
On MinMax-Memory Claims for Scientific

Workflows in the In-Memory Cloud Computing

Yang Wang†, Chengzhong Xu†§, Shuibing He‡, and Xian-He Sun¶

†Shenzhen Institute of Advanced Technology, Chinese Academy of Science, China
‡School of Computer, Wuhan University, China

§Department of Electrical and Computer Engineering, Wayne State University, USA
¶Department of Computer Science, Illinois Institute of Technology, USA

{yang.wang1,cz.xu}@siat.ac.cn, heshuibing@whu.edu.cn, sun@iit.edu

Abstract—We propose a new concept of minmax memory claim
(MMC) to achieve cost-effective workflow computations in in-
memory cloud computing environments. The minmax-memory
claim is defined as the minimum amount of memory required
to finish the workflow without compromising its maximum con-
currency. With MMC, the workflow tenants can achieve the best
performance via the maximum concurrency while minimizing
the cost to use the memory resources. In this paper, we present
the algorithms to find the MMC for workflow computation
and evaluate its value by applying it to deadlock avoidance
algorithms.

I. INTRODUCTION

A scientific workflow generally consists of a set of data-

dependent tasks, forming a weighted directed acyclic graph

(DAG), also called workflow graph, to carry out a complex

computational process. The nodes in the workflow graph

represent tasks (e.g., executable or a script) that accomplish

a certain amount of work in the workload, and edges denote

the data channels used to transfer data volume from source

node to target node. In a cloud-based workflow computation,

the data channels are typically implemented via an external

provisioned storage system (e.g., a file system), which could

incur substantial disk I/O overhead that can dominate the

execution times.

To address this issue, in-memory caching utility in the cloud

provides an effective way, which aggregates massive memory

resources across a dedicated cluster of servers to support all

the data managements via a middleware software [1], [2]. With

in-memory caching, the workflow computation could transfer

data between tasks via fast, managed, in-memory caches,

instead of relying entirely on slower disk-based file systems.

Compared with disk read/write operations, this enhancement

could come with potentially several orders of magnitude better

end-to-end latency, and thus substantially improve the overall

performance of the workloads.

However, given the intrinsic complexity of the workflows,

it would be very hard, if not impossible, for the workflow

tenants to make accurate reservations on the resources to be

used. Oversubscription or undersubscription would result in

either unproductive spending or performance degradation.

To address this problem, we propose a concept of Minmax-

Memory Claim (MMC) in this paper for the workflow com-

putation, which is defined as the minimum required memory

resources without compromising the workflow concurrency

(also the performance). The MMC is desirable for cost-

effective computing in the cloud because the amount of

memory provisioned over the MMC claim cannot make any

performance contribution. As such, it is very beneficial to those

who intend to have maximized performance while minimizing

the budget for the provisioned resources in the cloud.

II. ALGORITHMS FOR MINMAX-MEMORY CLAIM

A. Basic Ideas

The basic idea of the proposed algorithms is first to augment

the workflow graph with an edge-node transformation and

compute the Maximum Weighted Concurrent Set (MWCS)

of the augmented workflow graph, then provably show the

MWCS is the MMC of the original workflow graph. Since the

MMC is not a fixed value, rather, it is monotonically decreased

as more tasks in the workflow are finished, the weight of the

MMC can be viewed as the maximum claims of the remaining

tasks in the instance.

B. MinMax Memory Claim

1) Basic Definition: At any time instance t during the

computation, we can classify the nodes in the graph into three

groups:

• Done(t): the nodes that have been completed prior to t.

• Running(t): the nodes in V −Done(t) that are running

concurrently at t

• Blocked(t): the remaining nodes at t, i.e., V − (Done(t)∪
Running(t)).

Accordingly, we can define the amount of memory resources

that held in each set of nodes as follows,

ϕd→r(t) = ∑
vi∈Done(t),v j∈Running(t)

w(ei j) (1)

ϕd→r(t) is the total memory resources that are created by

Done(t) and being used by Running(t) at t

ϕd→b(t) = ∑
vi∈Done(t),v j∈Blocked(t)

w(ei j) (2)

Similarly, ϕd→b(t) is the total memory resources that are

created by Done(t) and will be used by Blocked(t) at t.

ϕr→b(t) = ∑
vi∈Running(t),v j∈Blocked(t)

w(ei j) (3)

2016 IEEE 36th International Conference on Distributed Computing Systems

1063-6927/16 $31.00 © 2016 IEEE

DOI 10.1109/ICDCS.2016.13

731

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:40 UTC from IEEE Xplore. Restrictions apply.

Finally, ϕr→b(t) is the total memory resources that are created

by Running(t) and will be used by Blocked(t) at t. As a

consequence, the Minmax Resource Claim (MMC) at time t is

determined by the maximum of ϕd→r(t)+ϕd→b(t)+ϕr→b(t),
which is also the minimum memory resources to ensure the

maximum concurrency of the workflow. Thus, we define the

MMC of the workflow graph G(V,E) as

MMC(G) = max
t∈[0,l]

{ϕd→r(t)+ϕd→b(t)+ϕr→b(t)} (4)

where l represents the makespan of the workflow instance.

2) Our Solutions: The basic idea of our approach is similar

to the one that finds the MWCS in the workflow graph, but

with an extension to count the weights of those edges that

span across the frontier of the concurrent task set (e.g., ϕd→b)

as well. To this end, we first augment the workflow graph via

an edge-node transformation, and then find its MWCS.

Given a workflow graph G, we define an augmented work-

flow graph Ga with the following edge-node transformations:

• for each node v in the graph, define w(v) = bv;

• for each edge e in the graph, add a dummy node ve on

the edge with a weight defined as w(ve) = w(e), and in

the meanwhile, clear the edge weight (i.e., the augmented

workflow graph is only node weighted).

The essence of this transformation is to convert finding MWCS

with respect to nodes to finding it with respect to edges

by treating each edge as a weighted dummy node in the

augmented graph. With the augmented workflow graph, we

have the following theorem,

Theorem II.1. The weight of the MWCS of the augmented

workflow graph is equal to the MMC of the original workflow

graph, i.e., W (MWCS(Ga)) = MMC(G).

Proof: The proof is straightforward as for the weighted

concurrent set WCS(t) at time instance t in Ga, its occupied

memory resources must belong to some active tasks which

are running concurrently (i.e., ϕd→r(t)+ϕr→b(t)) or certain

memory channels that have been created for later uses (i.e.,

ϕd→b(t)). As such, we have

W (WCS(t))≤ ϕd→r(t)+ϕd→b(t)+ϕr→b(t)

By applying the similar logic, the reverse argument is also

correct, i.e., the size of occupied memory resources by con-

current running tasks and memory channels at t is not greater

than the weight of WCS(t).

Overall, there is one-to-one mapping between the occupied

memory resources of the original workflow graph and the

weight of concurrent set in the augmented graph, i.e.,

W (WCS(t)) = ϕd→r(t)+ϕd→b(t)+ϕr→b(t) (5)

whereby we can conclude the theorem by maximizing both

sides of Eq.(5) in terms of t over the workflow makespan.

The main ingredient of our algorithm is to compute the

MWCS on Ga, which is equivalent to finding the Maximum

Weighted Clique (MWC) in a graph derived from Ga. As such,

0 500 1000 1500 2000 2500 3000
0

1e 05

2e 05

3e 05

4e 05

5e 05

6e 05

M
ak

es
pa

n

DAR
MCB
DDS
Banker’s

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

A
vg

.D
O

C
.

0 500 1000 1500 2000 2500 3000
Memory

0

1e 06

2e 06

M
ak

es
pa

n

0 500 1000 1500 2000 2500 3000
Memory

0

20

40

60

80

A
vg

.D
O

C
.

Fork& oin

Lattice

Fork& oin

Lattice

Fig. 1. Makespan comparison with reference algorithms when the memory
channel sizes are uniformly varied in [1,10], and job times are uniformly
distributed in [500,1000].

it can be solved by some existing algorithms in either optimal

or approximiate ways [3], [4].

III. PERFORMANCE STUDIES

We evaluate the value of MMC by designing a MMC-based

deadlock avoidance algorithm (MCB), which is an extension

of the banker’s algorithm with using MMC as the localized

maximum claims. The MMC algorithm is then compared

with other two deadlock resolution algorithms, DAR[5] and

DDS [6], for two types of often-used workflow workloads,

fork&join and lattice, each being composed of 100 instances.

Figure 1 shows the results of the makespan comparison

where we can observe that for the fork&join, compared with

DAR, MCB can work using much less memory resources,

which even has the same performance behavior with DDS,

while in lattice, MCB, compared with other algorithms, can

tolerate limited memory for the computation at cost of de-

graded performance since its maximum claim for each instance

is much less than that of DAR. These results demonstrate the

performance gains of using the concept of MMC, compared

with the other reference algorithms.

REFERENCES

[1] G. Chockler, G. Laden, and Y. Vigfusson, “Data caching as a cloud
service,” in Proceedings of the 4th International Workshop on Large Scale
Distributed Systems and Middleware, ser. LADIS ’10. New York, NY,
USA: ACM, 2010, pp. 18–21.

[2] ——, “Design and implementation of caching services in the cloud,” IBM
Journal of Research and Development, vol. 55, no. 6, pp. 9:1–9:11, Nov
2011.

[3] D. R. Wood, “An algorithm for finding a maximum clique in a graph,”
Operations Research Letters, vol. 21, no. 5, pp. 211 – 217, 1997.

[4] P. R. Östergárd, “A fast algorithm for the maximum clique problem,”
Discrete Applied Mathematics, vol. 120, no. 13, pp. 197 – 207, 2002,
special Issue devoted to the 6th Twente Workshop on Graphs and
Combinatorial Optimization.

[5] Y. Wang and P. Lu, “Maximizing active storage resources with dead-
lock avoidance in workflow-based computations,” IEEE Transactions on
Computers, vol. 62, no. 11, pp. 2210–2223, 2013.

[6] ——, “DDS: A deadlock detection-based scheduling algorithm for work-
flow computations in HPC systems with storage constraints,” Parallel
Comput., vol. 39, no. 8, pp. 291–305, August 2013.

732

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:40 UTC from IEEE Xplore. Restrictions apply.

