
2010 2nd International Conforence on Education Technology and Computer (ICETC) 

Optimizing Sparse Matrix-Vector Multiplication on eUDA 

Zhuowei Wang Xianbin Xu WuqingZhao Yuping Zhang Shuibing He 
school of computer school of computer school of computer school of computer school of computer 

wuhan university wuhan university wuhan university wuhan university wuhan university 
Wuhan, China Wuhan, China Wuhan, China Wuhan, China Wuhan, China 

wangzhuowei071 0@1 xbxu@whu.edu.cn whuzhwq@163.com yuping.whu@gmail.co hesbingxq@163.com 
63.com 

Abstract-in recent years, GPUs have attracted the attention of 
many application developers as powerful massively parallel 
system. CUDA as a general purpose parallel computing 
architecture make GPUs an appealing choice to solve many 

complex computational problems in a more efficient way. In 
this paper, we discuss implementing optimizing spare matrix
vector multiplication on NVIDIA GPUs using CUDA 
programming model. We outline three optimizations include: 

(1) optimized CSR storage format, (2) optimized threads 
mapping, and (3) avoiding divergence judgment. We 
experimentally evaluate our optimizations on GeForce 9600 
GTX, connect to Windows xp 64-bit system. In comparison 
with NVIDIA's SpMV library and NVIDIA's CUDDPA 

library, the results show that optimizing sparse matrix-vector 
multiplication on CUDA achieves better performance than 
other SpMV implementations. 

Keywords- GPUs, CUDA, SpMV, NVIDIA's SpMV library, 
NVIDIA's CUDDPA library 

I. INTRODUCTION 

With the high demand market for realtime, high
defmition 3D graphics, Graphics Processing Units (GPUs) 
has evolved into a highly parallel, multithreaded, manycore 
processor with enormous computational horsepower and 
very high memory bandwidth. These advances in GPUs 
open a new epoch of GPU computing. The future of 
multicore CPUs and manycore GPUs means that mainstream 
processor chips are now parallel systems. Currently, the use 
of GPUs for general purpose applications has exceptionally 
increased in the last few years thanks to the availability of 
Application Programming Interface (APIs). CUDA's parallel 
programming model is designed to overcome the challenge 
that developing application software that transparently scales 
its parallelism to leverage the increasing number of processor 
cores and to solve many complex paralleled problems. 

It is proved that sparse matrix-vector multiplication 
(SpMV) to be of particular importance in computational 
science and practical engineering projects [6]. The SpMV 
method is that computing a vector y as a result of 
multiplying a sparse matrix A by vector x (y=Ax). Several 
implementations of SpMV have been developed with CUDA 
and evaluated on NVIDIA's GPU. In SpMV method 
calculations involving far more memory accesses per 
floating point operation, because of irregular and indirect 
memory accesses. So the optimization of the sparse matrix-

m 

vector product is a challenge for improving performance 
linear systems, partial differential equations form a wide 
spectrum of scientific and engineering disciplines. Therefore, 
many efforts must be spent to accelerate the computation of 
SpMV. 

The aim of this approach is to optimize sparse-vector 
multiplication on a modem GPU, specifically, on the 
NVIDIA GeForce 9600 GT using the CUDA parallel 
programming model. Many former related works covers a 
variety of formats including Diagonal Formats (DIA), 
ELLPACK Formats (ELL), Coordinate Format (COO), 
Compressed Sparse Row Format (CSR), Hybrid Format 
(HYB), and Packet Format (PKT) to store the sparse matrix 
in order to explore the best possible use of the GPU for a 
variety of algorithmic parameters. Among of these formats, 
CSR is the most common sparse matrix storage format. Our 
work is based on the CSR format. In this paper, at the first, 
we evaluated a naive non-optimized implementation of the 
SpMV on NVIDIA GPU architecture. We found that thread 
mapping and data access strategies are the most important 
keys improving the performance on SpMV kernel on CUDA. 
We take account of these problems and propose three 
optimizations to improve performance of SpMV kernel: 

(1) optimized CSR storage Format. (2) Optimized threads 
mapping, (3) avoiding divergence judgment. We compare 
our approach against two existing SpMV CUDA 
implementations, namely, NVIDIA's CUDDPA library [3], 
and NVIDIA's SpMV library [2]. 

In section 2, we compare the former related work. 
NVIDIA GPU architecture and CUDA programming model 
are presented in section3. In section4, the optimizations and 
implementation of our approach is discussed in detail. 
Experimental results are presented in section 5. Finally, we 
give the conclusions and future work in section 6. 

II. RELATED WORK 

There has been significant amount of work on optimizing 
sparse matrix computations (SpMV). Most of works have 
concentrated on optimizing sparse matrix kernel on general
purpose architectures [8]. 

In [1], Vuduc have discussed descriptions of many 
storage formats and supported experimental data on CPUs to 
optimizing SpMV for CPUs. SpMV implementations on 
CPU can only achieve several percent of CPU's peak 
performance but have pressure on memory access and data 
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reuse. In [2], Nathan Bell and Michael Garland provide data 
structures and algorithms for SpMV that are efficiently 
implemented on CUDA platform for the fine-grained parallel 
architecture of the GPU. They emphasize memory 
bandwidth efficiency and compact storage formats when 
given the memory-bound nature of SpMV. 

Recently, implementing blocked sparse matrix-vector 
multiplication for NVIDAI GPUs is investigated [3]. If 
values or locations of non-zero elements can be efficiently 
computed, a specialized implementation will likely 
demonstrate better performance. In [4], the author describes 
a new hybrid storage format and present experimental results 
aim to reduce the memory bandwidth required to read 
coordinates of non-zero elements, by using blocked storage 
format. 

In [7], with indirect and irregular memory accesses 
resulting in more memory access per floating point operation, 
the author proposed optimizations to effectively develop a 
high-performance SpMV kernel on NVIDIA GPUs: 
exploiting synchronization-free parallelism, optimized thread 
mapping based on the affmity towards optimal memory 
access pattern, optimized off-chip memory access to tolerate 
the high access latency, and exploiting data reuse . 

Due to thread mapping and data access strategies are the 
important keys, our work is based on CSR formats and will 
try to take account of these problems and propose three 
optimizations. These features can help to enhance the 
performance on SpMV kernel on CUDA. 

III. PARALLEL PROGRAMMING WITH CUDA 

A. Parallel Programming with CUDA 

CUDA programming model regard CPU as host and 
GPU as co-processor or device. In this model, CPU and GPU 
work together and carry out their own duties. CUDA parallel 
computing function running on GPU is called kernel. Kernel 
function is not a complete program but one step can be 
executed in parallel in a whole CUDA program. The CUDA 
kernel is executed on a set of threads. The threads are 
organized into groups called thread blocks. One or more than 
one blocks consist of a grid. There are two parallel levels in a 
kernel function. That is to say blocks in a grid paralleling and 
threads in a block paralleling. Each thread in a thread block 
is solely identified by its thread id (threadIdx) within its 
block and each thread block is solely identified by its block 
id (blockIdx). 

Every thread has its own memory, register, and local 
memory. Every thread also has a shared memory. All threads 
in a grid can access the same piece of global memory. In 
addition, there are two kinds of only read memory can be 
accessed by all threads: constant memory and texture 
memory. They are optimized for different applications. 
Register is on-chip high-speed memory, execution units can 
access register in a very low latency. Daters in local memory 
are existed in graphic memory not in on-chip registers or 
memory. So it is slow to access local memory. The global 
memory is a large memory and has a very high latency. The 
shared memory also is on-chip high-speed memory and is 
organized into banks. When multiple addresses belonging to 

the same bank are accessed at the same time, it results in 
bank conflict. Constant memory is read-only address space. 
It is favorable when multiple processor cores load the same 
value from the cache because it has only a single port. 
Texture cache has higher latency but it has a better accelerate 
ratio for accessing large amounts of data and non-aligned 
accessing. 

CUDA used SIMT (Single Instruction, Multiple Thread) 
execution model. To manage large populations of threads 
efficiently, block can be divided smaller warp which the 
threads of a block are executed in groups of 32. A warp 
executes a single instruction at a time across all its threads. 

B. Problem Proposed 

To develop codes for GPUs with CUDA, the 
programmer has to think about two GPU architectural 
characteristics: thread mapping and management of the 
memory hierarchy. 

The size of every thread block is defmed by the 
programmer. When all threads of the same warp execute the 
same instruction sequence, the maximum instruction 
throughput is got. If any flow control instruction can cause 
the threads of the same warp to diverge, the different 
executions paths have to be serialized, so the performance in 
a sharp decline. In sparse matrix vector multiplication kernel, 
if all executed rows in sparse matrix can not fill with all 
thread blocks, it can increase the branch of SpMV kernel 
function determine and reduce the computing performance 
[11]. 

Another key to take advantage of GPUs is related to 
memory management. Figure I illustrate the different kinds 
of memory available on GPUs with different access times 
and sizes that constitute a memory hierarchy [9, 10]. The off
chip memory latency needs to be efficiently to hidden to 
fully exploit the massive computing resources of the GPUs. 
Matrix vector multiplication is a memory-bound application 
kernel because each element in matrix is brought from 
memory is used only once in the computation. More than 
two memory operations for accessing a single non-zero 
matrix element are heavily memory-bound in sparse matrix 
vector (SpMV) [5]. As a result of GPUs have different kinds 
of memory with different access times, it is important to 
optimized thread mapping to ensure optimized memory 
access. At the same time, devising appropriate formats to 
store the sparse matrix have to be taken into account for the 
parallel computation and the memory accesses are tightly 
related to the storage format of the sparse matrix. 

To sum up, in order to fully use GPUs parallel 
advantages, we have to consider two main goals: (1) to 
balance the computation of the set of threads (2) optimized 
memory-bound applications. Section 4 will discuss optimize 
SpMV computations on CUDA in detail. 

IV. IMPLEMENTATION OF THE OPTIMIZATIONS 

Sparse matrix has several storage formats such as DIA, 
ELL, COO, CSR, HYB, PKT and so on. These storage 
formats are described detailed in [1]. In [1], the author 
proposed two CSR SpMV kernels for the CSR sparse matrix 
format: scalar SpMV kernel, vector SpMV kernel. Scalar 
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SpMV kernel is a straightforward CUDA implementation 
with using one thread per matrix row. Its performance suffers 

I Registers (R/W) 16k 32bit I 
1-2 cycles 

I Shared Memory (R/W) 16Kb I I Texture cache (R) 8Kb I 

I Constant cache (R) 8Kb I 
400-600 cycles 

I Global Memory (R/W) 521MB-1.5GB I 

I 
I PCI bus 

latency 

Host Memory I 
Figure l. Different access times and sizes of GPU Memories 

drawbacks like column indices and nonzero values for a row 
are stored contiguously but not accessed simultaneously. 
Vector SpMV kernel improve on scalar SpMV kernel 
drawbacks which using one warp per matrix row. The vector 
kernel accesses indices and data contiguously and therefore 
overcomes the principal deficiency of the scalar approach. 

In the paper, we base our approach on the vector SpMV 
kernel for CSR sparse matrix and discuss optimization to 
adapt CSR storage format to suit the GPU architecture. 
Figure 2 illustrate vector SpMV kernel for CSR sparse kernel. 

A. Optimized CSR storage format 

Sparse matrix's storage and computation can be carried 
out only for non-zero elements, and now the more popular 
storage format is CSR format. CSR format is a line of 
compressed format which alter storing two-dimensional 
array of sparse matrix into three one-dimensional arrays. 
There are three arrays stored in COO compressed format: 
row, col, and element. Row array stores row indices of non
zero elements of each line. Column indices of non-zero 
elements are deposited in col array and element array stores 
the value of non-zero elements. CSR compressed format 
improve on COO compressed format and still storage col 
array and element array. The important improvement is that a 
third array of row pointers, ptr, takes the CSR representation. 
For an M-by-N matrix, ptr stores the offset the i-th row in 
ptr[i]. The last entry in ptr stores all non-zero numbers of 
elements in sparse matrix. So the numbers of ptr array have 
one more than these of row array. CSR compressed format 
illustrated in figure3. 

In the CSR compressed format, col array stores column 
indices of non-zero elements of each row, in this paper we 
modify CSR compressed format make col array store the 
vector value corresponding to the non-zero element 
mUltiplying with. The advantage to make modify is that the 
vector value do not need to copy from the CPU to GPU and 
reduce the transmit time between CPU and GPU. At the 

same time it also reduces kernel accessing the global 
memory. Global memory can provide high bandwidth but 
also has a higher accessing latency. The modified method 
reduces the higher accessing latency in global memory and 
improves computing time of sparse matrix-vector 
multiplication. The optimized CSR storage format is 
described in figure4. We resume the vector is [1, 2, 3,4]. 

�Iobal_ void 
Spmv _ csr _ vecot_ kernel( const int nun JOws, 

const int * ptr, 
const int * indices, 
const float * data, 
const float *x, 

float *y ) 

_sharred_ float vals[]; 
int thread_id = blockDim.x * blockIdx.x + threadIdx.x; 
int warpJd = thread_id /32; 
int lane = thread Jd &(32-1); 

int row = warp Jd; 
if (row < num_row) 
{ 

int row_start = ptr[row]; 
int row_end = ptr[row+I]; 

vals[threadIdx.x] = 0; 
for (int.ij=row_star +lane;.ij<row_end;.ij +=32) 
vals[threadIdx.x] += data[jj] * x[indices[jjll; 

if (lane < 16) vals[threadIdx.x] += vals[threadIdx.x +16]; 
if (lane < 8) vals[threadIdx.x] += vals[threadIdx.x +8]; 
if (lane < 4) vals[threadIdx.x] += vals[threadIdx.x +4]; 
if (lane < 2) vals[threadIdx.x] += vals[threadIdx.x +2]; 
if (lane < 1) vals[threadIdx.x] += vals[threadIdx.x +1]; 

if (lane =0) 
y[row] += vals[threadIdx.x]; 

Figure 2. Vector SpMV kernel for the CSR sparse matrix 

[lll !l 
ptr = [0, 2, 4, 7, 9] 
col = [0, 1 , 1 , 2, 0, 2, 3, 1 , 3] 
element = [2, 5, 3, 9, 7, 4, 6, 4, 8] 

Figure 3. CSR storage format representation of A 

ptr = [0, 2, 4, 7, 9] 
col = [1 , 2, 2, 3, 1, 3, 4, 2, 4] 
element = [2, 5, 3, 9, 7, 4, 6, 4, 8] 

Figure 4. Optimized CSR storage format representation of A 

B. Optimized threads mapping 

A straightforward CUDA implementation uses one 
thread per matrix row. Its performance suffers from several 
drawbacks. The most significant among these problems is 
the manner in which threads within a warp access the CSR 
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indices and data arrays. While the column indices and non
zero values for a given row are stored contiguously in the 
CSR data structure, these values are not accessed 
simultaneously. Instead, each thread reads the elements of its 
row sequentially. Vector kernel assigns one warp to each 
matrix row. The CSR vector kernel requires coordination 
among threads within the same warp. The vector kernel 
accesses indices and data contiguously and therefore 
overcomes the principal deficiency of the scalar approach. 
The given kernel function in the paper [1] using the natural 
synchronization of each warp take the computing method of 
each warp deal with daters in a row. A warp consists of 32 
warps. That is to say those using 32 threads compute daters 
in a line. It can improve computing performance. However, 
in practical application process, we fmd that the 
characteristic of sparse vector in reality is the numbers of 
row is big but non-zero elements of each row are very small. 
In general, the numbers is usually smaller than 32. If we use 
the method using 32 threads to deal with elements in a row, 
you will surprise that many threads in 32 threads of a warp 
are running validly. In this situation, it waster thread 
resources and reduce computing time. Our approach is to 
calculate the average number of non-zero elements each row 
in sparse matrix. If the numbers of non-zero elements each 
row in sparse matrix are greater than 32, we will set 
num _thread to 32. Otherwise set num _thread to slightly 
more than an average number of non-zero elements in each 
row. The average number is best stetted to a multiple of 2, 
because many operations in CUDA are all executed by 16 
threads a group. 16 is a magic number in CUDA, especially 
half-warp is more important than a warp when optimizing 
instruction stream and memory. 

C. Avoiding divergence judgment 

CUDA uses SIMT ( single instruction multiple 
thread ) execution model. If we need to control the behavior 
of a single thread, we have to use the divergence but reduce 
efficiency greatly. Threads in the same block start in the 
same instruction address and are implemented in different 
branches. But in fact, executing instructions of all threads in 
a warp are the same due to all SP (Stream Processor) in a 
same SM (Stream Multiprocessor) using the same access 
instruction and firing instruction units. The performance of 
divergence is greatly weakened. For example, when threads 
of a warp all jump into the same branch, the actual execution 
time is the implementation time of this branch. If all threads 
of a warp jump into other different branches, the spent time 
will be the sum of the implementation time of each branch. 
In SpMV real operation, a block can deal with several rows 
of sparse matrix. We assume that there are 512 threads in a 
block, if the sparse matrix rows divide the number of rows 
calculating in a block is no equal to an integer; it means that 
all managing rows in sparse matrix can not be filled with all 
blocks. Our approach is zeros are padded to fill with the last 
block and ensure that the all blocks in a grid full of threads. 
So the method can reduce the check of implementing kernel 
function divergence and improve computing efficiency 

V. EXPERIMENT RESULT 

A. Test platform 

We experimentally evaluated our system using NVIDIA 
GeForce 9600 GT, connected to Windows xp 64-bit system. 
The development environment is VS2005 IDE. The CUDA 
kernels were complied using NVIDIA CUDA Complier 
(nvcc) to generate the device code that was then launched 
from the GPu. The host programs were complied using the 
C language. We used CUDA used version 2.1 for our 
experiment. The architectural configurations are presented in 
Table I. 

TABLE I. TEST PLATFORM SPECIFICATIONS 

GPU NVIDIA GeForce 966 GT 

CPU Intel (R) Core (TM) 920 

OS Windows xp 64 bit 

CUDA CUDA 2.1 Beta 

IDE Microsoft visual studio 2005 

DRAM 6GB 

We use 3 sparse matrices from the sparse collection 
described in [12]. The selected sparse matrices represent a 
wide variety of real applications including modeling, 
structural engineering and linear programming. Every matrix 
has properties of number of rows, columns, and elements of 
matrix. The properties of 6 matrices are showed in Table II . 

TABLE II. 3 SPARSE MATRICES 

Matrix Rows columns Nonzeros 

m1 3200 3200 18800 

m2 93280 93280 652247 

m3 659033 659033 5959282 

B. Performance evaluation 

1) Compare our approach with NVIDIA 's SpMV library: 
We first compare the performance of our implementation 
with that of NVIDIA's SpMV library. As discussed earlier, 
figures refer to the optimizations such as avoided determine, 
optimized CSR storage format and thread mapping show 
that our optimizations out-perform the NVIDIA's SpMV 
library. NVIDIA's SpMV library shows that a naIve attempt 
to parallelize CSR SpMV using one warp to each matrix 
row. But it have a major setback that when a matrix with 
highly variable number of non-zero per row, it is likely that 
many threads with a warp will remain idle while the thread 
with longest row continues iterating. In our approach we 
assign dynamic threads size to each matrix row to save 
computing resources. So the GPU kernel time in our 
approach is less than that in NVIDIA's SpMV library. We 
also modify CSR compressed format and reduce the 
transmit time between host and device. The results showed 
in TableIII allow us to highlight the following major points: 
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a) The performance obtained by our implementation and 
NVIDIA's SpMV library increases with the number of non
zero entries in the matrix. 
b) With the increase number of non-zero entries in the 
matrix, the speedup of optimizing sparse matrix is faster 
than that of NVIDIA's SpMV library. 

2) Compare our approach with NVIDIA's CUDPP 
library: NVIDIA has released a library called CUDDP for 
data-parallel algorithm primitives, which has an 
implementation for SpMV for NVIDIA GPUs. The CUDPP 
implementation has inefficient global memory accesses, 
shared memory accesses with bank conflicts in some stages 
of their algorithm, and higher synchronization across threads, 
leading to poor over-all performance. Table N shows that 
both GPU-KERNEL time and GPU-HostToDevice Memory 
Copy Time are less than those in NVIDIA's CUDPP library 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we propose optimizations of sparse matrix
vector multiplication on NVIDIA GPUs using CUDA 
programming model. First we analyze the various challenges 
in extracting high-performance from a prominent memory 
bound kernel. Then, we develop three optimizations that take 
into account both the application and the architectural 
characteristics. Finally, we evaluate our approach compare 
with NVIDIA's SpMV library and NVIDIA's CUDDP 
library and obtain significant performance improvements 
over exiting parallel SpMV implementation. In the future, we 
plan to consider how matrix reordering can be used to reduce 
cache misses on GPU hardware and built a runtime 
sophisticated inspection to exploit data reuse and optimize 
memory access. 
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TABLE III. COMPARE OUR APPROACH WITH NVIDIA's SpMV LIBRARY 

Problem 
scale 

Optimization 
approach 

NVIDIA's 
SpMV 
library 

Problem 
scale 

Optimization 
approach 

NVIDIA's 
CUDPP 
library 

element 18880 93280 
row 3200 93280 

column 3200 652247 

GPU-kernel time 0.026145 0.140452 

GPU-HostToDevice time 0.052019 0.355491 
GPU-total time 0.078764 0.495943 

GPU-kernel time 0.027415 0.169951 
GPU-HostToDevice time 0.055580 0.339890 

GPU-total time 0.082998 0.509841 

TABLE IV. COMPARE OUR APPROACH WITH NVIDIA'S CUDPP LIBRARY 

element 18880 93280 
row 3200 93280 

column 3200 652247 
GPU-kernel time 0.026145 0.140452 

GPU-HostToDevice time 0.052019 0.355491 
GPU-total time 0.078764 0.495943 

GPU-kernel time 0.028475 0.199741 
GPU-HostToDevice time 0.056956 0.400109 

GPU-total time 0.085431 0.599850 
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5959282 
659033 
659033 

0.723514 

1.376797 
2.120311 
0.814531 
1.419073 
2.233604 

5959282 
659033 
659033 

0.723514 
1.376797 
2.120311 
0.789324 
1.578661 
2.367985 
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