PRS scheme,
including architecture overview, object access pattern anal-
ysis, pattern-directed replication, and optimized data distri-
bution. Section 4 presents the evaluation results. Section 5
reviews related work in data replication scheme and hetero-
geneous storage systems. Finally, Section 6 concludes this
research study.

2 BACKGROUND AND MOTIVATION

2.1 File Striping and Data Objects

To meet the I/O demands of distributed applications, large-
scale clusters rely on object-based storage to manage data.
A storage object is a logical collection of bytes on a storage
device, with proper access methods, attributes describing
characteristics of the data, and other considerations like
security policy [1]. Unlike block storage, it can be used to
store entire data structures, such as files, database tables,
etc. In an object-based storage system, a file is divided into
multiple fixed-size objects, in which each object is stored
separately. Fig. 1 shows an example of data placement in an
object-based storage system. In this figure, a single file is
divided into multiple 4 MB objects. For each object, there is
an object ID corresponding to it, namely object0, object1,
object2, etc. The object ID uniquely identifies an object for
locating it. All objects and their replicas are distributed
across different nodes/devices for storage.

2.2 Replication Management on Heterogeneous
Storage

Replication is a key technique for data reliability and fault tol-
erance. It is a mechanism that automatically copies data and

Fig. 1. File division with replication in a typical object-based storage
system.

592 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 4, APRIL 2020

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:37 UTC from IEEE Xplore. Restrictions apply.

distributes them with multiple replicas. By replication, the
data can be recovered or retrieved from other replicas if it is
not available or corrupted. In parallel/distributed file sys-
tems, replication is used to improve parallelism by amortizing
I/O workload on different nodes. When placing replicas,
the storage systems deliver different levels of consistency
guarantees to applications for accessing data. To satisfy more
acquirements, replication can also help to achieve additional
functionalities, such as snapshot and datamigration.

Traditional replication strategies can improve data avail-
ability but face challenges in heterogeneous environments.
A heterogeneous storage consists of different devices with
each having distinct characteristics. Compared with slow,
albeit cheap, hard disk drives, persistent NVM devices pro-
vide impressive performance advantages, but, at the same
time, suffer lower density, higher cost, and shorter endur-
ance. If we cannot take advantages of their unique features,
it will lead to a suboptimal design for data replication. For
instance, in Fig. 1, the I/O performance will be affected if
placing most replicas on large-capacity HDDs, while ignor-
ing NVMs. On the other hand, the NMVs will be quickly
exhausted if simply concerning on the performance. There-
fore, if the replicas are not distributed well, it will result in
imbalance on nodes and reduce system efficiency. To
address this issue, we propose a novel, heterogeneity-aware
data replication strategy that selectively makes replication
and distributes replicas in an optimized way by considering
device capacity and performance features.

2.3 Data-Access Pattern Matters

In large-scale storage systems, different applications often
generate distinct I/O workloads due to nonuniform data
accesses. For instance, some applications frequently access
certain hot data over a period of time while other applica-
tions are not. It has a direct impact on replication efficiency
if the hot data are not properly placed on faster devices. On
the other hand, heterogeneous device performance can
change with different data-access patterns, depending on
access sequence, request size, etc. Lacking awareness of this
variability will lead to resource waste and potential perfor-
mance degradation. Thus it is highly desired to explore
application behaviors for making data replication. In this
study, we leverage object correlation to discover local or
global data-access patterns, consider access sequence in
each pattern, and then use identified patterns to accommo-
date data replication on heterogeneous storage systems.

3 PATTERN-DIRECTED REPLICATION SCHEME

In this section, we introduce the detailed design of the pat-
tern-directed replication scheme for heterogeneous object-
based storage systems. The success of the PRS scheme relies
on solving two technical issues: analyzing object access pat-
tern to guide data replication and optimizing replication
layout for the heterogeneous storage environment, which
will be discussed in detail below.

3.1 Architecture Overview

The fundamental idea of the PRS is to consider different
storage device features and adopt a pattern-directed method
to aggregate objects with respect to identified access

patterns among objects for replication in a heterogeneous
storage system. It can improve data reliability and perfor-
mance efficiency based on existing replication strategies of
storage systems. The principle of this proposed scheme is
described below.

First, as shown in Fig. 2, the application running on phys-
ical machines or virtual machines (VMs) sends I/O requests
to the backend object-based storage system. The objects are
placed following the default data layout for its first and second
replicas, e.g., via the hashing-based algorithm to distribute
data which depends on the system design [4]. The data is
initially replicated with two copies for the redundancy goal
so that it is accessible if one copy is corrupted.

Second, the rest replicas for an object will be created with PRS
with pattern analysis. These replicas are determined for the
performance benefit since they are generated by considering
access patterns and heterogeneous device characteristics.
The data-access pattern analysis is based on the historical
object I/O requests that are traced by a tracing collector in
each storage node (server-side tracing). The analysis focuses
on five parameters: 1) object ID, 2) start offset in an object, 3)
size of the access, 4) access time, and 5) operation code (e.g.,
read or write). The object I/O trace can be collected online
during application execution. In a distributed storage sys-
tem, each storage node generates one trace file that contains
all its I/O requests for which the node receives or forwards.
The trace file is used for data-access pattern analysis and
object reorganization for replication in the node.

With this information, the PRS analyzes the trace to iden-
tify data-access patterns. It groups objects based on identi-
fied local pattern or global pattern for determining the third
or more replicas. The analysis phase can be performed
online or offline, and we conduct it in the offline manner in
the current study. The reason is two-fold. First, the trace
analysis is carried out for each application run, which
depends on the entire application behaviors instead of
requiring frequent real-time analysis. Second, the analytic
results can be obtained in the background and used for rep-
lication as the PRS generates new grouped object replicas in
an asynchronous way. Its influence on the system perfor-
mance can be negligible.

Finding data-access patterns and grouping objects can also
be used in a homogeneous environment. For example, we can
merge correlated objects and place them on a single HDD
instead of multiple HDDs for an optimization. However, in a
heterogeneous storage system, the devices have different
characteristics, which can be inefficient if making replication
on them equally. To distinguish heterogeneous devices, a fur-
ther optimized replication algorithm is proposed for data

Fig. 2. Overview of the pattern-directed replication scheme.

ZHOU ET AL.: PRS: A PATTERN-DIRECTED REPLICATION SCHEME FOR HETEROGENEOUS OBJECT-BASED STORAGE 593

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:37 UTC from IEEE Xplore. Restrictions apply.

distribution. With PRS replication, the original objects resi-
dent on one nodemay be replicated in other nodes. It does not
affect data access as PRS find the replica via an I/O redirection
to the newoptimized data layout.

Third, with identified patterns and PRS-generated repli-
cas, future accesses will benefit from the scheme. When an
object is being accessed and its PRS-generated replica is
found, a read policy may read the PRS-generated replica
via the object I/O redirection layer and the subsequent
reads are pre-loaded. Compared to the non-PRS replication
schemes that may separate correlated object replicas in
different devices, the PRS can improve the performance
significantly.

3.2 Data-Access Pattern Analysis

The goal of PRS scheme is to provide an efficient data repli-
cation strategy for heterogeneous storage systems. To
achieve that, we explore application behaviors from I/O
trace and make data replication based on analysis results.

3.2.1 Access Pattern Definition

In this study, we use the object accesses for pattern analysis
and leverage the identified patterns to direct data replica-
tion. We define two types of data-access patterns: a local
data-access pattern and a global data-access pattern. The
local data-access pattern represents the temporal-based corre-
lation, which reflects the object access order from a temporal
view. The I/O requests may come from different processes
or applications, but they will be eventually converted to
object requests on underlying storage at the storage node
side. Objects that are accessed together in a given interval
and accessed periodically belong to this pattern. Here we
do not consider spatial correlation for local patterns because
the neighboring objects with related object IDs (e.g,. object 1
and object 2) may belong to different files and are distrib-
uted to different nodes.

The global data-access pattern is defined to represent the
objects that are most frequently accessed during the applica-
tion run time. This type of pattern can be analyzed by syn-
thesizing the traces on all storage nodes. To find hot objects
in the global pattern, we consider a certain percentage of
objects as hot data in storage, which is decided according to
the architecture configuration of heterogeneous systems.
The rationale of this design choice is rather straightforward,
as the capacity of fast devices (e.g., NVMs) is limited in a
heterogeneous storage system, where the hot data should
be placed on these fast devices with higher priority. For
example, in an environment with HDDs and NVMs where
the capacity ratio of HDDs and NVMs is 9:1, then 10 percent
of objects are selected as hot data for the NVMs proportion.
These frequently accessed objects identified from the global
pattern have a higher priority to be placed in the NVM devi-
ces with higher bandwidth, such as SSDs, with the PRS. In
many situations, local patterns alone cannot reveal the
behavior of an application, and a global view is necessary
for guiding replication.

To better demonstrate the difference between local and
global patterns, we show a real example from tracing the
Sheepdog [4], a distributed object storage system, on a clus-
ter while performing the FIO benchmark [28]. Fig. 3 shows

the result, which is representative and observed in nearly
all our tests. Each point in the plot indicates that an object is
accessed at one timestamp. These points can be divided into
various groups with local patterns, where each group repre-
sents temporal correlation depending on the distance selec-
tion. For example, the objects in pattern1, pattern2, and
pattern3 (P1, P2, P3) belong to local patterns as these objects
in each pattern are accessed within 10 milliseconds. On the
other hand, P4 denotes a global pattern, in which two
objects (object ID is 2675 and 2983) are frequently accessed
with the access frequency in top 10 percent.

3.2.2 Object Distance Calculation

We define two types of data-access patterns as discussed
above and the PRS analyzes the trace to identify those pat-
terns. The objects with identified access patterns are
grouped for replication. There are two reasons to group
objects that are temporally related or frequently accessed.

First, grouping based on temporal correlation with local
pattern can help reduce I/O access times and benefit from
the locality. The grouping transforms multiple object
requests (random or sequential operations) on different
nodes into one single access on one node, which avoids
additional network communication and disk I/O overhead.

The second reason is that these frequently accessed objects
with global pattern are preferred to be placed on fast devices,
such as NVM. It is not always possible to identify the correla-
tion among data accesses. However, considering the cache
layer in storage systems, grouping hot data can help improve
the read performance as these data are frequently accessed in
NVMswith higher bandwidth. Grouping hot datawith global
pattern may lead to hotspotting in fast devices. We address
this issue from two aspects. First, our data replication strategy
distributes object groups among various devices according to
device bandwidth via a pseudo-number algorithm, instead of
centralizing them on a few devices. Second, the read perfor-
mance can be alleviated by accessing a data replica on other
devices if one device is overloaded.

To identify data-access patterns, the method of file/block
distance calculation is widely used in storage systems [29],
[30]. In a distributed object-based storage system, we use the
object distance calculation between two objects to identify
data-access patterns. We further use an object classification
algorithm to group objects based on the object distance. To

Fig. 3. Local and global data access patterns in real trace.

594 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 4, APRIL 2020

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:37 UTC from IEEE Xplore. Restrictions apply.

avoid the size of one object group is too large, we limit the
object number to a predefined value in each group.

For the local access pattern, both the data-access interval
and order are important. The object trace collected for applica-
tions is a list of object requests in chronological order. If the
interval of two object accesses is very long from each other in
terms of the access time, their distance should be far, which is
not beneficial for replication. Also, if two object accesses are
close in terms of the time, but they only co-occur occasionally
(e.g., once only), then their correlation should not be consid-
ered stable. The PRS restricts the time interval to compute the
object distance. Specifically, it examines how far apart two
object accesses are. A time window is defined by the mea-
sured time elapsed between two continuous object accesses.
Amaximal threshold is specified, denoted asmaxwindow. Once
an object access happens later than the max window after the
current one, the PRS considers it out of the temporal order
and does not count them as continuous accesses. For any two
objects that are ever accessed in a period of time (i.e., falling
into the same maxwindow), the PRS further calculates their
access times in the samemaxwindow as an indicator of their dis-
tance, as defined below:

distðo1; o2Þ ¼ 1�Min

(
countðo1; o2Þ
countðo1Þ ;

countðo1; o2Þ
countðo2Þ

)
;

(1)

where countðo1; o2Þ is the access counts of both objects (o1; o2)
accessed in the maxwindow, and countðo1Þ and countðo2Þ are
the counts of these separate objects. The maxwindow is a fixed
value that can be preset for the trace. As we can see, the dis-
tance function reflects the access correlation of two objects.
The larger counts two objects are accessed temporally in the
maxwindow, the less distance between them.

For instance, for two objects, say object 1 and object 2,
the countðo1; o2Þ is 3 if they are accessed together for three
times within a time window. Assume these two objects are
accessed for one and two times at other timestamps (not in
the same time window), then the countðo1Þ and countðo2Þ
are 4 and 5, respectively. With the Equation (1), the dis-
tance between object 1 and object 2 is distðo1; o2Þ ¼ 1�
Minf0:75; 0:6g ¼ 0:4. Given the constant value countðo1;
o2Þ, the distance between object 1 and object 2 will increase
if countðo1Þ or countðo2Þ is larger. The increase of distance
means that object 1 and object 2 have lower correlation
because they are not always accessed together.

Different from local patterns, we consider the data-access
frequency to find objects for global access patterns, which
means only the most frequently accessed data will belong to
the global data-access pattern. As mentioned above, the PRS
selects a certain percentage of objects as hot data according to
heterogeneous device configuration. For the global data-access
pattern, the distance between two objects is calculated with
their hotness measure, as described below. To better support
the read performance, we calculate the countðo1Þ and countðo2Þ
as the read counts of each object. The more frequently two
objects are accessed, the less distance between them.

distðo1; o2Þ ¼
(

countðo1Þ � countðo2Þj j
countðo1Þ þ countðo2Þ

)
: (2)

For instance, if object 1 and object 2 have the values
countðo1Þ ¼ 55 and countðo2Þ ¼ 45, then their distance
distðo1; o2Þ ¼ 0:1. These two objects are in close correlation
for similar access frequency. However, the distance between
two hot objects can be high if there is a gap between their
access counter. Given the countðo1Þ ¼ 150 and countðo2Þ ¼
50, the object distance is distðo1; o2Þ ¼ 0:5, which means
object 1 and object 2 have low correlation.

3.2.3 Object Clustering Algorithm

With the distance formulas, we can calculate the distance
between any two objects and further classify them into dif-
ferent groups through clustering algorithms. Specifically,
we first classify hot objects into groups according to fre-
quency correlation, then classify the objects that have tem-
poral correlation. In other words, objects are grouped based
on both the global and local patterns. Two issues remain to
be resolved. One is that the group number is unknown, and
we may need to add or remove groups accordingly. The
other is that the number of objects in each group should be
limited to avoid the size of an object group to be too large.

We introduce the clustering algorithm by describing the
assignment of each new object as shown in Algorithm 1. We
define dis thr as the maximal access distance in a group. If
two objects are classified in the same group, their distance
should be less than dis thr. We further define obj thr as the
maximal number of objects that belong to the same group. If
the number of objects classified into the same group exceeds
this threshold, we will decrease the value of dis thr to split
the objects apart to avoid a large, single object group. We
define a factor a as the minimal adjustment parameter on
dis thr each time.

Algorithm 1. Object Clustering Algorithm

1: procedure Clustering obj
2: ðdis min; near gÞ ¼ min ioðgroups; objÞ
3: if dis min � dis thr then
4: near g ¼ assignðobj; near gÞ
5: if sizeðnear gÞ > obj thr then
6: dis thr� ¼ a

7: Re� run the clustering algorithm
8: end if
9: else
10: new g ¼ create new groupðgroups; objÞ
11: end if
12: end procedure

During object grouping process, the clustering function
will first call min_io(groups, obj) to calculate the nearest
group (near g) and also the minimal distance (dis min) for a
new object obj. If the minimal distance is less than the dis-
tance threshold dis thr, this new object should be put into
that group near g, which increases the number of objects in
that group too. If the number of objects in this group
sizeðnear gÞ is larger than the threshold obj thr, we will
adjust (i.e., decrease) the dis thr by a to constrain the num-
ber of objects in one group. Once the distance threshold
dis thr is changed, we need to re-run the clustering algo-
rithm on these objects again to adjust other groups. If the
minimal distance dis min between objects to any group is

ZHOU ET AL.: PRS: A PATTERN-DIRECTED REPLICATION SCHEME FOR HETEROGENEOUS OBJECT-BASED STORAGE 595

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:37 UTC from IEEE Xplore. Restrictions apply.

larger than the distance threshold dis thr, then the new
object obj should be placed into a new group created by call-
ing create_new_group.

3.3 Object Replication for Access Patterns

With the object clustering algorithm, the PRS groups objects
based on the local pattern and global pattern by analyzing
the I/O accesses of applications. The objects in the same
group are aggregated to a new object and replicated. The
PRS only replicates the data with identified access pattern,
which are generated as the third or the rest replicas for
objects. The granularity of grouping is object-based, which
means that the entire object will be grouped for replication
even if part of its data is accessed.

Fig. 4 illustrates the grouping for objects with local pat-
terns. It can be seen that multiple objects with identified
local patterns are aggregated to one object. For example, the
object group replica 1 consists of 4 objects, in which they
belong to one local data access pattern according to the clus-
tering algorithm. Each of the object group is a new object
with a new object ID. It will be replicated as separate files in
the dedicated directory on the local file system where the
original objects are stored.

For an application, the data are often accessed with dif-
ferent frequency. The PRS replicates the hot objects identi-
fied in the global pattern, as shown in Fig 5. According to
the ratio of NVM devices’ capacity and the total capacity in
a heterogeneous environment, a certain percentage of
objects are selected as hot data by sorting read counts. With
the object distance between each two objects, the hot data
are clustered into different groups in global patterns. The
objects in the same group are reorganized to create a new
object for replication. From Fig. 5, it can be seen that there
are three replicas, each of which has multiple objects for
identified global patterns. The replication of the global pat-
tern can also include objects with the local pattern. For
example, replica 1 has two objects (e.g., object 1 and object 4)
that belong to one local pattern.

When grouping high frequency objects to merged repli-
cas, the high frequency objects are not necessarily accessed
together. It would cause reading amplification which reads
too much for what actually needs. However, this issue can
be relieved by turning down the ratio of hot data to merge
only a small part of hot data. Moreover, we can also limit
the hot data amount of a group by considering object access
time. For instance, the hot data in a group need to be
accessed in a certain period, such as one minute.

For the objects with identified access pattern, the PRS
first replicates them with a global pattern. This means the
hot objects will first be grouped for replication. The

remaining objects that do not belong to any global pattern
will be grouped for identified local patterns. The objects
which are not in global or local patterns will not be repli-
cated with PRS. The number of replicas can be pre-defined,
which reflects the redundancy of objects in the storage sys-
tem. When objects are grouped into a new one, they are re-
organized in a random order, where the index of each object
in the group will be recorded in a redirect table for search.
Then all replicas will be placed in an optimized layout on
the heterogeneous environment to improve the I/O perfor-
mance and keep data balanced across nodes, as described in
next subsection.

3.4 Pattern-Directed Replication Strategy

When generating replicas for objects with local or global pat-
terns, how to place replicas according to different device char-
acteristics is an important issue. To address this problem, we
adopt a heterogeneous, device-aware data replication strat-
egy. The novelty is that we consider both device capacity and
bandwidth for data distribution and place replicas for objects
with identified access patterns on different devices.More spe-
cifically, we adopt a pseudo random number algorithm to
optimize replica layout in a heterogeneous environment. It is
inspired by the SPOCA [31], [32] and SUORA [18] algorithms,
but extends them by distributing data based on data access
patterns and device characteristics.

3.4.1 Access Sequence in Local or Global Patterns

We have described how to group objects with local or global
patterns for their I/O correlations. To decide which device
an object group should be best placed, it is also critical to
consider data access sequence within the object group
because device performance can change with different I/O
workloads. In order to achieve an optimized data distribu-
tion, we first analyze device performance (specially we com-
pare HDDs and SSDs) under different I/O workloads, and
then introduce how to distribute object groups on heteroge-
neous devices.

Fig. 6 shows the I/O performance comparison of HDD
and SSD, where the tests were conducted with FIO bench-
mark [28] on one nodewith Ext4 file system. From the figure,
two observations can be made. First, it can be seen that SSD
favors workloads with random and small I/O size. For
instance, the bandwidth of SSD is from 84.2 to 6.5 times than
that of HDD for random read when the request size varies
from 1KB to 128KB. The similar results are observed for
random write operation. However, the SSD only achieves
1.45 times to 3.7 times of the HDD bandwidth with the

Fig. 4. Grouping objects with local patterns. Objects 0, 2, 4, 6 and
objects 7, 9, 10 belong to two different local patterns.

Fig. 5. Grouping of objects with global patterns. Objects 1, 4 also belong
to one local pattern.

596 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 4, APRIL 2020

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:37 UTC from IEEE Xplore. Restrictions apply.

random request size larger than 128KB. Second, the perfor-
mance gap between SSD and HHD is small for sequential
access. The improvement on bandwidth is from 1 to 3 times
for SSD compared with HDD under sequential read and
write operations. Although the results were collected and
tested with specified devices, they represent the typical dif-
ference of HDDs and SSDs.

The test results show that access sequence has an impact
on the performance of data access. In order to explore access
sequence, we further analyze access sizes of objects in one
object group. For objects with local pattern, if each access
size is less than a threshold, such as 128KB, the object group
can be identified as “random and small access” because all
data accesses in it are dispersive with small size. This object
group should be placed on SSDs because SSDs achieve
much better performance than HDDs for this pattern. On
contrary, objects with “large size access” can be placed on
HDDs because there is no significant performance gap
between HDDs and SSDs in this case. Particularly, an object
group can be regarded as “sequential access” when access
length of all objects in the group reach the object size (e.g,
4MB). Similarly, for global pattern, objects with “random
and small” access should be placed on SSDs. Objects that
are accessed with large sizes or sequentially are placed on
HDDs. These objects can also be placed on SSDs because
they are hot data. Fig. 7 illustrates data access sequence in
local or global patterns.

3.4.2 Optimized Data Distribution in Heterogeneous

Storage

In this section, we introduce the design of optimized repli-
cation placement algorithm on heterogeneous storage sys-
tems by considering both object access patterns and device

characteristics. Specifically, we adopt a pseudo random
number algorithm to distribute object groups in a heteroge-
neous environment. This approach extends SPOCA [31],
[32] and SUORA [18] algorithms by considering both node
performance and node capacity.

With this idea, PRS first organizes heterogeneous nodes
(or devices) by assigning them to different segments in a
logic number line. Each node is assigned to one or more seg-
ments according to its average bandwidth via dividing the
bandwidth by a performance parameter p, which can be
predefined by users or according to device configuration
(e.g., the minimum value of all average bandwidth).

Segment length ¼ Node bandwidth

p
:

The segment begins with the point of an integer number
with the maximal length set to 1. When the segment length
of a node exceeds one segment, it is assigned to a new con-
secutive one with the smallest segment number in the num-
ber line. Fig. 8 shows an example of segment assignment for
storage nodes with different specifications in Table 1. Given
p ¼ 360, Node 1 and Node 2 are assigned to segments seg_0
and seg_1 with the segment length 0.41 and 0.73, respec-
tively. Note that Node 3 is assigned to two segments (seg_2

Fig. 6. I/O bandwidth comparison of the HDD (Seagate ST9500620NS)
and the SSD (Intel SSDSC2BA200G3T) with random and sequential
workloads.

Fig. 7. Three patterns of data access sequence in the object group with
local or global patterns. In each pattern, one object group is used as an
example with a few objects in it. Assuming the object size is 4MB and
the threshold between small and large-size access is 128KB, the figure
shows different access sequence: (1) in the random and small access,
data are accessed with small sizes in different objects; (2) in the large
size access, data are accessed with large sizes in different objects; (3)
in the sequential access, data are accessed with full object size in con-
secutive objects. If there are multiple accesses on the same object (e.g.,
an object is accessed more than one time in the same period), the maxi-
mize access size is used.

Fig. 8. Mapping of nodes and segments. Nodes are divided into various
segments in a logic number line, in which a specific device is assigned
to one or more segments for performance feature (e.g., four segments
for node1 to node3 with their segment ranges being [0, 0.41), [1, 1.73),
[2,3), and [3, 3.5)).

ZHOU ET AL.: PRS: A PATTERN-DIRECTED REPLICATION SCHEME FOR HETEROGENEOUS OBJECT-BASED STORAGE 597

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:37 UTC from IEEE Xplore. Restrictions apply.

and seg_3) because its segment length is larger than 1. As
the node is assigned to segments proportional to the band-
width, the value of p does not affect the replica placement.

After the segment assignment of nodes is determined,
the data is then mapped to one segment by pseudo random
hash functions (e.g., the SIMD-oriented Fast Mersenne
Twister (SFMT) algorithm [33]). We choose the pseudo ran-
dom number mapping because it can distribute data pro-
portional to the segment length (also is the node
bandwidth). As there may have gaps between node seg-
ments (due to different segment length), a random number
sequence ~R is generated according to data ID until it fits the
range of one segment. The random numbers in the sequence
~R are generated in a given range ½e; wÞ by a hash function
fðx; sÞ, where x is data ID, s is the seed, and e and w are
lower and upper range limits of distribution, respectively.
In most cases, the value of e is 0, and the value of w is the
position of segment with maximum number. If the seed for
a data ID is the same, the same random number sequence
will be generated. For example, in Fig. 8, the range ½e; wÞ
can be set to ½0; 4Þ. Supposing the number sequence of one
data is ~R ¼ f0:8; 2:3g, the data will be placed on seg_2
because the number 2.3 first fits seg_2 in the number line. If
the number of replicas is m, there are at least m random
numbers generated for mappingm segments in the ~R.

To further optimize the replication placement algorithm,
data access sequence is considered todistribute data on hetero-
geneous nodes. For the object group with random and small
access, if it is assigned to HDDs by the pseudo algorithm, new
random numbers will continue to generate until the object
group maps to NVMs (e.g., SSDs). For the object group with
large size and local patterns, it will be finallymapped toHDDs
even if random numbers match NVMs at first. Otherwise, the
object group will be distributed in a general way as discussed
before via the pseudo randomnumber algorithm.

With our algorithm, one node may contain large amounts
of data for high bandwidth (e.g., an NVM node compared
with an HDD node). To address this issue, data replicas will
be placed on other nodes if the node has no enough storage
space. Algorithm 2 details the optimized replication distri-
bution algorithm in PRS. TheMatch function means the pro-
cess of mapping an object group to nodes using the pseudo
random number algorithm. It ensures efficient usage of het-
erogeneous device performance and to balance the con-
sumption of the remaining capacity of each node.

3.5 Object I/O Redirection

The function of the object I/O redirection layer is simple
and straightforward. To find the original object in an object

group, the I/O redirection layer re-calculates the offset and
maps the object to its replica (object group) with the opti-
mized data placement algorithm. A typical data access
request usually includes three parameters object id, data offset
and request size. With these parameters, as well as access
patterns, an object redirect table is built to transform the
data access from an object to its replica.

Algorithm 2. Replication Placement Algorithm

INPUT data ID x, replica number m, segment number n,
threshold of remaining capacity t, seed s;
1: segment½n� = segment array
2: for i ¼ 0; i < m; iþþ do
3: val (hashðx; sÞ
4: while x =2 segment do
5: for j ¼ 0; j < n; jþþ do
6: ifMatchðval; segment½j�Þ and
7: remaining capacity of segment½j� > t then
8: segment½j� (x
9: node assigned to segment½j� (x
10: end if
11: end for
12: val (hashðx; sÞ
13: end while
14: end for

Fig. 9 shows the data structure of the redirect table. It is a
mapping table that maintains the relationship between
object ID and replica object ID. The object offset indicates the
start address of the original object in the replica object
(which contains an object group). The pattern field marks
whether the replica object is in local or global pattern. The
sequence represents access sequence in the replica object,
such as random and small access, large size access and
sequential access.

The mapping in the redirect table will not be modified
once the objects are replicated. This means the replica posi-
tion and object group will not change for an object with local
or global patterns. It can keep replica consistency and
reduce data migration. The redirect table can be constructed
when making replication and only records the mapping for
objects that are replicated. As PRS analyzes I/O trace for
each storage node, each storage node has an independent
redirect table. Different nodes have a different view of the
mapping and there is no need to be globally updated (we
do not consider node changes in this study).

For object read/write operations, the PRS will first search
the object in the redirect table. If an object is replicated, it is
located in the replica by object offset and accessed with data
offset and request size when reading. To reduce the overhead
of search in the redirect table, we use a binary search tree for
data structure management (the evaluation in Section 4.6

TABLE 1
The Specification of Data Nodes in an Assumed Cluster

Node
number

Segment
number

Device name Capacity
(GB)

Max
throughput
(MB/s)

1 0 Raw Seagate hard
disk

1000 146

2 1 WD Red RAID5
with 4 disks

500 263

3 2, 3 Samsung 850 EVO 256 540

Fig. 9. The data structure of redirect table in PRS.

598 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 4, APRIL 2020

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:37 UTC from IEEE Xplore. Restrictions apply.

shows that there is a negligible influence on performance).
As the random number sequence is determinate for an object
ID, an object can be redirected correctly to its replicas with
our optimized data placement algorithm.

4 EVALUATION

In this section, we present the evaluation results of the pro-
posed PRS. We implemented the PRS in Sheepdog [4], a dis-
tributed object-based storage for virtual machine storage,
which is a typical storage scenario in data centers.

The experiments were conducted on a local 32-node clus-
ter, including 16 storage nodes and 16 client nodes hosting
VMs. In the storage nodes, three of them are equipped with
dual 2.6 GHz Xeon 8-core processors, 16 GB memory, and a
200 GB Intel SSD (average bandwidth 380 MB/s, SSDSC2
BA200G3T); others have dual 2.5GHzXeon 8-core processors,
16 GB memory and a 500 GB Seagate SATA HDD (average
bandwidth 160 MB/s, ST9500620NS). The VM running in the
client node was emulated by KVM-QEMU and configured
with 2 vCPUs and 8 GB RAM. The VDI was created with
128 GB capacity. All nodes run Linux kernel 2.6.32 version
with 1Gbit/s network connection.

Each storage node in Sheepdog can be used as a gateway
node to receive or forward I/O requests from clients. The PRS
analyzes the trace of the first replica for objects and creates
redirect table for replication. The trace collector is implemented
based on Sheepdog to collect data accesses of each node in
real-time with little runtime overhead (below 1 percent). In
our tests, we first ran the application for one time to collect the
I/O trace. Then the objectswith identified data access patterns
were replicated asynchronously, thus the application can ben-
efit from the PRS for accessing replicas in the future. With the
trace data in our experiments, the maxwindow was set as 10
milliseconds, and the maximum access distance dis thr and
the maximum number of objects in a group obj thr were 0.1

and 10, respectively. The thresholds of remaining capacity (in
Algorithm 2) and of identifying random and small access
were 10 percent and 128KB. We use the SIMD-oriented Fast
Mersenne Twister (SFMT) [33] algorithm to generate pseudo
random numbers to optimize replication placement, with the
parameter p ¼ 160.

4.1 Evaluation With FIO Benchmark

The purpose of the evaluation presented in this subsection
is to study the effectiveness of the proposed PRS in a hetero-
geneous environment. The tests were conducted with 8
HDD nodes and 2 SSD nodes, in which the capacity ratio of
SSDs is near 10 percent. One client VM was launched to per-
form the FIO benchmark. We tested PRS on two aspects:
evaluation on pattern-directed replication and optimized
data distribution.

First, to ensure we observe the improvement only from
applying the pattern-directed replication, we disabled the
optimized data distribution in these tests. Therefore, the
replication and original objects use the same data layout.
We use the formulas in Section 3.2.2 to calculate object dis-
tance and adopt Algorithm 1 to group objects. The grouping
process only takes several seconds (e.g., 0:95s for distance
calculation and 1:57s for grouping objects for 100,000 data
accesses), hence has little impact on our asynchronous data
replication scheme.

Fig. 10a, 10b, 10c, 10d show the read performance of
enabling pattern-directed replication (PD only) compared
with the original data access in Sheepdog configured with
one original (original-1 rep) and three copies (original-3 rep).
The PD replication makes 3 copies of objects with identified
access pattern and places them using a consistent hashing
algorithm, which is also the default distribution algorithm
in Sheepdog [4], [34]. For the object that is replicated with
PD replication, it will be read from the replica (object group)
via the I/O redirection layer. In Fig. 10a and 10c, we run FIO

Fig. 10. FIO performance improvements with pattern-directed replication and optimized data distribution.

ZHOU ET AL.: PRS: A PATTERN-DIRECTED REPLICATION SCHEME FOR HETEROGENEOUS OBJECT-BASED STORAGE 599

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:37 UTC from IEEE Xplore. Restrictions apply.

benchmark with 1 to 512 jobs in the VM, which uses Sheep-
dog as the backend storage. Each job accessed an indepen-
dent file with 100 MB in an asynchronous way to make use
of the concurrent access of storage nodes, and the request
size was 256 KB. For PD only test, it reads the same files but
accesses data from copies generated based on the pattern-
directed replication. The objects with identified access pat-
tern are replicated and grouped for access location and
performance improvement. It can be observed the average
bandwidth was improved by 2 to 303 percent.

With more jobs, the performance gradually increased till
it reached a stable value and decreased after the number of
jobs reached 256. The cause of the decrease was that each
storage node needs to serve more jobs, which makes the
competition among requests in the I/O queue more severe.
Compared with the original data access in Sheepdog, the
rate of bandwidth degradation was much lower for PD.
These tests confirmed the effectiveness and scalability of
our replication scheme, which aggregates and replicates
objects with identified access patterns to improve I/O per-
formance. Fig. 10b and 10d show the similar results when
we run FIO with request size from 1KB to 4MB. The per-
formance of PD only was 101 to 273 percent higher than
that of original data access. When the request was smaller,
average bandwidth became lower as the storage node
needs to serve more requests, which resulted in more time
for disk seeking.

Second, we conducted experiments to study the impact
of the optimized data distribution on data access perfor-
mance. The replication is stored in two different ways: one
is the default consistent hashing algorithm (PD only), and
the other is by the optimized data layout (PD + optimized-
layout). In both data distributions, the number of replicas
was set to 3.

Fig. 10e, 10f, 10g, 10h show the results of reading perfor-
mance with FIO benchmark by adjusting job numbers or
request sizes. It can be seen that the optimized replication
distribution contributed an extra 109 to 460 percent perfor-
mance improvement based on the performance that was
already achieved by PD replication scheme. This is because
that the replicas with identified access patterns have
higher priority to be placed on the SSD nodes, which
improves the I/O performance. The overall performance
was improved by 1.05 times to 11.56 times when using
both PD and optimized-layout replication in the PRS. Note
that all the average bandwidth reached a similar peak
value during tests. It is because the FIO performance in the
VM is limited by the physical network bandwidth in the
node where the client is running.

4.2 Performance Improvement on Skew Data
Distribution

To measure the performance improvement of the PRS on
unbalanced data access, we run FIO benchmark with work-
loads of random and sequential I/O with increasingly skew
access distribution (Zipf distribution) [35]. The tests were
conducted on Sheepdog running on the same node setting
as aforementioned, where a VM client is in the SSD node. It
generates more skew data distribution with the increase of
Zipf distribution value, ensuring that some part of the data
is more frequently accessed than others.

Fig. 11 shows the read performance by comparing the
original system with three replicas to the PRS enabled sys-
tem. It can be observed that both the original system (origi-
nal-3 rep) and PRS had better performance with the increase
of Zipf distribution value. The performance increase is
because more data become hot and can be accessed from
the objects/replicas in the SSD nodes. Moreover, the PRS
scheme outperformed original data access in both random
and sequential workloads. The performance improvement
is mainly because PRS can distinguish hot data and aggre-
gate hot data with global patterns for replication. These rep-
licas of hot data are placed in SSDs with higher priority via
the Algorithm 2, which contributes to the read bandwidth
in PRS. On contrary, the original data access treats heteroge-
neous devices uniformly with consistent hashing distribu-
tion. Although it may place some object replicas in SSDs,
the benefit on performance is limited.

The bandwidth observed was also higher than previous
results in Section 4.1 because the client can read data
directly from the local SSD device. In a nutshell, our replica-
tion scheme achieved higher performance by identifying
data access pattern and taking advantage of heterogeneous
device characteristics.

4.3 Evaluation With File SystemWorkloads

In this subsection, we present the results of experiments
conducted using the benchmark Filebench [36] that emu-
lates file system level workloads of real applications. The
specification of workload is described in Table 2, where R/
W means the ratio of reads and writes, and WF means read-
ing or writing a whole file. The configuration is 8 HDD
nodes, 2 SSD nodes and 1 client node. We compare the PRS
with consistent hashing algorithm [34] and straw buckets (a

Fig. 11. Read performance improvements with different data skewness.

600 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 4, APRIL 2020

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:37 UTC from IEEE Xplore. Restrictions apply.

typical replication algorithm in CRUSH) [14] based on
Sheepdog, with each one making 3 replicas.

Fig. 12 shows the performance comparison of different
replication schemes under various file system workloads. It
can be observed that applications with the PRS scheme
achieved the best performance. This performance advan-
tage is because that the PRS identifies data access patterns
and selectively makes replication in an optimized data
placement. It considers both the I/O request patterns and
heterogeneous device characteristics. In contrast, the consis-
tent hashing and straw buckets algorithms place data
among devices with a uniform distribution, without distin-
guishing different device merits. The results further confirm
the efficiency of the PRS.

4.4 Evaluation with Multiple Clients

To further study the performance benefit of the PRS, we use
multiple clients running on different nodes to perform read
operations and get the total result by adding each band-
width of them. The tests were conducted on 15 storage
nodes and 16 client nodes with replica number 3. We run 1
to 16 clients to launch FIO on different virtual machines.
Each FIO instance has 16 jobs, in which each job accessed an
independent file with 100MB in an asynchronous way with
the request size of 256KB.

From Fig. 13, it can be observed that the performance of
all algorithms improves with the increase of client number.
This is because Sheepdog distributes objects on various stor-
age nodes and provides concurrent data access for clients.
Compared with consistent hashing and CRUSH algorithms,
the PRS scheme shows an improved bandwidth. It achieves
a more rapid growth for performance with the increase of
clients. As the PRS groups objects with identified access pat-
terns, it can reduce the I/O access times and network com-
munication cost. Simultaneously, the PRS scheme places
replications in an optimized layout, which efficiently use
the performance advantage of SSDs. For consistent hashing
and CRUSH algorithms, they place replications on HDD
and SSD nodes evenly, which cannot distinguish the differ-
ent device characteristics.

4.5 Evaluation and Comparison of Different
Schemes

We have also conducted a series of tests to compare PRS
with other replication schemes. For comparison, we also
implemented three replication schemes in Sheepdog based
on data access sequence or frequency patterns, in which the
methods are widely used in existing works. In the sequence-
based scheme, two objects’ replicas are placed in the same
node if they are sequentially accessed in one file. In the fre-
quency-based scheme, hot objects (e.g., 10 percent of all
objects) are replicated in SSD nodes. The sequence and fre-
quency-based scheme replicates objects by taking both access
sequence and frequency into account.

Fig. 14 reports the FIO read results of different schemes.
The evaluation was conducted on all storage nodes with 16
clients. In sequential read benchmark, the sequence-based
scheme achieved better performance than the frequency-
based scheme as it can achieve more data locality for object
access in this pattern. On contrary, the frequency-based
scheme has higher bandwidth than the sequence-based

TABLE 2
The Specification of Emulated File System Workloads

of Different Applications

Application Dataset R/W Ave File Size I/O size

fileserver 36 GB 1:2 256 KB WF
varmail 15 GB 1:1 32 KB WF
webserver 25 GB 10:1 256 KB WF
videoserver 42 GB 1:0 1 GB 1 MB

Fig. 12. Performance under workloads of different applications.

Fig. 13. FIO performance comparison with multiple clients.

ZHOU ET AL.: PRS: A PATTERN-DIRECTED REPLICATION SCHEME FOR HETEROGENEOUS OBJECT-BASED STORAGE 601

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:37 UTC from IEEE Xplore. Restrictions apply.

scheme for placing hot data on SSDs. In both tests, the band-
width can be further improved by the sequence and fre-
quency-based scheme. Compared with other schemes, the
PRS achieved the best performance for a wide spectrum of
request sizes. The advantages of PRS are primarily attrib-
uted to the design that it considers both I/O correlations
and access sequence to replicate objects on heterogeneous
nodes and by distinguishing their different characteristics.

4.6 System Overhead and Write Optimization

In our evaluations, the object requests are traced one time,
and replications are made in an asynchronous way. With the
PRS, the I/O redirection layer needs to check whether the
opened object is replicated for object read/write operations,
thus to decide whether to do the offset calculation. To test
the overhead caused by themapping in the redirect table, we
run FIO with original data access in Sheepdog, and just
create an object redirection table to store each object and look
up it before accessing an object.

Fig. 15 shows the performance comparison by FIO
between Sheepdog and data access on Sheepdog through
an object redirection table (the PRS scheme). As expected,
the overhead of looking up an object in the redirection table
is negligible. It is because we use a binary search tree for

data structure management in the redirection table, which
generally follows the OðlognÞ asymptotic trend. In some
cases, some applications do not have regular data access
patterns thus will not benefit from the access to the PRS rep-
lication objects. At this time, the overhead may exist, which
may affect the performance for applications.

The write optimization is often more complicated in
storage systems due to I/O scheduling policy, data consis-
tency, and other factors. The effectiveness is also not evi-
dent sometimes due to the existence of write-buffer and
asynchronous writes. However, in our tests and evalua-
tions, it was observed that the PRS achieved better aggre-
gated bandwidth over the existing replication schemes due
to the fact that it well considers distinct characteristics of
heterogeneous devices. We report the results of one set of
representative tests, as shown in Fig. 16, for the asynchro-
nous sequential write performance with a total 10 GB file
and sync flag. The Sheepdog runs on 8 HDD nodes and 2
SSD nodes with only one replica, which is notated as origi-
nal-1 rep. For PRS scheme, the file was created first with
one replica and then rewritten, thus updating an additional
new replica if it is replicated. It can be seen that the perfor-
mance improvement was up to 1.75 times, not as signifi-
cant as the benefits observed in the read tests, partially
due to the fact that the write operation needs to be propa-
gated to all replicated copies.

5 RELATED WORK

Numerous studies have been conducted in recent years on
data replication schemes and heterogeneous storage sys-
tems. We discuss existing work in this section and compare
them with this study.

5.1 Data Replication Scheme

Data replication is widely used in many storage systems.
The popular object-based storage systems, such as Ceph [3]
and Sheepdog [4], provide data replication with determin-
istic hash mapping functions. The distributed file systems,
such as GFS [37] and HDFS [38], divide data sets into blocks
of a fixed size and replicate them with rack-aware data
placement. To avoid the uneven load distribution across
nodes, the dynamic block replication schemes have been
proposed with the goal of balancing node load while ensur-
ing node and rack-level reliability requirement [39], [40].
Different from these strategies that depend on replication
algorithms to improve data redundancy, our proposed PRS
scheme makes data replication according to data-access

Fig. 14. FIO performance comparison of different schemes.

Fig. 15. System overhead for sequential read.

Fig. 16. Write performance with different request sizes.

602 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 4, APRIL 2020

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:37 UTC from IEEE Xplore. Restrictions apply.

patterns, thus can further improve I/O performance while
having little impact on data reliability [10].

There are alsomany I/O optimizations based on data repli-
cation in parallel/distributed file systems. Zhang et. al. [12]
proposed a data replication scheme to amortize I/Oworkload
to multiple replicas to eliminate I/O interference so that each
I/O node only serves requests from one or a limited number
of processes. Song et. al. [13] proposed a hybrid replication
scheme for complex applications, which consist of different
data-access patterns, and choose one replica with the lowest
access cost for each data access. Yin et. al. [41] described an I/
O data replication scheme to reorganize data according to the
data-access pattern for parallel file systems and saves these
reorganized replicas with appropriate data layout based on a
cost analysis model. Jenkins et. al. [42] proposed a partial data
replication system which captures I/O access traces and uses
a performance model to evaluate and select optimized data
distribution. PFRF [25] selects themost popular files and repli-
cates them to the clusters. All these studies, however, are
designed for homogeneous storage systems. In contrast, our
proposed PRS scheme provides data replication and place-
ment for heterogeneous storage systems, which can distin-
guish heterogeneous node performance while achieving data
balance for capacity utilization.

Some other replication schemes are designed to dynami-
cally replicate data and reorganize data layout on distributed
storage systems [9], [43], [44], [45], [46]. Several approaches
are designed to reduce the effect on data integrity and avail-
ability when storage node members change [47], [48], [49] or
correlated failures occur [50], [51]. Skute [44] determines the
most cost-efficient locations of data replicas with respect to
their popularity and their client locations to achieve a scalable
and highly available key-value store. DARE [9] proposed a
distributed adaptive data replication algorithm that aids the
scheduler to achieve better data locality. Additionally, recent
studies have also applied hybrid methods [52] or coding the-
ory [51], [53] to achieve a trade-off among data consistency,
availability, and performance. These studies provide a flexible
and adaptive way for data replication. Different from them,
our proposed PRS scheme groups objects based on data-
access patterns and makes replication for object groups with
an optimized layout, which can further alleviate the perfor-
mance gap between compute and the I/O subsystem in
object-based storage systems.

5.2 Heterogeneous Storage Systems

Heterogeneous storage architecture has become increasingly
popular for massive data storage in data centers and distrib-
uted computing platforms. Most existing data placement
algorithms can fairly distribute data in homogeneous storage,
but do not meet the requirements well in a heterogeneous
environment [34]. Some algorithms address data placement
in a heterogeneous environment with considering limited
device characteristics. For instance, CRUSH [14] is a pseudo-
random algorithm that efficiently and robustly places data
across a heterogeneous and tiered storage cluster. However,
for each bucket, it essentially distributes data with hashing
functions among homogeneous devices. The SPOCA [31], [32]
and SUORA [18] algorithms assign segments of the hash
space in a number line proportional to nodes’ capacity and
store data among segments with pseudo-random numbers.

Although these algorithms are designed to distribute data in
heterogeneous environments, they focus on one device fea-
ture (e.g., capacity) while oversighting other characteristics,
such as bandwidth or latency of different devices.

There is a rich body of related works on hybrid storage
systems [54], [55], [56]. Welch et. al. [57] studied the file size
distribution on high performance computing storage systems
and proposed to allocate metadata and small files onto SSDs
whereas using much cheaper HDDs for large files. Janus [58]
is a multi-tiered distributed file system that stores newly cre-
ated files in the flash tier and moves them to the disk tier
using the First-In-First-Out (FIFO) or Least-Recently-Used
(LRU) policy. MOBBS [16] provides a hybrid block storage
for VMs (virtual machines) by dynamically optimizing data
placement between the HDD pool and SSD pool based on
real-time workload. Hystor [59] manages both HDDs and
SSDs as a single block device that stores data incurring large
I/O latencies on SSDs. HAS [60] and HARL [61] present het-
erogeneity-aware data layout schemes that distribute data
across HDD and SSD servers with the consideration of
applications’ data-access patterns and I/O performance. Our
previous work, HiCH [19] and two-mode distribution [17]
introduce new variations of the consistent hashing algorithm
to manage data distribution in a heterogeneous storage sys-
tem. However, most of these studies explore heterogeneous
node potentials by considering the overall performance dif-
ference between them (e.g., partitioning nodes into HDD and
SSD storage, respectively) and distribute data on different
storage or tier in a separate way.

Different from these efforts, our proposed PRS scheme
addresses the challenge by distinguishing heterogeneous
device characteristics. The PRS achieves replication with
considering both the bandwidth and capacity of heteroge-
neous devices, and also data-access patterns, to efficiently
distribute data with a pseudo-random algorithm in a hybrid
or multi-tier storage hierarchy including HDD, SSD, and
NVM devices in general.

6 CONCLUSION

Along with the emergence and rapid adoption of new stor-
age devices, such as solid state drives and non-volatile
memory, a heterogeneous storage system that leverages
merits of different storage devices has become highly attrac-
tive. On the other hand, these heterogeneous storage sys-
tems still largely rely on data replication technique to
achieve high data availability, reliability, and optimized
performance. Existing replication schemes, however, are
primarily designed for a homogeneous environment and
focus on considering data locations and rack/power/switch
redundancy. Yet, they do not well consider distinct storage
device features in a heterogeneous environment. Existing
schemes do not well consider the impact of applications’
access patterns in a heterogeneous environment either.

Motivated by addressing these limitations of existing rep-
lication schemes, this paper introduces a new pattern-
directed replication scheme to achieve highly efficient data
replication in heterogeneous object-based storage systems.
The PRS addresses two technical challenges: analyzing object
access pattern to guide data replication and optimizing rep-
lica layout to take advantages of heterogeneous device

ZHOU ET AL.: PRS: A PATTERN-DIRECTED REPLICATION SCHEME FOR HETEROGENEOUS OBJECT-BASED STORAGE 603

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:37 UTC from IEEE Xplore. Restrictions apply.

characteristics as we have described in detail in this paper.
To verify the potential, we have built a prototype of the PRS
in the Sheepdog distributed storage system and carried out
extensive tests with various workloads. The experimental
results show that the PRS is an effective replication scheme
for heterogeneous storage systems. It considers unique fea-
tures of storage devices in a heterogeneous environment and
significantly improves the performance. For instance, it
improved the read performance by 105 percent to nearly 10x
compared with typical data replication schemes.

While this study is only one step toward making a highly
efficient replication scheme for growingly critical heteroge-
neous storage systems, the pattern-directed replication
scheme has shown its promise. Although the evaluations
were performed on virtual machines, they are a reasonable
representation of what could be expected in a physical sys-
tem because the PRS provides a general method for data rep-
lication. In the future, we plan to continue exploring efficient
ways of utilizing devices and applications’ characteristics for
a better storage solution. We also believe that such a pattern-
directed replication scheme has value in a deep storage hier-
archy that extends the traditional permanent data store to
multiple hierarchies with a variety of non-volatile devices.
We plan to continue research investigation along this direc-
tion too, and this study also calls for community’s collective
efforts to address these challenges.

ACKNOWLEDGMENTS

Authors would like to thank to the anonymous reviewers
for their valuable feedback. This research is supported in
part by the National Science Foundation under Grants
CNS-1338078, CNS-1362134, CCF-1409946, CCF-1718336,
OAC-1835892, and CNS-1817094. This research is also sup-
ported in part by the Beijing Municipal Science and Tech-
nology Project under Grant Z191100007119002, by the
National Science Foundation of China No. 61572377, the
Natural Science Foundation of Hubei Province of China
No.2017CFC889, and the Fundamental Research Funds for
the Central Universities No. 2018QNA5015.

REFERENCES

[1] M. Mesnier, G. R. Ganger, and E. Riedel, “Object-based storage,”
IEEE Commun. Mag., vol. 41, no. 8, pp. 84–90, Aug. 2003.

[2] P. J. Braam, “The Lustre storage architecture,” White Paper, Clus-
ter File System, Inc., Oct. 2003.

[3] S. A.Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in
Proc. USENIXOper. Syst. Des. Implementation, 2006, pp. 307–320.

[4] “Sheepdog Project,” 2018. [Online]. Available: https://sheepdog.
github.io/sheepdog/

[5] H. Wong et al., “Phase change memory,” in Proc. IEEE Conf., 2010,
pp. 2201–2227.

[6] I. Baek et al., “Highly scalable nonvolatile resistive memory using
simple binary oxide driven by asymmetric unipolar voltage
pulses,” in Proc. IEEE Int. Electron Devices Meet., 2004, pp. 587–590.

[7] “GlusterFS,” 2018. [Online]. Available: https://www.gluster.org/.
[8] J. Wang, H. Wu, and R. Wang, “A new reliability model in replica-

tion-based big data storage systems,” J. Parallel Distrib. Comput.,
vol. 108, pp. 14–27, 2017.

[9] C. L. Abad, Y. Lu, and R. H. Campbell, “Dare: Adaptive data rep-
lication for efficient cluster scheduling,” in Proc. IEEE Int. Conf.
Cluster Comput., 2011, pp. 159–168.

[10] G. Liu, H. Shen, and H. Chandler, “Selective data replication for
online social networks with distributed datacenters,” IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 8, pp. 2377–2393, Aug. 2016.

[11] S. He and X. Sun, “A cost-effective distribution-aware data
replication scheme for parallel I/O systems,” IEEE Trans. Comput.,
vol. 67, no. 10, pp. 1374–1387, Oct. 2018.

[12] X. Zhang and S. Jiang, “InterferenceRemoval: Removing interfer-
ence of disk access for MPI programs through data replication,”
in Proc. SC Conf., 2010, pp. 223–232.

[13] H. Song, Y. Yin, Y. Chen, and X. Sun, “A cost-intelligent applica-
tion-specific data layout scheme for parallel file systems,” in Proc.
Int. Symp. High-Perform. Distrib. Comput., 2011, pp. 37–48.

[14] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “CRUSH:
Controlled, scalable, decentralized placement of replicated data,”
in Proc. SC Conf., 2006, pp. 654–663.

[15] R. J. Honicky and E. L. Miller, “Replication under scalable hashing:
A family of algorithms for scalable decentralized data distribution,”
in Proc. 18th Int. Parallel Distrib. Process. Symp., 2004, pp. 96.

[16] S.Ma, H. Chen, Y. Shen, H. Lu, B.Wei, and P.He, “Providing hybrid
block storage for virtual machines using object-based storage,” in
Proc. IEEE Int. Conf. Parallel Distrib. Syst., 2014, pp. 150–157.

[17] W. Xie, J. Zhou, M. Reyes, J. Nobel, and Y. Chen, “Two-mode data
distribution scheme for heterogeneous storage in data centers
(short paper),” in Proc. IEEE Int. Conf. Big Data, 2015, pp. 327–332.

[18] J. Zhou, W. Xie, J. Noble, K. Echo, and Y. Chen, “SUORA: A scal-
able and uniform data distribution algorithm for heterogeneous
storage systems,” in Proc. IEEE Int. Conf. Netw., Architecture Stor-
age, 2016, pp. 1–10.

[19] J. Zhou, W. Xie, Q. Gu, and Y. Chen, “Hierarchical consistent
hashing for heterogeneous object-based storage,” in Proc. ISPA
Conf., 2016, pp. 1597–1604.

[20] Y. Yin, S. Byna, H. Song, X. Sun, and R. Thakur, “Boosting applica-
tion-specific parallel I/O optimization using IOSIG,” in Proc. 12th
IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput., 2012, pp. 196–203.

[21] J. He et al., “I/O acceleration with pattern detection,” in Proc. 22nd
Int. Symp. High-Perform. Parallel Distrib. Comput., 2013, pp. 25–36.

[22] J. Liu and H. Shen, “A popularity-aware cost-effective replication
scheme for high data durability in cloud storage,” in Proc. IEEE
Int. Conf. Big Data, 2016, pp. 384–389.

[23] Z. Li et al., “Time and space-efficient write parallelism in PCM by
exploiting data patterns,” IEEE Trans. Comput., vol. 66, no. 9,
pp. 1629–1644, Sep. 2017.

[24] J. Zhou, D. Dai, Y. Mao, X. Chen, Y. Zhuang, and Y. Chen, “I/O
characteristics discovery in cloud storage systems,” in Proc. IEEE
11th Int. Conf. Cloud Comput., 2018, pp. 170–177.

[25] M. Lee, F. Leu, and Y. Chen, “PFRF: An adaptive data replication
algorithm based on star-topology data grids,” Future Gener. Com-
put. Syst., vol. 28, no. 7, 2012.

[26] S. Wu, W. Zhu, B. Mao, and K. Li, “PP: Popularity-based proactive
data recovery for HDFS RAID systems,” Future Gener. Comput.
Syst., vol. 86, pp. 1146–1153, 2017.

[27] J. Zhou, W. Xie, D. Dai, and Y. Chen, “Pattern-directed replication
scheme for heterogeneous object-based storage,” in Proc. 17th IEEE/
ACM Int. Symp. Cluster, Cloud Grid Comput., 2017, pp. 645–648.

[28] “FIO Tool,” 2015. [Online]. Available: http://freecode.com/
projects/fio

[29] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou, “C-Miner: Mining
block correlations in storage systems,” in Proc. FAST Conf., 2004,
pp. 173–186.

[30] P. Xia, D. Feng, H. Jiang, L. Tian, and F. Wang, “FARMER: A
novel approach to file access correlation mining and evaluation
reference model for optimizing peta-scale file system perform-
ance,” in Proc. 17th Int. Symp. High Perform. Distrib. Comput., 2008,
pp. 185–196.

[31] A. Chawla, B. Reed, K. Juhnke, and G. Syed, “Semantics of cach-
ing with SPOCA: A stateless, proportional, optimally-consistent
addressing algorithm,” in Proc. USENIX Conf. USENIX Annu.
Tech. Conf., 2011, p. 33.

[32] K. I. Ishikawa, “ASURA: Scalable and uniform data distribution
algorithm for storage clusters,” 2013, arXiv:1309.7720.

[33] “Simd-oriented fast mersenne twister,” 2017. [Online]. Available:
http://www.math.sci.hiroshima-u.ac.jp/ m-mat/MT/SFMT/
index.html

[34] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and
R. Panigrahy, “Consistent hashing and random trees: distributed
caching protocols for relieving hot spots on the World Wide Web,”
in Proc. Annu. ACMSymp. Theory Comput., 1997, pp. 654–663.

[35] “Zipf distribution,” 2017. [Online]. Available: https://en.wikipedia.
org/wiki/Zipf’s_law

[36] “The file system benchmark,” 2018. [Online]. Available: http://
sourceforge.net/projects/filebench

604 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 4, APRIL 2020

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:37 UTC from IEEE Xplore. Restrictions apply.

https://sheepdog.github.io/sheepdog/
https://sheepdog.github.io/sheepdog/
https://www.gluster.org/.
http://freecode.com/projects/fio
http://freecode.com/projects/fio
http://www.math.sci.hiroshima-u.ac.jp/ m-mat/MT/SFMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/ m-mat/MT/SFMT/index.html
https://en.wikipedia.org/wiki/Zipf's_law
https://en.wikipedia.org/wiki/Zipf's_law
https://en.wikipedia.org/wiki/Zipf's_law
http://sourceforge.net/projects/filebench
http://sourceforge.net/projects/filebench

[37] S. Ghemawat, H. Gobioff, and S. T. Leung, “The Google file
system,” in Proc. ACM Symp. Oper. Syst. Princ., 2003, pp. 29–43.

[38] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in Proc. IEEE 26th Symp. Mass Storage
Syst. Technol., 2010, pp. 1–10.

[39] G. Ananthanarayanan et al., “Scarlett: Coping with skewed con-
tent popularity in MapReduce clusters,” in Proc. Eur. Conf. Com-
put. Syst., 2011, pp. 287–300.

[40] Q. Zhang, S. Zhang, A. Leon-Garcia, and R. Boutaba, “Aurora:
Adaptive block replication in distributed file systems,” in Proc.
Int. Conf. Distrib. Comput. Syst., 2015, pp. 442–451.

[41] Y. Yin, J. Li, J. He, X. Sun, and R. Thakur, “Pattern-direct and lay-
out-aware replication scheme for parallel I/O systems,” in Proc.
IEEE Int. Parallel Distrib. Process. Symp., 2013, pp. 345–356.

[42] J. Jenkins, X. Zou, H. Tang, D. Kimpe, R. Ross, and N. F. Samatova,
“RADAR: Runtime asymmetric data-access driven scientific data
replication,” inProc. Int. Supercomputing Conf., 2014, pp. 296–313.

[43] R. S. Chang and H. P. Chang, “A dynamic data replication strategy
using access-weights in data grids,” Future Gener. Comput. Syst.,
vol. 45, no. 3, pp. 277–295, 2008.

[44] N. Bonvin, T. G. Papaioannou, and K. Aberer, “A self-organized,
fault-tolerant and scalable replication scheme for cloud storage,”
in Proc. 1st ACM Symp. Cloud Comput., 2010, pp. 205–216.

[45] Z. Yang, J. Wang, D. Evans, and N. Mi, “AutoReplica: Automatic
data replica manager in distributed caching and data processing
systems,” in Proc. IEEE 35th Int. Perform. Comput. Commun. Conf.,
2016, pp. 1–6.

[46] V. Nagarajan and M. Mohamed, “A prediction-based dynamic
replication strategy for data-intensive applications,” Comput. Elect.
Eng., vol. 57, pp. 281–293, 2017.

[47] A. Brinkmann, S. Effert, F. Meyer, and C. Scheideler, “Dynamic
and redundant data placement,” in Proc. 27th Int. Conf. Distrib.
Comput. Syst., 2007, p. 29.

[48] A. Brinkmann and S. Effert, “Redundant data placement strate-
gies for cluster storage environments,” in Proc. Int. Conf. Principles
Distrib. Syst., pp. 551–554, 2008.

[49] A. Higai, A. Takefusa, H. Nakada, and M. Oguchi, “A study of
effective replica reconstruction schemes at node deletion for
HDFS,” in Proc. 14th IEEE/ACM Int. Symp. Cluster, Cloud Grid Com-
put., 2014, pp. 512–521.

[50] A. Cidon, R. Escriva, S. Katti, M. Rosenblum, and E. G. Sirer,
“Tiered replication: A cost-effective alternative to full cluster geo-
replication,” in Proc. USENIX Annu. Tech. Conf., 2015, pp. 31–43.

[51] H. Zhang, M. Dong, and H. Chen, “Efficient and available in-
memory KV-Store with hybrid erasure coding and replication,” in
Proc. FAST Conf., 2016, pp. 167–180.

[52] B. Mao, S. Wu, and H. Jiang, “Improving storage availability in
cloud-of-clouds with hybrid redundant data distribution,” in Proc.
IEEE Int. Parallel Distrib. Process. Symp., 2015, pp. 633–642.

[53] R. Li, Y. Hu, and P. Lee, “Enabling efficient and reliable transition
from replication to erasure coding for clustered file systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 9, pp. 2500–2513, Sep. 2017.

[54] Y. Son, H. Yeom, and H. Han, “Optimizing I/O operations in file
systems for fast storage devices,” IEEE Trans. Comput., vol. 66,
no. 6, pp. 1071–1084, Jun. 2017.

[55] S. He, Y. Wang, X. Sun, C. Huang, and C. Xu, “Heterogeneity-
aware collective I/O for parallel I/O systems with hybrid HDD/
SSD servers,” IEEE Trans. Comput., vol. 66, no. 6, pp. 1091–1098,
Jun. 2017.

[56] E. Kakoulli and H. Herodotou, “OctopusFS: A distributed file sys-
tem with tiered storage management,” in Proc. ACM Int. Conf.
Manage. Data, 2017, pp. 65–78.

[57] B. Welch and G. Noer, “Optimizing a hybrid SSD/HDDHPC stor-
age system based on file size distributions,” in Proc. IEEE Symp.
Mass Storage Syst. Tech., 2013, pp. 1–12.

[58] C. Albrecht et al., “Janus: Optimal flash provisioning for cloud
storage workloads,” in Proc. USENIX ATC Conf., 2013, pp. 91–102.

[59] F. Chen, D. Koufaty, and X. Zhang, “Hystor: Making the best use
of solid state drives in high performance storage systems,” in
Proc. Int. Conf. Supercomputing, 2011, pp. 22–32.

[60] S. He, X. Sun, and A. Haider, “HAS: Heterogeneity-aware selec-
tive layout scheme for parallel file systems on hybrid servers,” in
Proc. IEEE Int. Parallel Distrib. Process. Symp., 2015, pp. 613–622.

[61] S. He, X. Sun, Y. Wang, A. Kougkas, and A. Haider, “A heteroge-
neity-aware region-level data layout for hybrid parallel file sys-
tems,” in Proc. 44th Int. Conf. Parallel Process., 2015, pp. 340–349.

Jiang Zhou received the PhD degree in com-
puter architecture from the Institute of Computing
Technology, Chinese Academy of Sciences,
China in 2014. He is currently an assistant pro-
fessor with the Institute of Information Engineer-
ing, Chinese Academy of Sciences. His research
interests include file and storage systems, paral-
lel and distributed computing, metadata manage-
ment, I/O optimization, and cloud computing.

Yong Chen is an associate professor anddirector of
the Data-Intensive Scalable Computing Laboratory,
Computer Science Department, Texas Tech Univer-
sity, USA. He is also the site director of the NSF
Cloud and Autonomic Computing Center, Texas
Tech University. His research interests include data-
intensive computing, parallel and distributed comput-
ing, high-performance computing, and cloud comput-
ing. For more information about him can be found at
http://www.myweb.ttu.edu/yonchen/.

Wei Xie received the PhD degree in computer
science from Texas Tech University, USA in 2018.
He is a technical staff with VMware Inc. His
research interests include distributed storage sys-
tems, cloud computing, non-volatile memory sys-
tems, and checkpointing systems.

Dong Dai received the BS and PhD degrees in
computer science from the University of Science
and Technology of China, China. He is currently
an assistant professor with the Computer Sci-
ence Department, University of North Carolina at
Charlotte. His major research interests include
building high-performance storage systems, such
as parallel file systems, metadata management
systems, and graph storage to facilitate data-
intensive applications.

Shuibing He received the PhD degree in com-
puter science and technology from Huazhong
University of Science and Technology, in 2009.
He is now a ZJU100 young professor with the
College of Computer Science and Technology,
Zhejiang University. His research interests
include parallel I/O systems, file and storage sys-
tems, high-performance and distributed comput-
ing. He is a member of the IEEE and ACM.

Weiping Wang received the PhD degree in com-
puter science from Harbin Institute of Technology,
China, in 2008. He is currently a professor with the
Institute of InformationEngineering, ChineseAcad-
emy of Sciences. His research interests include
database and storage systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHOU ET AL.: PRS: A PATTERN-DIRECTED REPLICATION SCHEME FOR HETEROGENEOUS OBJECT-BASED STORAGE 605

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:37 UTC from IEEE Xplore. Restrictions apply.

http://www.myweb.ttu.edu/yonchen/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

