
2010 2nd International Conforence on Education Technology and Computer (ICETC)

Optimizing Sparse Matrix-Vector Multiplication on eUDA

Zhuowei Wang Xianbin Xu WuqingZhao Yuping Zhang Shuibing He
school of computer school of computer school of computer school of computer school of computer

wuhan university wuhan university wuhan university wuhan university wuhan university
Wuhan, China Wuhan, China Wuhan, China Wuhan, China Wuhan, China

wangzhuowei071 0@1 xbxu@whu.edu.cn whuzhwq@163.com yuping.whu@gmail.co hesbingxq@163.com
63.com

Abstract-in recent years, GPUs have attracted the attention of
many application developers as powerful massively parallel
system. CUDA as a general purpose parallel computing
architecture make GPUs an appealing choice to solve many

complex computational problems in a more efficient way. In
this paper, we discuss implementing optimizing spare matrix
vector multiplication on NVIDIA GPUs using CUDA
programming model. We outline three optimizations include:

(1) optimized CSR storage format, (2) optimized threads
mapping, and (3) avoiding divergence judgment. We
experimentally evaluate our optimizations on GeForce 9600
GTX, connect to Windows xp 64-bit system. In comparison
with NVIDIA's SpMV library and NVIDIA's CUDDPA

library, the results show that optimizing sparse matrix-vector
multiplication on CUDA achieves better performance than
other SpMV implementations.

Keywords- GPUs, CUDA, SpMV, NVIDIA's SpMV library,
NVIDIA's CUDDPA library

I. INTRODUCTION

With the high demand market for realtime, high
defmition 3D graphics, Graphics Processing Units (GPUs)
has evolved into a highly parallel, multithreaded, manycore
processor with enormous computational horsepower and
very high memory bandwidth. These advances in GPUs
open a new epoch of GPU computing. The future of
multicore CPUs and manycore GPUs means that mainstream
processor chips are now parallel systems. Currently, the use
of GPUs for general purpose applications has exceptionally
increased in the last few years thanks to the availability of
Application Programming Interface (APIs). CUDA's parallel
programming model is designed to overcome the challenge
that developing application software that transparently scales
its parallelism to leverage the increasing number of processor
cores and to solve many complex paralleled problems.

It is proved that sparse matrix-vector multiplication
(SpMV) to be of particular importance in computational
science and practical engineering projects [6]. The SpMV
method is that computing a vector y as a result of
multiplying a sparse matrix A by vector x (y=Ax). Several
implementations of SpMV have been developed with CUDA
and evaluated on NVIDIA's GPU. In SpMV method
calculations involving far more memory accesses per
floating point operation, because of irregular and indirect
memory accesses. So the optimization of the sparse matrix-

m

vector product is a challenge for improving performance
linear systems, partial differential equations form a wide
spectrum of scientific and engineering disciplines. Therefore,
many efforts must be spent to accelerate the computation of
SpMV.

The aim of this approach is to optimize sparse-vector
multiplication on a modem GPU, specifically, on the
NVIDIA GeForce 9600 GT using the CUDA parallel
programming model. Many former related works covers a
variety of formats including Diagonal Formats (DIA),
ELLPACK Formats (ELL), Coordinate Format (COO),
Compressed Sparse Row Format (CSR), Hybrid Format
(HYB), and Packet Format (PKT) to store the sparse matrix
in order to explore the best possible use of the GPU for a
variety of algorithmic parameters. Among of these formats,
CSR is the most common sparse matrix storage format. Our
work is based on the CSR format. In this paper, at the first,
we evaluated a naive non-optimized implementation of the
SpMV on NVIDIA GPU architecture. We found that thread
mapping and data access strategies are the most important
keys improving the performance on SpMV kernel on CUDA.
We take account of these problems and propose three
optimizations to improve performance of SpMV kernel:

(1) optimized CSR storage Format. (2) Optimized threads
mapping, (3) avoiding divergence judgment. We compare
our approach against two existing SpMV CUDA
implementations, namely, NVIDIA's CUDDPA library [3],
and NVIDIA's SpMV library [2].

In section 2, we compare the former related work.
NVIDIA GPU architecture and CUDA programming model
are presented in section3. In section4, the optimizations and
implementation of our approach is discussed in detail.
Experimental results are presented in section 5. Finally, we
give the conclusions and future work in section 6.

II. RELATED WORK

There has been significant amount of work on optimizing
sparse matrix computations (SpMV). Most of works have
concentrated on optimizing sparse matrix kernel on general
purpose architectures [8].

In [1], Vuduc have discussed descriptions of many
storage formats and supported experimental data on CPUs to
optimizing SpMV for CPUs. SpMV implementations on
CPU can only achieve several percent of CPU's peak
performance but have pressure on memory access and data

978-1-4244-6370-11$26.00 © 2010 IEEE V4-109

Authorized licensed use limited to: Zhejiang University. Downloaded on May 11,2023 at 11:31:21 UTC from IEEE Xplore. Restrictions apply.

2010 2nd International Conference on Education Technology and Computer (ICETC)

reuse. In [2], Nathan Bell and Michael Garland provide data
structures and algorithms for SpMV that are efficiently
implemented on CUDA platform for the fine-grained parallel
architecture of the GPU. They emphasize memory
bandwidth efficiency and compact storage formats when
given the memory-bound nature of SpMV.

Recently, implementing blocked sparse matrix-vector
multiplication for NVIDAI GPUs is investigated [3]. If
values or locations of non-zero elements can be efficiently
computed, a specialized implementation will likely
demonstrate better performance. In [4], the author describes
a new hybrid storage format and present experimental results
aim to reduce the memory bandwidth required to read
coordinates of non-zero elements, by using blocked storage
format.

In [7], with indirect and irregular memory accesses
resulting in more memory access per floating point operation,
the author proposed optimizations to effectively develop a
high-performance SpMV kernel on NVIDIA GPUs:
exploiting synchronization-free parallelism, optimized thread
mapping based on the affmity towards optimal memory
access pattern, optimized off-chip memory access to tolerate
the high access latency, and exploiting data reuse .

Due to thread mapping and data access strategies are the
important keys, our work is based on CSR formats and will
try to take account of these problems and propose three
optimizations. These features can help to enhance the
performance on SpMV kernel on CUDA.

III. PARALLEL PROGRAMMING WITH CUDA

A. Parallel Programming with CUDA

CUDA programming model regard CPU as host and
GPU as co-processor or device. In this model, CPU and GPU
work together and carry out their own duties. CUDA parallel
computing function running on GPU is called kernel. Kernel
function is not a complete program but one step can be
executed in parallel in a whole CUDA program. The CUDA
kernel is executed on a set of threads. The threads are
organized into groups called thread blocks. One or more than
one blocks consist of a grid. There are two parallel levels in a
kernel function. That is to say blocks in a grid paralleling and
threads in a block paralleling. Each thread in a thread block
is solely identified by its thread id (threadIdx) within its
block and each thread block is solely identified by its block
id (blockIdx).

Every thread has its own memory, register, and local
memory. Every thread also has a shared memory. All threads
in a grid can access the same piece of global memory. In
addition, there are two kinds of only read memory can be
accessed by all threads: constant memory and texture
memory. They are optimized for different applications.
Register is on-chip high-speed memory, execution units can
access register in a very low latency. Daters in local memory
are existed in graphic memory not in on-chip registers or
memory. So it is slow to access local memory. The global
memory is a large memory and has a very high latency. The
shared memory also is on-chip high-speed memory and is
organized into banks. When multiple addresses belonging to

the same bank are accessed at the same time, it results in
bank conflict. Constant memory is read-only address space.
It is favorable when multiple processor cores load the same
value from the cache because it has only a single port.
Texture cache has higher latency but it has a better accelerate
ratio for accessing large amounts of data and non-aligned
accessing.

CUDA used SIMT (Single Instruction, Multiple Thread)
execution model. To manage large populations of threads
efficiently, block can be divided smaller warp which the
threads of a block are executed in groups of 32. A warp
executes a single instruction at a time across all its threads.

B. Problem Proposed

To develop codes for GPUs with CUDA, the
programmer has to think about two GPU architectural
characteristics: thread mapping and management of the
memory hierarchy.

The size of every thread block is defmed by the
programmer. When all threads of the same warp execute the
same instruction sequence, the maximum instruction
throughput is got. If any flow control instruction can cause
the threads of the same warp to diverge, the different
executions paths have to be serialized, so the performance in
a sharp decline. In sparse matrix vector multiplication kernel,
if all executed rows in sparse matrix can not fill with all
thread blocks, it can increase the branch of SpMV kernel
function determine and reduce the computing performance
[11].

Another key to take advantage of GPUs is related to
memory management. Figure I illustrate the different kinds
of memory available on GPUs with different access times
and sizes that constitute a memory hierarchy [9, 10]. The off
chip memory latency needs to be efficiently to hidden to
fully exploit the massive computing resources of the GPUs.
Matrix vector multiplication is a memory-bound application
kernel because each element in matrix is brought from
memory is used only once in the computation. More than
two memory operations for accessing a single non-zero
matrix element are heavily memory-bound in sparse matrix
vector (SpMV) [5]. As a result of GPUs have different kinds
of memory with different access times, it is important to
optimized thread mapping to ensure optimized memory
access. At the same time, devising appropriate formats to
store the sparse matrix have to be taken into account for the
parallel computation and the memory accesses are tightly
related to the storage format of the sparse matrix.

To sum up, in order to fully use GPUs parallel
advantages, we have to consider two main goals: (1) to
balance the computation of the set of threads (2) optimized
memory-bound applications. Section 4 will discuss optimize
SpMV computations on CUDA in detail.

IV. IMPLEMENTATION OF THE OPTIMIZATIONS

Sparse matrix has several storage formats such as DIA,
ELL, COO, CSR, HYB, PKT and so on. These storage
formats are described detailed in [1]. In [1], the author
proposed two CSR SpMV kernels for the CSR sparse matrix
format: scalar SpMV kernel, vector SpMV kernel. Scalar

V4-110

Authorized licensed use limited to: Zhejiang University. Downloaded on May 11,2023 at 11:31:21 UTC from IEEE Xplore. Restrictions apply.

2010 2nd International Conference on Education Technology and Computer (ICETC)

SpMV kernel is a straightforward CUDA implementation
with using one thread per matrix row. Its performance suffers

I Registers (R/W) 16k 32bit I
1-2 cycles

I Shared Memory (R/W) 16Kb I I Texture cache (R) 8Kb I

I Constant cache (R) 8Kb I
400-600 cycles

I Global Memory (R/W) 521MB-1.5GB I

I
I PCI bus

latency

Host Memory I
Figure l. Different access times and sizes of GPU Memories

drawbacks like column indices and nonzero values for a row
are stored contiguously but not accessed simultaneously.
Vector SpMV kernel improve on scalar SpMV kernel
drawbacks which using one warp per matrix row. The vector
kernel accesses indices and data contiguously and therefore
overcomes the principal deficiency of the scalar approach.

In the paper, we base our approach on the vector SpMV
kernel for CSR sparse matrix and discuss optimization to
adapt CSR storage format to suit the GPU architecture.
Figure 2 illustrate vector SpMV kernel for CSR sparse kernel.

A. Optimized CSR storage format

Sparse matrix's storage and computation can be carried
out only for non-zero elements, and now the more popular
storage format is CSR format. CSR format is a line of
compressed format which alter storing two-dimensional
array of sparse matrix into three one-dimensional arrays.
There are three arrays stored in COO compressed format:
row, col, and element. Row array stores row indices of non
zero elements of each line. Column indices of non-zero
elements are deposited in col array and element array stores
the value of non-zero elements. CSR compressed format
improve on COO compressed format and still storage col
array and element array. The important improvement is that a
third array of row pointers, ptr, takes the CSR representation.
For an M-by-N matrix, ptr stores the offset the i-th row in
ptr[i]. The last entry in ptr stores all non-zero numbers of
elements in sparse matrix. So the numbers of ptr array have
one more than these of row array. CSR compressed format
illustrated in figure3.

In the CSR compressed format, col array stores column
indices of non-zero elements of each row, in this paper we
modify CSR compressed format make col array store the
vector value corresponding to the non-zero element
mUltiplying with. The advantage to make modify is that the
vector value do not need to copy from the CPU to GPU and
reduce the transmit time between CPU and GPU. At the

same time it also reduces kernel accessing the global
memory. Global memory can provide high bandwidth but
also has a higher accessing latency. The modified method
reduces the higher accessing latency in global memory and
improves computing time of sparse matrix-vector
multiplication. The optimized CSR storage format is
described in figure4. We resume the vector is [1, 2, 3,4].

�Iobal_ void
Spmv _ csr _ vecot_ kernel(const int nun JOws,

const int * ptr,
const int * indices,
const float * data,
const float *x,

float *y)

sharred float vals[];
int thread_id = blockDim.x * blockIdx.x + threadIdx.x;
int warpJd = thread_id /32;
int lane = thread Jd &(32-1);

int row = warp Jd;
if (row < num_row)
{

int row_start = ptr[row];
int row_end = ptr[row+I];

vals[threadIdx.x] = 0;
for (int.ij=row_star +lane;.ij<row_end;.ij +=32)
vals[threadIdx.x] += data[jj] * x[indices[jjll;

if (lane < 16) vals[threadIdx.x] += vals[threadIdx.x +16];
if (lane < 8) vals[threadIdx.x] += vals[threadIdx.x +8];
if (lane < 4) vals[threadIdx.x] += vals[threadIdx.x +4];
if (lane < 2) vals[threadIdx.x] += vals[threadIdx.x +2];
if (lane < 1) vals[threadIdx.x] += vals[threadIdx.x +1];

if (lane =0)
y[row] += vals[threadIdx.x];

Figure 2. Vector SpMV kernel for the CSR sparse matrix

[lll !l
ptr = [0, 2, 4, 7, 9]
col = [0, 1 , 1 , 2, 0, 2, 3, 1 , 3]
element = [2, 5, 3, 9, 7, 4, 6, 4, 8]

Figure 3. CSR storage format representation of A

ptr = [0, 2, 4, 7, 9]
col = [1 , 2, 2, 3, 1, 3, 4, 2, 4]
element = [2, 5, 3, 9, 7, 4, 6, 4, 8]

Figure 4. Optimized CSR storage format representation of A

B. Optimized threads mapping

A straightforward CUDA implementation uses one
thread per matrix row. Its performance suffers from several
drawbacks. The most significant among these problems is
the manner in which threads within a warp access the CSR

V4-111

Authorized licensed use limited to: Zhejiang University. Downloaded on May 11,2023 at 11:31:21 UTC from IEEE Xplore. Restrictions apply.

2010 2nd International Conforence on Education Technology and Computer (ICETC)

indices and data arrays. While the column indices and non
zero values for a given row are stored contiguously in the
CSR data structure, these values are not accessed
simultaneously. Instead, each thread reads the elements of its
row sequentially. Vector kernel assigns one warp to each
matrix row. The CSR vector kernel requires coordination
among threads within the same warp. The vector kernel
accesses indices and data contiguously and therefore
overcomes the principal deficiency of the scalar approach.
The given kernel function in the paper [1] using the natural
synchronization of each warp take the computing method of
each warp deal with daters in a row. A warp consists of 32
warps. That is to say those using 32 threads compute daters
in a line. It can improve computing performance. However,
in practical application process, we fmd that the
characteristic of sparse vector in reality is the numbers of
row is big but non-zero elements of each row are very small.
In general, the numbers is usually smaller than 32. If we use
the method using 32 threads to deal with elements in a row,
you will surprise that many threads in 32 threads of a warp
are running validly. In this situation, it waster thread
resources and reduce computing time. Our approach is to
calculate the average number of non-zero elements each row
in sparse matrix. If the numbers of non-zero elements each
row in sparse matrix are greater than 32, we will set
num _thread to 32. Otherwise set num _thread to slightly
more than an average number of non-zero elements in each
row. The average number is best stetted to a multiple of 2,
because many operations in CUDA are all executed by 16
threads a group. 16 is a magic number in CUDA, especially
half-warp is more important than a warp when optimizing
instruction stream and memory.

C. Avoiding divergence judgment

CUDA uses SIMT (single instruction multiple
thread) execution model. If we need to control the behavior
of a single thread, we have to use the divergence but reduce
efficiency greatly. Threads in the same block start in the
same instruction address and are implemented in different
branches. But in fact, executing instructions of all threads in
a warp are the same due to all SP (Stream Processor) in a
same SM (Stream Multiprocessor) using the same access
instruction and firing instruction units. The performance of
divergence is greatly weakened. For example, when threads
of a warp all jump into the same branch, the actual execution
time is the implementation time of this branch. If all threads
of a warp jump into other different branches, the spent time
will be the sum of the implementation time of each branch.
In SpMV real operation, a block can deal with several rows
of sparse matrix. We assume that there are 512 threads in a
block, if the sparse matrix rows divide the number of rows
calculating in a block is no equal to an integer; it means that
all managing rows in sparse matrix can not be filled with all
blocks. Our approach is zeros are padded to fill with the last
block and ensure that the all blocks in a grid full of threads.
So the method can reduce the check of implementing kernel
function divergence and improve computing efficiency

V. EXPERIMENT RESULT

A. Test platform

We experimentally evaluated our system using NVIDIA
GeForce 9600 GT, connected to Windows xp 64-bit system.
The development environment is VS2005 IDE. The CUDA
kernels were complied using NVIDIA CUDA Complier
(nvcc) to generate the device code that was then launched
from the GPu. The host programs were complied using the
C language. We used CUDA used version 2.1 for our
experiment. The architectural configurations are presented in
Table I.

TABLE I. TEST PLATFORM SPECIFICATIONS

GPU NVIDIA GeForce 966 GT

CPU Intel (R) Core (TM) 920

OS Windows xp 64 bit

CUDA CUDA 2.1 Beta

IDE Microsoft visual studio 2005

DRAM 6GB

We use 3 sparse matrices from the sparse collection
described in [12]. The selected sparse matrices represent a
wide variety of real applications including modeling,
structural engineering and linear programming. Every matrix
has properties of number of rows, columns, and elements of
matrix. The properties of 6 matrices are showed in Table II .

TABLE II. 3 SPARSE MATRICES

Matrix Rows columns Nonzeros

m1 3200 3200 18800

m2 93280 93280 652247

m3 659033 659033 5959282

B. Performance evaluation

1) Compare our approach with NVIDIA 's SpMV library:
We first compare the performance of our implementation
with that of NVIDIA's SpMV library. As discussed earlier,
figures refer to the optimizations such as avoided determine,
optimized CSR storage format and thread mapping show
that our optimizations out-perform the NVIDIA's SpMV
library. NVIDIA's SpMV library shows that a naIve attempt
to parallelize CSR SpMV using one warp to each matrix
row. But it have a major setback that when a matrix with
highly variable number of non-zero per row, it is likely that
many threads with a warp will remain idle while the thread
with longest row continues iterating. In our approach we
assign dynamic threads size to each matrix row to save
computing resources. So the GPU kernel time in our
approach is less than that in NVIDIA's SpMV library. We
also modify CSR compressed format and reduce the
transmit time between host and device. The results showed
in TableIII allow us to highlight the following major points:

V4-112

Authorized licensed use limited to: Zhejiang University. Downloaded on May 11,2023 at 11:31:21 UTC from IEEE Xplore. Restrictions apply.

2010 2nd International Conforence on Education Technology and Computer (ICETC)

a) The performance obtained by our implementation and
NVIDIA's SpMV library increases with the number of non
zero entries in the matrix.
b) With the increase number of non-zero entries in the
matrix, the speedup of optimizing sparse matrix is faster
than that of NVIDIA's SpMV library.

2) Compare our approach with NVIDIA's CUDPP
library: NVIDIA has released a library called CUDDP for
data-parallel algorithm primitives, which has an
implementation for SpMV for NVIDIA GPUs. The CUDPP
implementation has inefficient global memory accesses,
shared memory accesses with bank conflicts in some stages
of their algorithm, and higher synchronization across threads,
leading to poor over-all performance. Table N shows that
both GPU-KERNEL time and GPU-HostToDevice Memory
Copy Time are less than those in NVIDIA's CUDPP library

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose optimizations of sparse matrix
vector multiplication on NVIDIA GPUs using CUDA
programming model. First we analyze the various challenges
in extracting high-performance from a prominent memory
bound kernel. Then, we develop three optimizations that take
into account both the application and the architectural
characteristics. Finally, we evaluate our approach compare
with NVIDIA's SpMV library and NVIDIA's CUDDP
library and obtain significant performance improvements
over exiting parallel SpMV implementation. In the future, we
plan to consider how matrix reordering can be used to reduce
cache misses on GPU hardware and built a runtime
sophisticated inspection to exploit data reuse and optimize
memory access.

REFERENCES

[1] Vuduc, RW.: Automatic performance tuning of sparse matrix kernels.
Technical report (2003)

[2] N.Bell and M. Garland. Efficient sparse matrix-vector multiplication
on CUDA. NVIDIA Technical Report NVR-2008-004, NVIDIA
Corporation, Dec. 2008.

[3] CUDDP: CUDA Data Parallel Primitives Library.
http://www.gpgpu.orgldeveloper/cudpp/.

[4] Alexander Monakov and Arutyun Avetisyan. "Implementing Blocked
Sparse Matrix-Vector Multiplication on NVIDIA GPUs", LNCS,
vo1.5657, pp. 289-297. Springer, Heidelberg (2009).

[5] FATAHA1AN K., SUGERMAN J., HANRAHAN P.: Understanding
the efficiency of GPU algorithms for matrix-matrix multiplications. In
Graphics Hardware 2004 (Aug. 2004), pp. 133-138.

[6] F Vazquez, E M. Garzon, J. A. Martinez, J J. Fernandex, The sparse
matrix vector produce on GPUs, Computer Architecture and
Electronics Dep., University of Alimeria, Jun 2009.

[7] M.M. BASKARAN, R BORDA WEKAR. Optimizing Sparse Matrix
Vector Multiplication on GPUs. IBM Research Reprot RC24704.
April 2009.

[8] Aart J. C. Bik and Harry A. G. Wijshoff. Automatic data structure
selection and transformation for sparse matrix computations. IEEE
Transactions on Parallel and Distributed Systems, 7(2): 109-126,
February 1996.

[9] DOTSENKO, Y., GOVINDARAJU, N. K., SLOAN, P.-P.,BOYD, C.
AND MANFERDELLI, J. 2008. Fast scan algorithms on graphics
processors. In ICS'08: Proceedings of the 22nd annual international
conference on Supercomputing, ACM, New York, NY, USA, 205-
213.

[10] Buatois, L., Caumon, G., Levy, B.: Concurrent number cruncher: An
efficient sparse linear solver on the GPU. In: Perrott, R, Chapman,
B.M., Subhlok, J., de Mello, R.F., Yang, L.T. (eds.) HPCC 2007.
LNCS, vol. 4782, pp. 358-371. Springer, Heidelberg (2007).

[11] S. Williams, L. Oliker, R Vuduc, J. Shalf, K. Yelick, and J. Demmel.
Optimization of sparse matrix-vector multiplication on emerging
multicore platforms. In SC '07: Proceedings of the 2007 ACMIIEEE
conference on Supercomputing, pages 1-12, 2007.

[12] http://www.cise.urf.edulresearch/sparse/matrices/

TABLE III. COMPARE OUR APPROACH WITH NVIDIA's SpMV LIBRARY

Problem
scale

Optimization
approach

NVIDIA's
SpMV
library

Problem
scale

Optimization
approach

NVIDIA's
CUDPP
library

element 18880 93280
row 3200 93280

column 3200 652247

GPU-kernel time 0.026145 0.140452

GPU-HostToDevice time 0.052019 0.355491
GPU-total time 0.078764 0.495943

GPU-kernel time 0.027415 0.169951
GPU-HostToDevice time 0.055580 0.339890

GPU-total time 0.082998 0.509841

TABLE IV. COMPARE OUR APPROACH WITH NVIDIA'S CUDPP LIBRARY

element 18880 93280
row 3200 93280

column 3200 652247
GPU-kernel time 0.026145 0.140452

GPU-HostToDevice time 0.052019 0.355491
GPU-total time 0.078764 0.495943

GPU-kernel time 0.028475 0.199741
GPU-HostToDevice time 0.056956 0.400109

GPU-total time 0.085431 0.599850

V4-113

5959282
659033
659033

0.723514

1.376797
2.120311
0.814531
1.419073
2.233604

5959282
659033
659033

0.723514
1.376797
2.120311
0.789324
1.578661
2.367985

Authorized licensed use limited to: Zhejiang University. Downloaded on May 11,2023 at 11:31:21 UTC from IEEE Xplore. Restrictions apply.

