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Abstract—We study the problem of autonomous service mi-
gration in the cloud to satisfy an online sequence of mobile
batch-request demands in a cost-effective way. As the origins
of the mobile accesses frequently change over time, this problem
is particularly important for time-bounded services to achieve

enhanced QoS and cost effectiveness. Moving the service closer to
its client locations not only reduces the service access latency but
also minimizes the network costs for service providers. However,
the migration comes at costs of bulk-data transfer and service
disruption, as a result, increasing the overall service costs. To gain
the benefits of service migration while minimizing the service
costs, we propose an efficient search-based algorithm Dmig
the service migration in an autonomous way. Compared with
existing algorithms, the proposed algorithm is fully distributed,
symmetric, and characterized by the effective use of historical
access information to perform virtual migration that overcomes
the limitation of traditional local search in cost reduction. To
evaluate the algorithm, we compared it with some existing
algorithms, and show that the proposed algorithm exhibits better
performance by adapting to the changes of mobile access patterns
in a cost effective way.

Index Terms—cloud computing; dynamic service migration;
mobile access; dynamic virtual machine placement; virtual mi-
gration

I. INTRODUCTION

Cloud computing for mobile world is becoming a well-

accepted technique that enables a new generation of services

for mobile users. These services are, in general, hard, if not

impossible, to achieve using traditional technologies due to

the intrinsic characteristics of large scale mobile accesses. For

example, the mobile service requests are typically sensitive

to access latency. Moreover, they are always changing with

respect to time and locations of mobile users. As such,

providing network services without considering these factors

may significantly increase access delays and, much worse,

impose a large amount of network traffic which may cause

service disruption and performance degradation. As a result,

traditional technologies, such as those used in the Content Dis-

tribution Network (CDN) to fix the service in a set of carefully

selected locations [1]–[3], are no longer cost-effective.

To mitigate this problem, migrating the service to some

vantage locations in the network that are close to the users

could be an effective way to minimize the access latency

and reduce the network costs for service providers. A typical

example to illustrate the migration benefits is a multi-player

mobile game. The game server may migrate from Site A

at 7:30am to Site B at 9:30am, and finally to Site C at

11:15am (here sites refer to physical machines located in the

same or different data centers), depending on the changing

locations of dominant access loads at different time frames

(from 7:30am to 11:15am). Traditionally, there is no effective

solution available to achieve such benefits, fortunately, by the

virtue of virtualization technologies in the cloud, encapsulating

the service in a set of virtual machines and migrating them on-

demand (aka Live Migration) in the same, or across different,

data centers is a promising way for the service deployment

with the aforementioned benefits.

Although the wide-area live VM migration, including server

memory image and associated data files, remains expensive to

use because of the bandwidth bottleneck, it is still feasible

with some advanced technologies to minimize the migration

overhead [4]–[8]. For example, R. Bradford et al. [4] show

that when combining a block-level solution with pre-copying

and write throttling strategies, an entire running web server,

including its local file system, can be migrated with minimal

disruption – 3 seconds in the LAN and 68 seconds over the

WAN. This impact was further reduced in the later studies

by exploiting different features of the migration [5]–[8]. With

these technologies, several preliminary results have demon-

strated the benefits of the service migration over virtual net-

works and autonomic networks [9], [10]. However, the trade-

off between the benefits and the costs (from the monetary cost

point of view) of service migration in the cloud to facilitate

mobile accesses has not been thoroughly studied. Given the

characteristics and prevalence of cloud computing, this trade-

off is particularly important for cloud service providers (CSPs)

to maximize the profits of their cloud services.

In this paper, we investigate this problem and propose

an autonomous migration algorithm based on local search

techniques (Contribution 1). Compared with some existing

work [9], [10], the proposed algorithm is fully distributed,

symmetric, and characterized by the effective use of historical

access information to conduct virtual migrations that overcome

the limitation of traditional local search in cost reduction

(Contribution 2). We showed that, via simulation studies,

the proposed algorithm exhibits better performance in service
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migration by adapting to the changes of mobile access patterns

in a cost-effective way (Contribution 3).

The remainder of this paper is organized as follows. We

review some related work in Section II, and describe the

service migration problem, together with its algorithm, Dmig,

in Section III. We present the simulation results in Section V,

and conclude the paper in Section VI.

II. RELATED WORK

Service migration has been studied in the context of virtual

networks (VNet) [11], [12] to minimize the service access

latency. Bienkowski et al. [9] presented a randomized online

algorithm to migrate a single server in n-node network in a

centralized way, and advocated the competitive analysis on the

worst case of the algorithm. Their results, together with other

extensions and findings, were later summarized in [13]. Unlike

their research, our work concentrates on the performance of

distributed approaches in cloud environments.

As with in VNet, the service migration is also studied

in autonomic network environments [14] as a self-managing

mechanism to overcome the rapidly growing complexity of

networks. Oikomomou et al [10] proposed a scalable algorithm

for service migration in autonomic networks. By observing

the differential demand traffic on each link between the node

hosting the service and its opposite neighbors, the algorithm

performs a number of local searches to repeatedly find the next

one-hop migration target along the shortest-path tree to the

optimal location.Although this algorithm has certain merits, it

suffers from slow convergence due to the inefficient one-hop

migration. Pantazopoulos et al. [15] overcame this downside

in their centrality-driven migration algorithm, named cDSMA.

However, this algorithm lacks the notion of migration cost in

the cloud.

Although our algorithm for single-server migration is still

based on the local search techniques, it takes into account

both the access and the migration costs while accelerating the

migration process via the developed virtual migrations. On the

other hand, unlike cDSMA, our distributed algorithm, Dmig,

is fully symmetric with a low message complexity of Θ(n).

In contrast to the existing studies which are not directly

conducted in the cloud, Phan et al. [16] propose a framework,

called Green Monster, to leverage dynamic service migration

across the Internet data centers (IDCs) for the energy effi-

ciency. A similar effort is made by Wang et al. [17] who

presents a decentralized approach to virtual machine migration

inside data center for energy saving while maintaining the

quality of service. The difference between our results with

these two is that we focus on the service migration strategies

to minimize the total monetary access cost for CSPs, instead

of developing a new migration mechanism.

A more comprehensive study on virtual machine migration

in the cloud environments in regards of the benefits, chal-

lenges, as well as approaches can be found in a most recent

work [18].

TABLE I: Notation frequently used in model and algorithm

descriptions

Symbol Meaning

n the number of nodes
m the number of batch requests
Cuv transmission cost between node u and v
Cv Cv = {Cuv|∀u ∈ V as a connect point}
βuv migration cost between node u and v
βv βv = {βvu|u ∈ N (v)}
β β = maxu,v∈V {βuv}
β′ β′ = minu,v∈V {βuv}
μ wireless link cost
α migration parameter ≥ 1
σ the given request sequence σ = σ1σ2...σm.
σE the total served sequence in epoch E
σi the ith request σi = ∪j{(aij , σij)}
aij the access point of the jth request in σi

ar the access point of request r
σij the jth request in σi

Li the configuration at time i
N (v) neighbor nodes of node v

by access point a which is recorded in d(.)
φ(r,L) r’s service node determined by φ given

configuration L

III. SERVICE MIGRATION MODEL

We consider an arbitrary n-node network G(V,E) as a

service infrastructure where the provided service is running in

a virtual machine (VM) that could be hosted by any compute

node. The service is accessed by a sequence of batch requests

σ = σ1σ2...σm issued from a set of external machines (i.e.,

mobile terminals). The requests arrive in an online order and

are served in turn by triggering the migration of virtual server.

As a result, the location of the server in the network could

frequently change over time.

Charging Model: A request is routed to the service over

a wireless link first to enter the network via a access point,

and then based on some (overlay) routing algorithm (e.g., the

shortest-path based routing) reaches the service. In this model,

we assume the (wireless) connection cost is μ and the transfer

cost between any pair of nodes u and v is Cuv . According

to the charging model of most current cloud infrastructure

services, both types of the costs can be available from the

infrastructure service providers (ISPs).

Access Cost: In our model, a batch request σi is denoted

by a set σi = ∪jσij where σij is a sub-request of σi sent

to the network through access point aj at time ti. Clearly, to

satisfy σi, each sub-request r ∈ σi will be eventually routed to

the service via the underlying routing function determined by

ISPs. As a consequence, the total access cost of batch request

σi can be simply written as

Costacc(L, σi) = |σi|μ+
∑

r∈σi

Carφ(r,L), (1)

where ar is request r’s nearest access point and φ(r,L) is the

service node of request r determined by the (overlay) routing

function φ(., .) given configuration L. In this definition, |σi|μ
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is the total cost of σi to connect its nearby access points and∑
r∈σi

Carφ(r,L) define the cost for σi to access the service

from the access points along the paths determined by φ(., .).
Note that in this formulation we implicitly assume that the size

of requests is so small that the network bandwidth is never the

bottleneck, rather, the link latency is the issue.

Migration Cost: In contrast to the requests, which are rather

light-weight, the traffic volume of migrating a virtual server

usually cannot be neglected. Unlike the access cost dominated

by the access latency, the migration cost Costmig of a virtual

server depends a great deal upon the server size and the avail-

able bandwidth on the migration path. Therefore, we equip

each node v with a migration cost set βv = {βvu|u ∈ N (v)}
(βvv = 0) to reflect the server migration overhead from v to

a target u, u ∈ N (v) where N (v) is the neighbor set of v.

Migration Goal: Let Li denote the location of the virtual

server at time stage i, then for a sequence of batch requests

σ = σ1σ2...σm, the goal of the service migration is to

determine L1,L2, ...,Lt to minimize the total service cost

defined as

Cost(Li) =Cost(Li−1) +Costacc(Li−1, σi)

+Costmig(Li−1,Li).
(2)

where Cost(L0) = 0.

Note that in this model, we do not consider the workloads

of target hosts as well as their runtime costs for the service

since these factors, although relevant to the service migration

in practice, have no impact on how the model reflects the

problem and how the proposed algorithm works.

IV. AUTONOMOUS MIGRATION

We now describe our autonomous migration algorithm,

called Dmig, for a single server migration. The single-server

case is common in practice and has been studied in different

circumstances [9], [10], [15], [19] as a baseline case. We first

overview Dmig by defining some concepts and data structures,

then introducing the algorithm itself, followed by a running

example and some remarks. The frequently used symbols are

summarized in Table I.

A. Some Concepts and Definitions

Local Knowledge: For the sake of simple presentation, we

assume the following information is available to node v as its

local knowledge: 1) Local Space N (v) which is defined as

node v’s one-hop neighbors; 2) Access Cost Cv={Cuv|∀u ∈
V as a connect point}; and 3) Migration Cost βv={βvu|u ∈
N (v)}. Both Cv and βv are pre-defined and provided by ISPs.

Epoch & Phase: The algorithm operates on a per-epoch

basis along the time-line, which is divided into a sequence

of phases. Each phase (except for the initial one) defines a

migration followed by a period of time, called time stage

within which no migration is triggered to serve a sub-sequence

of requests. As such, a phase is identified by the node hosting

the server, called pivot node denoted by p-node, which is

created at the beginning of the phase. The epoch composed

Ri1

mig mig

acc acc

Ri2

Phase1
Epoch

ti ti1

Phase2 Phase3

acc

ti1 Ri

Fig. 1: The relationships between epoch, phase and time stage

in our algorithm.

of one or multiple phases is delimited at certain time instance

when some properties are held by the neighbors of the p-node

(discussed later). An example of the relationships between

epoch, phase and time stage are shown in Fig. 1 where an

epoch consists of three phases; Phase1 spans across time

stage [ti−1, ti] without migration (the initial phase in epoch),

whereas in Phase2 and Phase3, a migration is followed by a

time stage.

Data Structures: For node v, the algorithm maintains two

main data structures for each node in N (v) on a per-epoch

basis. One is an Access Counter (AC), a scalar used to monitor

and accumulate the access costs in an epoch. The other is

a Profile Recorder (PR), which is a vector indexed by the

request’s access point to record the number of requests from

each access point in the same epoch. During the service, the

algorithm at p-node v progressively accumulates and records

the access costs and the request profiles in AC (i.e., p-counter)

and PR (i.e., p-recorder), respectively.

B. The Algorithm

The essence of the algorithm is to leverage the rent-or-buy

paradigm 1 to determine service migration and take advantage

of a short historical access information to prune the local space

for efficiently finding migration target with a reduced service

cost.

Movement Cost: The movement cost in our design is defined

as the following:

Costmov(v) = α · max
u∈N (v)

{βvu}. (3)

In the design, we select the degree centrality of node as

migration parameter α to control the movement cost since

this degree centrality is often used to measure the quality of

nodes that can host the service. For example, given the same

maximum migration cost, the service located at a hub node

(high-degree node) should be more resilient against migration

than those non-hub nodes. As a side effect, this parameter

can also improve the stableness of the algorithm, which could

prevent the algorithm from making ping-pang movements.

How Algorithm Works: In each epoch the algorithm at p-

node v (called pivot algorithm for short) first leverages the

rent-or-buy paradigm to determine the migration by comparing

the access cost in its p-counter and the computed movement

cost. If the access cost is less than the movement cost, the

1Rent-or-buy paradigm is the name given to a class of problems in which
there is a choice between continuing to pay a repeating cost or paying a
one-time cost which eliminates or reduces the repeating cost.
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p-node will be fixed at v to continually service the incoming

requests until the value is greater than the movement cost.

Otherwise, the pivot algorithm broadcasts its PR (received

from the last pivot) to all its neighbor nodes in N (v). Each

neighbor node will overwrite its own PR, and mimic the

service to the requests in its PR by accumulating the costs

in its AC with its local information. After that, each neighbor

node sends back its AC to node v where the pivot algorithm

compares the value of each neighbor’s AC with that of the p-

counter. Depending on the outcomes, two cases are recognized

to migrate the server, either virtually or physically.

1) Virtual Migration: If there are some neighbors with AC

values less than that of the p-counter, the algorithm at pivot

will randomly selects a migration target from those with the

minimum AC as a new p-node for the next phase, and relay

the p-recorder PR to the new phase. We call such migration

virtual migration since in this case we can repeat the same

algorithm at the new target for the next more preferable

location, rendering the new target to be only a temporary stop

without actually migrating the server.

2) Physical Migration: Otherwise, if all the neighbors of

the virtual p-node have AC values greater than the virtual p-

counter, the algorithm will mark the end of current epoch, and

physically move the server to the current virtual node. Then,

all the data structures will be reset for a new epoch, and the

algorithm will be run from scratch as well. Additionally, when

the value of the (virtual) p-counter of node u is less than its

movement cost Costmov(u), it signifies the completion of a

sequence of virtual phases. At this time, the algorithm will

open up a new physical phase by informing the original p-node

v to physically migrate the server to the new virtual p-node u

in a direct way. Note that in this case, the data structures at u

are not reset.

C. A Working Example of Dmig

A working example of the Dmig algorithm is shown in

Fig. 2 where the current phase is marked by pivot configuration

vi. The algorithm serves σi and then makes a migration

decision. In the example, the algorithm finds the value of

pivot counter (138 after serving a, b and c) is greater than

the movement cost (100), and in the meantime v′i has the

minimum access cost (120) to the requests (abc), which is

less than the pivot counter (138). Then, a virtual migration

is made from vi to v′i, a new virtual phase starts, marked by

vi+1 (i.e., v′i). As the virtual pivot recorder of vi has been

sent to vi+1 (i.e., abc), the same virtual migration process

could be repeated at vi+1 (as 120 > 110) to steer toward the

next virtual target vi+2 with the minimum access cost (100)

from which to the final virtual target vi+3, where this virtual

migration process cannot make any progress due to either the

phase termination or the epoch termination (in our case, it’s

phase termination as 50<66). In this situation, the algorithm

at vi+3 turns the virtual phase into an actual one by directly

migrating the server from vi to vi+3, thereby serving the next

request d (PR=abcd). From this example, one can see that the

Dmig algorithm can adapt to access patterns in a cost-effective

AC

vi1

vi1

vi’vi
Sigmat

vi3

PR abc
138

vik
abc

abc
abc

abc125

110

110

100100

100

100
100

110

110

110

80

80

80

140

50

50

66

66

66

vi3vi2

abc

abc

130

120
abc

abcd

abc

abc
127

Fig. 2: A working example of Dmig. For each node, its AC

and PR are also marked. The algorithm makes three virtual

migrations, and the last one is turned into a physical migration

because of a phase termination.

way by allowing servers to be directly moved to a preferable

location rather than the stepwise movements as in [10].

D. Remarks on Dmig

The algorithm is fully symmetric to allow the network

nodes to effectively collaborate with each other to migrate the

service in an efficient way. The efficiency of the algorithm

is guaranteed by the virtue of fact that, except for some

pathological cases (where O(n) messages are needed for n-

node network), Dmig does not incur any global operation in

migration decisions. Moreover, it leverages a concept of virtual

migration to overcome the demerits of one-hop local search

in the selection of migration targets, and moreover, migrate

the virtual server to the optimal service node eventually and

remain the server there as long as the access patterns are not

significantly changed.

V. SIMULATION RESULTS

We evaluate the proposed algorithms through extensive

simulation-based studies. To this end, we developed a sim-

ulator in Java to create network topologies, generate access

patterns and implement the migration algorithms. The pur-

poses of our evaluation are twofold: 1) to study the algorithm

behaviour under various impact factors, and 2) to show the cost

effectiveness of the algorithm in service migration compared

to some existing algorithms.

A. Experimental Setup

1) Network Topologies: We use the networks with four

typical topologies: Tree(n), Lattice(w,h), Erodös-Rényi ran-

dom graph (ER(n,p)) [20], and Barabási-Albert graph

(BA(n,e)) [21] to conduct the simulation studies, each net-

work connecting 100 to 1000 nodes and exhibiting different

structural properties to represent a spectrum of communication

networks [1], [10], [15], [22].

Both Tree and Lattice have strictly regular structures, allow-

ing us to observe the algorithm behaviours under some extreme

yet predictable conditions. In contrast, ER and BA graphs are

random graphs without enforcing any regular structure. Both

graphs are considered here as a complement to model general

inter-networks that could be used in inter-cloud connections.
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The network profiles in these studies are shown in Table II,

which summarizes the average distances between pairs of

nodes and the average degrees for each type of the networks

in different sizes.

Since the monetary cost is our primary concern, we do not

explicitly model some network properties and features, such

as background traffic, bandwidth capacity, link latency as well

as CPU power. Instead, we assume these properties can be

manifested themselves in charging models, and with it, we

can focus squarely on modeling request workloads and their

access patterns.

TABLE II: Profile of different network topologies with 100 to

1000 nodes used in the experiments

Size Prof. BA(3,3) Lattice ER(0.1) Tree

100
Dist 2.6 6.67 2.25 6.29
Deg 5.44 3.6 9.74 1.98

200
Dist 2.84 10.0 2.04 7.59
Deg 5.68 3.7 19.2 2.0

400
Dist 3.13 13.33 1.92 9.2
Deg 5.8 3.8 39.72 2.0

600
Dist 3.26 16.67 1.9 9.92
Deg 5.86 3.84 60.56 2.0

800
Dist 3.88 20.0 1.9 10.52
Deg 5.88 3.86 80.24 2.0

1000
Dist 3.44 23.33 1.9 10.92
Deg 5.9 3.86 100.38 2.0

2) Access Patterns: An access pattern is characterized by

a sequence of online batch requests distributed across the

network along the time axis, each being specified by time

instance, batch size as well as distribution of access points.

Since we are not aware of any open available request trace

to migratable service in cloud-scale networks, we carefully

crafted synthetic workloads with diverse access patterns for a

controlled evaluation of our algorithm.

In our experiments, we refine the workloads with three

types of access patterns that are often studied in the related

work [10], [15], each with different merits to evaluate the mi-

gration algorithms with respect to the performance in handling

the impact of network topology, node skewness, and dynamics

of mobile accesses.

Uniform(p, q): We generate a batch request by following the

uniform distribution for both its size and weight on respective

[1, p] and [1, q], to isolate the impact of network topology.

Zipf(p, ν, θ): We assume a uniform batch size on [1, p] and

a Zipf-like distribution among the nodes, characterized by a

parameter θ ≥ 1.0, to capture the amount of weighted skews

of each requesting node, given the total number of requests ν

(spatial skewness).

Zone(p, ν, θ, κ): We partition the network graphs into dif-

ferent κ zones to make requests at different time segments in

different zones, while in each zone, Zipf(p, ν, θ) is followed

as shown above. This pattern reflects both the spatial skewness

and temporal dynamics of requests.

3) Charging Model: The charging model, defined and

provided by the ISPs, is exploited by the ICPs to optimize their

TABLE IV: Compared algorithms in the experiments.

Alg. Specification Remark

Dmig standard Dmig in Section IV-B
where virtual migration (VM) is
employed

Default

Dmig’ variant of Dmig without VM. Variant
rDmig recursive Dmig with VM. Variant
Migk extended algorithm in [9] where

β′ = min(u,v)∈E{βuv} is used to
control migration

Literature [9]

Migk’ variant of Migk using β instead of
β′ to control migration where β =
max(u,v)∈E{βuv}.

Variant

service provisioning. In our case, the charging model includes

both the access model and the migration model. We assume

that each link between a pair of nodes has an equal cost rate,

η, then the access cost between nodes u and v can be defined

as Cuv = ηD(u, v) where D(u, v) is the hop-based length

of the shortest path between u and v. The model reflects the

QoS requirements that the cost minimization always implies

the reduction of request latency.

As discussed in the migration model, the migration cost

between any pair of neighbor nodes u and v is given in

advance by βuv . However, for any pair of non-neighbor nodes

u and v, any migration cost is feasible only if it is less than the

total sum of the stepwise costs. In our experiments, we assume

it is determined by the maximum of migration costs along the

path D(u, v), i.e., βuv = max
i∈[u,...,v−1]

{βi(i+1)} as the most

expensive one is always the pragmatic concern in practice,

and also considered in other studies on service migrations [9],

[23].

In all experiments, we fix the link cost η = 2 and μ = 5,

respectively, and assume that the migration cost between a

pair of neighbor nodes is uniformly distributed when we do

not assume any a prior knowledge in this aspect.

4) Reference Algorithms: To fully evaluate the proposed

algorithm, we list some existing algorithms for comparison.

The first three algorithms in Table IV are compared for

service migrations. Dmig and its variant Dmig’ are different,

depending on whether or not the virtual migration (VM)

is employed. By comparing with these algorithms, we can

measure the benefits of the virtual migration. Note that when

α = 0, Dmig’(0) can be simply reduced to an improved

Migration Policy S in [10], where consecutive movements are

performed in terms of one-hop neighbors each time.

rDmig is a recursive version of Dmig where if multiple

neighbor nodes were eligible for the next moving step, unlike

Dmig, rDmig will recursively search for the target node along

all the possible paths. The value of this optimization is

also measured by comparing with Dmig and other reference

algorithms.

In contrast, Migk is an extension of the algorithm in [9]

to handle the heterogeneous migration cost in a single server

case, and Migk’ is a variant of Migk to use β instead of β′

to control the migration [9] where β = max(u,v)∈E{βuv} and
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(e) Zipf-like (10, 1000, 1.0)
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Fig. 3: Impact of network topology, size and access pattern on the total service costs of Dmig

TABLE III: Migration ratios of Dmig with respect to the optimal off-line algorithm (uniform pattern)

Migration Cost
Topology 0 400 800 1200 1600 2000

BA(3,3) 0.99±0 0±0 0±0 0±0 0±0 0±0
Lattice 1.0±0 2.79±0.17 5.48±1.25 15.84±3.16 1.62±0.20 1.29±0.34
ER(0.1) 0.99±0 0.14±0.03 0.02±0.01 0.02±0.01 0.05±0.04 0.11±0.03
Tree 0.99±0 2.22±0.45 0.72±0.46 0.05±0.03 1.9±0.92 0.09±0.05

β′ = min(u,v)∈E{βuv}.

B. Results

In this section, we show, in various cases, how the proposed

algorithm behaves and outperforms the reference algorithms

for service migration. The major performance metric is defined

as the ratio of the total service cost achieved by the compared

algorithms over the cost achieved by the optimal off-line

dynamic-programming (DP)-based algorithm. In the experi-

ments, each data point in graphs is averaged over five runs

by changing random seed in the simulator, and its standard

deviation is also computed.

Network Profiles: The first set of experiments is to study

how the network topology and size affect the performance

of the Dmig algorithm. Fig. 3(a)-(c) show the impact of the

network topology on the cost ratio of the algorithm when the

network size is fixed as 100 nodes and the migration cost is

uniformly varied from 0 to 2000. For all the studied topologies,

the algorithm performance on BA shows the best while on

Lattice, it is the worst. The performance on ER and Tree

sits between. These observations are consistent across all the

examined access patterns.

The BA graph exhibits the power-law degree distribution and

short average inter-node distance (Table II). Thus, the server

could migrate to a hub node (v) in a very limited number

of moves. On the other hand, the migration control threshold

of node v, (i.e., deg(v) · max{βvu}) is relatively large, and

thus, the server is highly resilient against the migration. We

can verify this by observing the migration ratios of Dmig

(i.e., # of online moves/# of off-line moves) in Table III.

Since the optimal off-line algorithm only incurs one move.

The cost ratio of Dmig approaching to 1 exhibits a better

performance. Compared to BA, ER also has short average inter-

node distances but it does not exhibit the power laws for node

degrees. Therefore, the migration ratio for the ER graph is

higher than that of the BA network, although its value is still

low.

Unlike BA and ER, both Lattice and Tree have relatively

large average inter-node distances, and low average node

degrees (Table II). Although they have these similarities,

their cost ratios are different (Fig. 3). For Lattice, due to its

relatively high node degrees and long inter-node distances, the

algorithm thus has more opportunities to select from a large

target space, which could incur certain inferior migrations

(Table III), leading to the worst performance. In contrast, for

Tree, these migration opportunities are reduced because of its

unique path between any pair of nodes, and thus result in a

much better performance.

With each network size increasing from 100 to 1000,
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Fig. 4: Performance comparison of Dmig with other reference algorithms for Zipf(10, 1000, 1.0) access pattern.

Fig. 3 (d)-(f) show how the algorithm performance changes

under different access patterns when the migration cost is

fixed as 1200. Except for Lattice, the performance of the

algorithm on other networks is nearly constant, independent of

the network sizes. These observations are not surprising. As

shown in Table II, for all the networks other than Lattice, the

average inter-node distances are relatively stable. In contrast,

the distance is steadily increased for the lattice network. Since

we define the migration cost for Dmig as the maximum one-

hop migration cost along the path, the migration cost between

a pair of nodes will increase as the length of path increases.

Access Patterns: Fig. 3 also compares the impact of the

access pattern on the cost ratios of Dmig across all the

examined networks. For the uniform pattern, the benefits of

migration diminishes as the request weights are uniformly

distributed among all the uniformly selected nodes. Aside

from the lattice networks, we can see from Table III that

the ratios of server moves are quite small, allowing their

performance curves to asymptotically approach to the optimal

off-line results. The lattice network is a little bit difficult for

the algorithm to achieve good results as we explained in the

last paragraph.

Unlike the uniform pattern, both the Zipf and Zone-based

patterns show some degrees of skewness in the distribution of

request weights, rendering the migration to be beneficial in

minimizing the service costs. As the request nodes for each

batch are uniformly selected, the Zipf pattern requires the

algorithm to globally select vantage nodes for the migrations,

which is usually difficult. In contrast, the Zone-based pattern

only requires to select the migration target from the current

active zone unless the access pattern is changed to activate

a different zone. As a result, Dmig has a slightly better

performance for the Zone-based access pattern than that for

the Zipf pattern, which is generally expected in the reality

as both the spacial skewness and temporal dynamics are

commonplace. However, we should note that the performance

changes for both patterns are not always consistent across all

the studied networks. For example, the performance for the

Zipf pattern on the tree network is slightly better than that for

the Zone-based pattern. We attribute this phenomenon to the

mismatch between the tree structure and the partition method

used.

Performance Comparison: The performance comparison of

Dmig with other selected reference algorithms is shown in

Fig. 4. The purposes of this comparison are threefold. First,

by comparing Dmig with Dmig’(0) and Migk, we can evaluate

its performance relative to some existing algorithms [9], [10].

Second, by comparing with Dmig’, we can measure the bene-

fits of the virtual migration in service cost reduction. Finally,

by comparing with rDmig, we can assess if the recursive

search is useful.

From Fig. 4, Dmig significantly outperforms Dmig(0), an

optimized version of the Migration Policy S in [10] when

α = 0, for all the studied networks, as the migration cost

is not considered in the reference algorithm, it could result

in a large number of expensive migrations, especially when

the migration cost is high. In contrast to Dmig(0), the relative

performance of Dmig to Migk, and its variant Migk’ is not

consistent across the different networks. The figure shows

that Dmig is better than or competitive with Migk or Migk’,

whichever is the best for all examined networks and access

patterns (only the zipf pattern is shown). These results again

demonstrate the advantages of Dmig over the reference algo-

rithms to migrate servers in the cloud environments.

Another interesting observation is the performance com-

parison when the migration cost is zero. According to Migk

(also Migk’), the epoch is reset after every batch request. As

a result, the server will be fixed without any migrations. In

contrast, Dmig (also Dmig(α)) will lose its phase control, and

the server can be freely migrated. The performance results of

these two extreme cases show that depending on the network

topology, either migratable server or fixed server can achieve

the relatively better performance, no one is consistently better

than the other. For example, it would be much better to fix the

server at certain hub node in the BA network than to move it

around to minimize the service cost. On the contrary, due to

the large average inter-node distances, it is much preferable to

migrate the server in the lattice networks, rather than to fix it,

to achieve a better performance.

The benefits of the virtual migration are also shown in Fig. 4

when the migration cost is increased from 0 to 2000. In the

figure, Dmig, together with its non-virtual migration version

and recursive version, (i.e., Dmig’ and rDmig) is evaluated.

One can easily observe the performance gaps between whether

or not the virtual migration is present for both Dmig and

Dmig’. Depending on the network topology and migration

cost, such a gap can be as large as up to 28.44% for Lattice

(Dmig is overlapped with Migk’ in Fig. 4(b)) and 10.20%
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for Tree (Fig. 4(d)), respectively, illustrating the values of the

virtual migration.

Unlike the virtual migration which allows the server to

bypass the intermediate sub-optimal nodes along the migration

paths and quickly converge to a vantage (or optimal) node,

the value of recursive search for finding the migration target

is marginal even though it is slightly better than the random

selection. We validate it by comparing the cost ratios of

Dmig and rDmig in Fig. 4. The observation is reasonable

as the recursive process is always to find an alternative path

toward the vantage node. However, the quality of each such

path should not be very different if the access pattern is not

dramatically changed. Consequently, the marginal added value

of rDmig renders it not worthwhile to deploy in practice.

VI. CONCLUSIONS

In this paper, we formulated and studied the service mi-

gration problem in the cloud platforms so that the mobile

accesses could be adaptively serviced with minimum costs.

To this end, we developed an efficient autonomous algorithm

Dmig for a single server migration, which is fully symmetric,

scalable, and easily deployed in practice. The algorithm is

distinct from existing ones by its effective use of historical

access information to conduct virtual migration to overcome

the limitation of local search. Our extensive simulation results

showed that compared with several existing algorithms, Dmig

can significantly reduce the overall service costs for all the

studied access patterns made on some representative networks

in the cloud.
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