
On Integration of Appends and Merges in Log-Structured Merge
Trees

Caixin Gong
Alibaba Group, China

caixin.gcx@alibaba-inc.com

Shuibing He
College of Computer Science and Technology, Zhejiang

University, China heshuibing@zju.edu.cn

Yili Gong∗
School of Computer Science, Wuhan University, China

yiligong@whu.edu.cn

Yingchun Lei
Daowoo Times Tech. Co., China

leiyingchun@daowoo.com

ABSTRACT
As widely used indices in key-value stores, the Log-Structured
Merge-tree (LSM-tree) and its variants su�er from severe write
ampli�cation due to frequent merges in compactions for write-
intensive applications. To address the problem, we �rst propose
the Log-Structured Append-tree (LSA-tree), which tries to compact
data with appends instead of merges, signi�cantly reduces the write
ampli�cation and solves the issues existed in current append trees.
However LSA increases read and space ampli�cations. Furthermore
based on LSA, we design the Integrated Append/Merge-tree (IAM-
tree). IAM selects appends or merges in compaction operations
according to the size of memory-cached data. Theoretical analysis
shows that IAM reduces the write ampli�cation of LSM while keep
the same read and space ampli�cation.

We implement IAM as a user library named IamDB. Experiments
show that its write ampli�cation is much less than that of LSM,
only 8.71 vs. 19.00 for 1TB data with 64GB memory. Compared
with nicely tuned LevelDB and RocksDB, IamDB provides 1.4-2.7⇥
and 1.6-1.9⇥ better write throughput, saves 12% and 10% disk space
respectively, as well as the comparable read and scan performance.
At the meantime IamDB achieves the most stable tail latency.

KEYWORDS
LSM-tree, Write-optimized Trees, IAM-tree, LSA-tree
ACM Reference Format:
Caixin Gong, ShuibingHe, Yili Gong, and Yingchun Lei. 2019. On Integration
of Appends and Merges in Log-Structured Merge Trees. In 48th International
Conference on Parallel Processing (ICPP 2019), August 5–8, 2019, Kyoto, Japan.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3337821.3337836

1 INTRODUCTION
Extremely large data volumes become common nowadays. Cheap
and numerous information-sensing devices, social networking, e-
commerce and on-line gaming produce data at unprecedented
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP 2019, August 5–8, 2019, Kyoto, Japan
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6295-5/19/08. . . $15.00
https://doi.org/10.1145/3337821.3337836

rates. The Log-Structured Merge-tree (LSM-tree) [13] is widely
adopted for data-intensive key-value stores, such as LevelDB[8],
RocksDB[7], Bigtable[3], Cassandra[10], etc. Not only KV stores
lean on LSM but traditional databases, such as MyRocks[6], try
to utilize the write-optimized trees. LSM meets the challenge to
e�ectively load, update and retrieve large amounts of data.

LSM �ushes the items accumulated in memory to on-disk compo-
nents in batches by a chain of compactions. Substitution of sequen-
tial reads and writes for random ones greatly improves the write
performance over the classical B-tree. LSM is a multi-level tree-like
structure with sorted nodes, termed tables. LSM keeps records in
a node sorted by merging nodes during compacting, which helps
fast data retrieval. However, facing heavy data insertions, LSM suf-
fers from high write ampli�cation due to frequent data read and
re-writes in merges. Consequently the write throughput deterio-
rates and storage devices with limited write endurance are prone to
wearing out. Meanwhile high write ampli�cation decreases query
performance since writes might saturate disk bandwidth and block
user queries.

LSM-trie[19] and FLSM[14] are works proposed to reduce write
ampli�cation by replacing appends with merges in compactions. A
node in an append tree contains multiple sorted sequences instead
of a single one. Thus, scans are sacri�ced due to higher read am-
pli�cation. Appends do not eliminate outdated records as merges
do, and accordingly they may underutilize disk space and increase
space ampli�cation. The ampli�cations of LSM and append trees
are summarized in Table 1. The read ampli�cations for point reads
are the same since the Bloom �lters[2] are used, thus the read am-
pli�cations for scans are compared here. LSM-trie shares similar
ampli�cations with FLSM except that it does not support scans.
Due to large read ampli�cation for scans and space ampli�cation,
append trees only work e�ectively in limited scenarios.

In addition, LSM-trie and FLSM have other limitations shown
in Table 2, and will be discussed in Section 2.2. To address these is-
sues, we propose the Log-Structured Append-tree (LSA-tree), which
avoids the worst write case, has good sequential write performance
as well as supporting scans. However LSA is still categorized as
append trees and shares the common issues as shown in Table 1.

To take full advantages of merges as well as appends, this pa-
per further presents a novel data structure, called the Integrated
Append/Merge-tree (IAM-tree), which introduces merges into LSA.
IAM inherits the advantages of LSA shown in Table 2.

IAM organizes KV items according to their locations in a tree. For
the items in the upper levels, smaller in volume, hotter for access,

https://doi.org/10.1145/3337821.3337836
https://doi.org/10.1145/3337821.3337836
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3337821.3337836&domain=pdf&date_stamp=2019-08-05

ICPP 2019, August 5–8, 2019, Kyoto, Japan Caixin Gong, et al.

Table 1: The ampli�cations of LSM, LSA and IAM. LSM-trie
and FLSM are append trees and share the same ampli�ca-
tions as LSA.

Ampli�cation LSM LSA IAM

Write high low relatively low
Read (scan) low high low
Space low high low

Table 2: The characteristics of trees with appends.

Tree worst write good sequential scan
case avoided writes support

LSM-trie yes no no
FLSM no no yes
LSA / IAM yes yes yes

and thus often cached in memory, appends are adopted. For the un-
cached items in the lower levels, traditional merges are maintained.
For the partly cached tables in the middle level, both appends and
merges are integrated in terms of the size of the memory cached
data. Compared to LSM, IAM has lower write ampli�cation and
the same read and space ampli�cations. The �exible integration of
appends and merges alleviates write ampli�cation in contrast with
LSM without sacri�cing read or scan performance. With proper
user con�guration, IAM degenerates into LSM in the special case
with no appends and into LSA with minimal merges.

The comprehensive experiments show the write ampli�cation of
IAM is much smaller than that of LSM, only 8.71 vs. 19.00 for 1TB
data with 64GB memory. In addition, IAM saves 10-12% disk space
and obtains the most stable tail latency. It is safe to say that IAM is
a better alternative to LSM in almost every practical scenario.

In summary, this paper makes the following contributions:
(1) The Log-Structured Append-tree (LSA-tree), which substi-

tutes appends for merges in compactions to reduce the write
ampli�cation of LSM. It has advantages over the existing
append trees by avoiding the worse write case, achieving
good sequential writes and supporting scans. (Section 4).

(2) The Integrated Append/Merge-tree (IAM-tree), which al-
lows appends and merges �exibly in compactions to reduce
the write ampli�cation and keeps the same read and space
ampli�cations as LSM. (Section 5).

(3) The implementation of LSA and IAM in IamDB. The experi-
ments show that compared with LevelDB and RocksDB for
the workloads in both YCSB and db_bench, IAM achieves
the better write throughput, the same read performance, the
comparable scan performance, the most stable tail latency
and saves disk space (Section 6).

2 BACKGROUND
In this section, the basics of LSM and LevelDB are introduced. Then,
the limitations of LSMs and append trees are analyzed. At last, the
motivation for designing LSA and IAM is presented.

2.1 LSM and LevelDB
In LSM user records are �rst accumulated in in-memory compo-
nents. On over�ow, the records are �ushed to the lower-level com-
ponents in batches by a series of merge operations. Since all data
on all levels are sorted, merge is one-pass processing on successive
tables, LSM takes full advantage of sequential I/Os.

LevelDB is a representative implementation of LSM, whose archi-
tecture is shown in Figure 1. RocksDB shares similar architecture
with LevelDB. The two memtable are memory resident, and the
other nodes, called SSTables, are disk resident. There is a threshold
for the number of nodes on each level other than level 0, which
increases by a factor of 10 with the level index (from L1 to Ln , n is
6 by default). The records in a node are sorted by their keys, and
the nodes in a level are ordered by their disjoint key ranges.

When a record is inserted, it is �rst appended to an on-disk
log and then inserted into memtable. Once memtable reaches its
capacity threshold, 4MB by default, it will be renamed to immutable
memtable. The background compaction thread transforms immutable
memtable into an SSTable �le in L0. The �les in L0 are unordered
with each other. When the number of �les in L0 reaches 4, the com-
paction thread merges these �les with the key range overlapped
�les in L1 and generates new �les (in the size of 2MB by default) in
L1. If the data size in Li (1 i n � 1) reaches its threshold, a �le
is picked for compaction with the overlapped �les in Li+1.

A point read to �nd a particular record with a certain key, usually
searches the following objects in sequence: memtable, immutable
memtable, all SSTables in L0, one SSTable in L1, ... and one SSTable
in Ln , until a matched record is found, or all objects are searched
and no match is found. With the Bloom �lters, the metadata of a
SSTable possibly containing the target record should be checked
�rst. In this paper it is assumed that the metadata of all tables are
cached. If a hit, a further disk seek is required for the record data.
Besides two memtables, a scan searches every related SSTable in
all levels. The number of seeks equals the number of disk objects,
which cannot be helped by the Bloom �lters.

Write ampli�cation is the ratio of the actual size of data written
to the secondary storage to the size of data written by users. A node
to be compacted in Li merges with the overlapped nodes in Li+1,
whose number is 10 on average. Accordingly, the average write
ampli�cation of a compaction between two adjacent levels is 11,
and the write ampli�cation of LSM is about 11 ⇥ (n � 1). Besides
degrading the write throughput, the large write ampli�cation brings
more problems. First, the occupation of disk bandwidth slows down
concurrent queries. Second, it seriously shortens the life span of
solid-state disks (SSDs) if used.

2.2 The Issues of Append Trees
LSM-trie[19] and FLSM[14] substitute appends for merges in LSM
and drastically decrease write ampli�cation. The di�erent designs
of existing append trees have their own issues, as shown in Table 2.
When a node reaches its size threshold, its records are partitioned
and appended to its children. A node’s children should be limited to
a small number, otherwise appends turn into random writes, which
violates the core idea of LSM to take full advantage of sequential
I/O bandwidth to improve write performance. We call it the worst
write case if the number of a node’s children might be unbounded

On Integration of Appends and Merges in Log-Structured Merge Trees ICPP 2019, August 5–8, 2019, Kyoto, Japan

SSTable

Log

In order

L0 (4 files)

L1 (10MB)

L6 (1TB)

IM M3
1

L2 (100MB)

M memtable IM immutable memtable

In order

disk
memory

Figure 1: The architecture of LevelDB.

by design. FLSM leaves the avoidance of the worst write case as its
future work.

With sequential writes, ordered records are continuously in-
serted into a tree. The key range of a table does not intersect with
that of any table in the next level, and can be moved down simply
by modifying the metadata of LSM without rewriting. But both
LSM-trie and FLSM lose the bene�t. In addition, as a hash-based
method, LSM-trie does not support scans.

We propose LSA to address the issues of the existing append
trees shown in Table 2. Append trees remarkably decrease write
ampli�cation of LSM by substituting appends for merges. A node in
an append tree is composed of multiple sorted sequences instead of
a single one. Accordingly, append trees decrease write ampli�cation
at the expense of the read ampli�cation for scans and the space
ampli�cation. Then, based on LSA, we design IAM to select between
appends and merges �exibly to obtain similar write ampli�cation
of LSA and the same read and space ampli�cations of LSM.

3 RELATEDWORK
The Log-Structured Merge-tree is widely used in practical applica-
tions. LevelDB[8] and RocksDB[7] are state-of-the-art implementa-
tions and used in various data stores[3, 6, 10]. LSMs are also adopted
in �le systems[15, 18]. The widespread use of write-optimized trees
shows promise for the future use of IAM.

Extensive work has been done to reduce the write ampli�cation
of LSM-trees. One way to optimize is to employ the partitioned
tiering merge policy with vertical or horizontal grouping [12]. By
substituting appends for merges, LSM-trie[19], FLSM-tree[14], and
LWC[20] all drastically decrease write ampli�cation at the expense
of the read ampli�cation for scans and the space ampli�cation. LSM-
trie[19], FLSM-tree[14] face the issues shown in Table 2. LWC keeps
the timing and condition of LSM to evoke a compaction, which may
introduce oversized or undersized tables. Dostoevsky[4] shares the
hybrid strategy with IAM to mix tiering and leveling approaches to
reduce merges, whose levels are divides two kinds: the largest level
and the non-largest levels. While IAM divides the levels into three
kinds: the append levels, the merge levels and the mixed level. and
determines either appends or merges based on the size of cached
data. IAM is �exible enough to reduce the write ampli�cation but
keep the same read and space ampli�cations.

Some techniques promote LSM and are orthogonal to IAM. Peb-
blesDB, the implementation of FLSM[14], utilizes parallel seeks to
lift scan which is e�ective for the scenarios where a few on-line
users access SSD. WiscKey[11] reduces the write ampli�cation of

disk nodememtable immutable memtable

memory
disk

IMM

L0 (t0)

L1 (t1)

L2 (t2)

Ln-1 (tn-1)

Ln (tn)

Log

IM M3 2

Figure 2: The architecture of LSA.

LSM by separating values from keys. FloDB[1] designs a two-level
memory structure, a small hash table and a larger skip list, for
the memory component of LSM to improve memory performance.
SlimDB[16] presents the three-level compact index and the cuckoo
�lter to shrink the metadata of LSM-trie to improve read perfor-
mance. NoveLSM[9] optimizes LSM to better exploit non-volatile
memories. The Succinct Range Filter (SuRF)[21] almost eliminates
the unnecessary seeks for the sequences without the target records
in scans, which can lift very short range scans.

4 THE LOG-STRUCTURED APPEND-TREE
In this section, we introduce the design of the Log-Structured
Append-tree (LSA-tree). LSA is a type of append trees which com-
pact by appends mostly. The overall structure is presented �rst, and
then the operations of LSA are described.

4.1 The Overall Structure
The strurture of LSA is illustrated in Figure 2. LSA consists of one
in-memory level, L0, and n on-disk levels, from L1 to Ln . The key
ranges of nodes in an on-disk level are disjoint and sorted but
unnecessary to be continuous. LSA does not have an on-disk level
like L0 in LevelDB, where the ranges of nodes overlap with each
other. Hence, a point read searches at most one node in each on-disk
level.

The threshold of the number of nodes in an internal level Li is
t i (0 i < n). The actual number of nodes in Li , denoted by Ni ,
usually equals t i . Once Ni > t i , the nodes in Li will be combined
to keep Ni = t i . The number of nodes in Ln is smaller than tn .
Formally, a node in Li+1 whose key range overlaps with that of a
node in Li is called the child node, and the node in Li is the parent
node. A node has t children averagely if the children are not leaf
nodes. A node in LSA has a size threshold, Ct (128MB by default).
When an internal node reaches Ct , its sequences will be merged,
partitioned and appended to its according children. An on-disk
node is probably composed of multiple sorted sequences.

An on-disk node is a �le named MSTable (Multiple Sequence
Table) which is designed to support e�cient queries by aggregating
all metadata of data sequences together. The records are partitioned
into 4KB blocks and �lled from the beginning towards the end
in the MSTable. The metadata, containing the index for the data
blocks and the corresponding the Bloom �lters, starts from the end
and grows in the opposite direction. The middle part is a hole for
future appending. The structures of data blocks and metadata are

ICPP 2019, August 5–8, 2019, Kyoto, Japan Caixin Gong, et al.

3
999

9
99

120
225

231
305

885
998

10 nodes
12
31

36
52

83
99

5 nodes

102
113

123
134

208
218

10 nodes

228
239

294
308

8 nodes

Lx

Lx+1

Lx+2

Figure 3: The structure andkey ranges of nodes in a LSA-tree.
A pair of numbers in a box represent the key range of a node.

the same as those of SSTables (Sorted String Table). Looking up a
record in an MSTable, the clustered metadata is fetched �rst, then
the Bloom �lters help locating the data block with the target record
and prevent unnecessary reads, while a scan needs to seek data
blocks of every sequence in an MSTable and merges them to get
the sorted result.

4.2 LSA Operations
LSA has three types of operations: �ush, split and combine. A �ush
operation moves the data in a parent node to the next level to vacate
space for newly coming data. However, with only �ushes, the tree
structure may be skewed, i.e. some nodes may have signi�cantly
more children than the others. When �ushing such a parent node,
the data will be partitioned and appended to its children, leading
to a large number of time-consuming seeks. If the records keep
being inserted into these nodes, the write performance will be
continuously poor. In order to eliminate the worst write case, a
split operation is introduced. Speci�cally, a node whose number
of children reaches 2t splits into two and either node has half of
the children. Splits and �ushes may increase the number of nodes,
while combines reduce nodes to keep Ni = t i , i.e. the tree structure.

4.2.1 Flush. The operation that moves the data stored in a parent
node in Li (0 i n � 1) to its children in Li+1 is called a �ush.
The preconditions for �ushing a full node in the Li are as follows:
1) Its number of children is less than 2t , otherwise the parent node

will be split (will be discussed in Section 4.2.2).
2) If Li+1 is an internal level and none of its children is full, other-

wise the full child should be �ushed or split �rst.
Once the conditions are satis�ed, a �ush runs as follows.

Without children, the node is directly moved to the next level
and Ni+1 increases by 1. In a scenario of sequential writes, nodes
always have no children and all records are written to disk only
once. Thus the performance of sequential writes is as good as in
LSM.

If the parent node has children, the records to be �ushed are
loaded into memory �rst, then are sorted by merging its sequences,
and �nally are partitioned and appended to the proper children.
There are two cases for this situation.

In one case, the children are leaf nodes. The records are parti-
tioned according to the key ranges of the children. If the key of a
record falls out of all ranges, it is assigned to the child with the clos-
est range. For example, Lx+2 shown in Figure 3 is the leaf level, and
the node {9, 99} with 5 children is about to be �ushed, the records

 node newly written sequence

flushedLn-1

Ln

a1 a2 a3 a4 a5 a1' a2' a3' a6 , ... , a11 a5'

...10

sequence

Figure 4: Flushing data to the leaf level. The full node, a4, is
merged with the partitioned records, resulting in 6 new nodes (a6-
a11); the other nodes are not full and the partitioned records are
simply appended to them.

in the key range {9, 33} goes to the child {12, 31}. The partitioned
records will be written to the corresponding children as shown in
Figure 4. If the child is full, the partitioned records will merge with
it, generating new children with an initial size of Cts , Ct5 by default.
If a child is not full, the partitioned records will be appended to the
child. The key range of the child changes accordingly. For exam-
ple, the node {12, 31} is extended to {10, 32} when the parent node
contains the records with the keys 10 and 32.

In the other case, the children are internal nodes and not full,
thus the partitioned records will be appended. When the key of a
record falls in no child’s range, the partition method is di�erent
from the above case. It is preferentially assigned to the child with
fewer children to alleviate range skew. For example, the node {9, 99}
and {120, 225} are the children of {3, 999} having 5 and 10 children
respectively. When {3, 999} �ushes, the records within the key range
{3, 113} are appended to the child {9, 99}. Then, the range of the
node {9, 99} extends, and the number of its children may get close
to that of {120, 225}.

For the parent node, its key range usually remains unchanged
but may be reduced after �ushing. This design tries to balance the
numbers of children between adjacent nodes. For example, after
the node {120, 225} �ushes, the left endpoint of its range interval
moves right to get the same number of children as the node {9, 99},
i.e. 5. In the �ush of {3, 999}, the key ranges of the two children are
partitioned evenly to allow them have the same number of children,
8. To sum up, a �ush alleviates range skew without extra cost.

4.2.2 Split. The e�ect of a �ush to lessen range skew is limited,
because it may only re-assign a node’s children to its siblings. If
several adjacent nodes all have large numbers of children, the ad-
justment is restricted. A split is evoked when a node is full and the
number of its children reaches 2t . The parent node will be rewrit-
ten into two new nodes each with half of its children. The initial
key range of the new node is formed by the smallest and largest
keys of the records stored in itself and its assigned children. A split
prevents a node from �ushing its data to more than 2t children and
thus avoids the worst write case.

4.2.3 Combine. The constraints Nn < tn and Ni = t i (0 i
n� 1)may be broken since �ushes possibly increase Ni+1 and splits
increase Ni . Before �ushes or splits, the following pre-processing
should be done to guarantee both constraints are met. First, if
Nn � tn , the number of the on-disk levels, n, will increases by 1.
As a result, the original leaf level becomes an internal level, and
a new empty leaf level is added. Then, check whether Ni = t i

(0 i n � 1) still holds. If Ni > t i , combines will be evoked to

On Integration of Appends and Merges in Log-Structured Merge Trees ICPP 2019, August 5–8, 2019, Kyoto, Japan

Lm-1

Lm

a1 a2 a3 a9 a10

flushed...

a1' a2' a3' a9' a10'

10

 node newly written sequencesequence

Figure 5: Flushing to the mixed level in IAM. k is set to 3 and
the node a2 is the only child with 3 sequences. Hence, a2 are merged
with its assigned data and a single sequence a02 is generated. The
other children are appended.

reduce nodes in Li . Actually, a combine is a special type of �ushes,
by which the data of the parent are �ushed to the next level and
the node itself is destroyed, accordingly Ni decreasing by 1.

The node to combine needs to be selected carefully, otherwise
the key ranges and children numbers of its two adjacent siblings
may grow quickly, incurring frequent splits. We propose a strategy
for selecting a node to combine. First, a candidate set is initialized
with all the nodes with two adjacent siblings. The candidate nodes
should also satisfy the equation that Tcn 3 · t , where Tcn is the
number of the children covered by the combined key ranges of the
candidate node and its two neighbors. For example, in Figure 3, the
Tcn of the node {120, 225} is the number of the children covered by
the range {9, 305}, i.e. 24. Since the average value of Tcn is 3 · t , the
candidate set should not be empty. Then, the node with the smallest
Tcn of the candidate set is picked for combining. After the target
node is destroyed by combine, the ranges of the two neighbors will
be adjusted evenly in the latter �ush of their parent node, and their
children numbers are at most 1.5t . For example, after {120, 225} is
combined, the ranges of {9, 99} and {231, 305} extend evenly in latter
�ush of {3, 999}, and both will have at most 12 children. As a result,
neither neighbor will split immediately, which prevents splitting
frequently and degrading performance.

5 THE INTEGRATED APPEND/MERGE-TREE
LSA utilizes appends to compact data instead of merges and accord-
ingly obtains much smaller write ampli�cation. A scan requests to
check all the records within a key range. To get the required records
in order, a scan seeks two memory nodes as well as all sequences in
on-disk nodes and merges them. Multiple sequences in an on-disk
node incur more seeks and larger read ampli�cation. Besides, LSA
may have larger space ampli�cation due to fewer merges. In order
to achieve the low write ampli�cation as well as keep the same
read and space ampli�cations as LSM, we allow both appends and
merges for �ushes and propose the Integrated Append/Merge Tree
(IAM-tree) based on LSA.

5.1 The Flush Strategy
To achieve the comparable scan performance with LSM, the �ush
strategy in IAM aims to make a scan take at most one disk seek
at each level. The determination and adjustment of the key range
of a node are the same as those of LSA. The key di�erence lies in
choosing an append or a merge according to the size of memory-
cached data when a node �ushes.

Table 3: Thewrite ampli�cation of each level after hash load-
ing 100GB data into IAM and L3 is the mixed level.

Level 1 2 3 4 total

k=1 1.03 1.04 3.88 0.23 6.18
k=2 1.03 1.04 2.41 0.23 4.70
k=3 1.03 1.05 1.90 0.20 4.17

5.1.1 The Simple Flush Operation. For the top levels, called the
appending levels, the data is of smaller size, hotter for access, and
cached in memory. Consequently a scan in these levels does not
resort to the disk, and the �ush that moves data to the appending
levels remains as LSA does. The write ampli�cation incurred by
these levels is much smaller than that in LSM.

For the bottom levels, called the merging levels, the amount of
data is much larger than the memory size. Hence, the �ush strategy
is similar to the compaction of LSM so that each node stores only
one sequence. Speci�cally, the partitioned records �ushed from its
parent will be merged with a node and a new single-sequence node
is generated. Accordingly, scans and point reads can be as good as
those of LSM in these levels.

5.1.2 The Finely Tuned Flush Operation. To further reduce write
ampli�cation, the mixed level is introduced, denoted by Lm (1
m n+ 1). The mixed level is the �rst level whose nodes cannot be
totally cached in memory.We try to keep that a node in Lm contains
at most k sequences, only one of which is not totally cached.

The procedure of �ushing data to Lm is shown in Figure 5. For
a child with k sequences, the partitioned records will be merged
with it, and a new child containing a single sequence is generated.
For a child with fewer sequences, the data from the upper level is
appended. On one side, the appended sequence have more recently
inserted data and are more likely to be frequently accessed. On
the other side, the average size of appended sequences is Ct

t and
usually much smaller than that of a merge-generated sequence. It is
reasonable to try to keep the appended sequences in memory. Once
the appended and hotter sequences are cached, it only takes one
disk seek if the original merge-generated sequence is requested.

Compared with the simple �ush strategy, the introduction of
the mixed level avoids more merges and therefore further reduces
write ampli�cation. Table 3 shows the advantage of the mixed level,
L3. When there is no mixed level (k = 1), the write ampli�cation
is 6.18. If k = 2, it is reduced to 4.70, i.e. by 23.9%. As k grows, the
write ampli�cation decreases.

5.1.3 Discussion onm and k . The parametersm and k are tuned
according to the sizes of the memory and all appended sequences.
If the former size is larger than the latter, it is possible to cache all
appended sequences.

The memory cache size, denoted byM , is the sum of the memory
cached data blocks of all MSTables. The mincore function is used to
sample whether data blocks are memory resident. To estimate the
size of all appended sequences, the size of data stored in each level,
denoted byD j (1 j n), are collected �rst. Then, the average size
of appended sequences in Lm with parameter k , denoted by Sm,k ,
is calculated. Assuming that the number of appended sequences in

ICPP 2019, August 5–8, 2019, Kyoto, Japan Caixin Gong, et al.

a node is a random number out of 0 to k � 1, and that the average
data sizes of an appended sequence and a node are Ct

t and Ct
2

respectively, then

Sm,k = Dm ·
Õk�1
i=0 i · Ctt
k Ct2

=
Dm · (k � 1)

t
. (1)

The data size of all appended sequences is the total data size of
appending levels plus that of the appended sequences in Lm , i.e.Õm�1
j=1 D j + Sm,k . It should be no more than the cache sizeM , i.e.

m�1’
j=1

D j + Sm,k M . (2)

Once the inequality is satis�ed, the system has enough memory to
cache all appended sequences. The largerm and k leads to smaller
write ampli�cation, thus the largestm and k satisfying the inequal-
ity is preferred.

The right of the inequality can be set to a smaller value than
M , say M

2 , to allow the remaining memory to cache part of the
merge-generated sequences. If all appended sequences are forcibly
cached, a scan takes at most ons disk seek for a node in each level.
Since the appended sequences are generally hotter than the merge-
generated ones, it allows IAM to use the common �exible cache
strategy that the hotter data is preferentially cached instead of the
forcebile caching strategy.

5.2 User Operations
A user write is processed in the same way as LevelDB, that is, a
record is �rst appended to the user log for recovery and then in-
serted into memtable. Once memtable reaches the capacity thresh-
old,Ct , it will be renamed to immutablememtable ready for �ushing.
The processing of a delete is the same as that of an insert except that
the record contains a �ag indicating the deletion type instead of a
value. The actual deletes and updates are deferred and ful�lled dur-
ing later compactions. In merges, the outdated records are removed
and the valid records remain.

A point read searches memtable, immutable memtable and the
disk nodes whose key ranges cover the requested key. Since the key
ranges of nodes in an on-disk level are disjoint and sorted, at most
one node is searched in one level. The nodes in higher levels and
the lately appended sequences in a node always have more recently
inserted records, and should be searched �rst. Once the record is
found in a sequence, the search stops. The seeks for the sequences
without the target can almost be avoided by the Bloom �lters.

A scan checks memtable, immutable memtable and all sequences
in a node in every on-disk level and merges them to get the required
records in order, which cannot be helped by the Bloom �lters.

5.3 Ampli�cation Analysis
The ampli�cations, including write, read and space ampli�cations,
approximate the performance of a tree. Write ampli�cation is the
ratio of the actual size of data written to the secondary storage to
the size of data written by users. Read ampli�cation is the expected
number of random disk I/Os to �nish a query, assuming that the
total data volume is much larger than the system memory. Space
ampli�cation is the ratio of the actually-taken storage size to the

logical size of the database. The ampli�cation characteristics of
LSM, LSA and IAM are summarized in Table 1. The existing append
trees share the similar ampli�cations with LSA because on-disk
nodes in these trees also contain multiple sequences.

5.3.1 Write Amplification. The write ampli�cations of LSA and
IAM are incurred by �ushes and splits. For �ushing data to an Li ,
LSA only appends and the ampli�cation is 1. For �ushing data to Ln ,
the default initial size of a node in Ln is Ct

5 , thus the ampli�cation
is close to 1. Here it is assumed to be 1 for simplicity. Accordingly,
the ampli�cation incurred by �ushes equals the number of on-disk
levels, n. Thus the write ampli�cation of LSA is

Wlsa =Wsp + n, (3)

whereWsp is the ampli�cation brought by splits.
When IAM �ushing data to an appending level, the ampli�cation

is 1. For amerging level, the partitioned data alwaysmerges with the
nodes. Since the average size of the partitioned data is Ct

t and that
of a node is Ct2 , the average write ampli�cation is (Ctt +

Ct
2)÷(Ctt) =

t
2 + 1. For the mixed level, one merge occurs when the partitioned
data is written to the node with k sequences. Assuming that the
sequence number of a node in Lm is randomly picked from 1 to k ,
one merge occurs every k writes on average, that is, the frequency
of merges in Lm is 1

k of that in a merging level. Hence, the average
write ampli�cation for a �ush in Lm is (kCtt +

Ct
2)÷ (kCtt) = t

2k +1.
Summing up all levels, the write ampli�cation for IAM is

Wiam =Wsp + n +

8>><
>>:
t

2k
+
Õn
j=m+1

t

2
1 m n

0 m > n.
(4)

With largerm and k , the write ampli�cation decreases but it takes
more memory as illustrated in formula 2.

At last, we discuss the write ampli�cation induced by splits,Wsp .
A split in Ln�1 increases Nn�1 by 1 and triggers a node in Ln�1
to combine. After the combine, either of its neighbors has at most
1.5t children as described in Section 4.2.3. A node splits when its
number of children increase to 2t . Splits are invokedmost frequently
when either neighbor of the combined node keeps �ushing and
its number of children increases to 2t . Users need to insert data
of the size 0.5t ·Ct

2 on average to make the number of children
increased by 0.5t and a split is triggered. Since a split writes data
of the size Ct , the write ampli�cation induced by a split in Ln�1 is
Ct ÷ 0.5t ·Ct

2 = 2 · 2t .
Similarly, the split of an Ln�2 node requires the number of its

children to increase by at least 0.5t . Since it is needed for users to
insert data of the size 0.5t ·Ct

2 to add one new node in Ln�1, the
required inserted data that triggers a split in Ln�2 is of the size
(0.5t)2 ·Ct

2 . Thus, the write ampli�cation in Ln�2 isCt ÷ (0.5t)2 ·Ct
2 =

2 · (2t)2. Accordingly, the write ampli�cation for all levels incurred
by splits is

Wsp = 2
n�1’
j=1

(2
t
)j . (5)

Since t = 10 by default,Wsp is very small compared to the ampli�-
cation brought by �ushes. Furthermore, since �ushes also have the
ability to adjust the key ranges of nodes, the write ampli�cation
incurred by splits is smaller.

On Integration of Appends and Merges in Log-Structured Merge Trees ICPP 2019, August 5–8, 2019, Kyoto, Japan

5.3.2 Read Amplification. Since the metadata of MSTable is clus-
tered and of the same average size with that of SSTable in LSM,
we only analyze the scenario that all metadata can be cached as
in [14, 17] for clarity. A point read or scan intends to search every
sequence of one node in each on-disk level. For LSM, assuming that
the data stored in the levels above Lm are totally cached in memory
as IAM and LSA, no disk seek for these levels is required for all
three trees. For each of the mixed level and the merging levels, IAM
reduces the disk seek to at most 1. Consequently, the read ampli�-
cation is the same with that of LSM, i.e. n �m + 1. However, IAM
needs additional memory to cache the appended sequences in Lm ,
therefore the merge-generated sequence in Lm are less likely to be
cached than in LSM. For LSA, the average number of sequences in a
node is 0.5t , and the average read ampli�cation is 0.5t · (n �m + 1).
Since t = 10 by default, the read ampli�cation is 5⇥ larger than that
of IAM or LSM.

With the Bloom �lters, point reads can almost skip the sequences
without the target record. Speci�cally, allocating 14 bits per record
leads to a 0.2% false positive rate. The read ampli�cation is about 1
if the target record exists in LSA or IAM, or 0 if does not, which is
the same with LSM.

5.3.3 Space Amplification. If users launch no updates or deletes,
the space ampli�cation is the same for all three trees. Otherwise,
they di�er. In LSA, the outdated records exist in two situations.
First, a node has multiple sequences of which most records can be
outdated. Second, the newer data stays in the upper levels, andmany
outdated records are in the lower levels. In LSM, only the second
situation leads to space redundancy. For IAM, because the merging
levels take up the majority of the data, the space ampli�cation is
similar to that of LSM.

6 PERFORMANCE EVALUATION
LSA and IAM are implemented in a persistent, crash-recovery and
MVCC-supported key-value storage library, called IamDB. IamDB
is based on LevelDB and works as either LSA or IAM with proper
con�guration. LevelDB does not support parallel background com-
paction while IamDB does as RocksDB[7]. RocksDB adopts extra
optimizations for SSDs, which are complementary to IamDB.

Since multiple sequences are allowed for an on-disk node, dif-
ferent append trees share similar performance with the same con-
�guration and optimizations. Since both LSA and IAM solve the
issues of the existing append trees as shown in Table 2, and have the
same optimization strategies in IamDB, the performance di�erence
between the append trees and our proposed hybrid method can be
precisely re�ected by comparing LSA and IAM.

6.1 Experiment Setup
Our experimental platform is a server with two eight-core 2.10 GHz
Intel Xeon E5-2620 v4 processors, 64GB RAM, a 200GB SSD (Intel
DC S3710 series), and a 1.2TB HDD (10000-RPM SEAGATE). The
operating system is 64-bit Linux 3.10 and the �le system is ext4.

LevelDB and RocksDB are con�gured and tuned to the best of our
knowledge. IamDB uses the similar re�nements with LevelDB for
a fair comparison. The �le size in LSM is set to 64MB as suggested
by RocksDB and the memtable threshold to 128MB. The threshold
sizes of the levels in LSM are 640MB, 640MB, 6.4GB, 64GB... for L0

0

1

2

3

4

5

SSD-100G HDD-100G HDD-1T

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

L

10.0k 8.1k 4.1k

R-1t
R-4t
A-1t

A-4t
I-1t

I-4t

Figure 6: The throughputs of hash load.

L1, L2, L3 ..., respectively. To be fair, the capacity threshold of a node
in IamDB, Ct , is set to 128MB, and the average �le size is 64MB.
The threshold numbers of nodes for levels in IAM are 10, 100, 1000
for L1, L2, L3..., respectively. Thus, the average size of an on-disk
level in IamDB equals the threshold size of the corresponding level
in LSM. The size of the Bloom �lters for each record is 14 bits and
data compression is turned o�. The maximum number of open �les
is set to be large enough to ensure that all metadata can be cached
in memory. Read-ahead of the �le system is generally enabled in
RocksDB in accord with LevelDB and IamDB.

The evaluations are based on both YCSB and db_bench, the de-
fault benchmark of LevelDB. A record value is set to 1024 bytes.
Each workload is tested on a database for an hour as suggested by
YCSB. The database is loaded with either 100GB or 1TB data. For a
database with 100GB, it is newly loaded for each run. Since it takes
too long to load 1TB data, all runs are on a database loaded only
once. To test the out-of-RAM performance, we make only 16GB
memory available for the tests with 100GB data.

In the following text, L represents LevelDB using a single thread
for background compactions; R-nt, A-nt, and I-nt respectively repre-
sent that RocksDB, LSA and IAM use n threads for background op-
erations. The multi-threaded performances of RocksDB and IamDB
under all workloads are tested. For simplicity, only the single-
threaded performance is shown unless the multi-threaded has no-
table di�erence. Figure 6, 7, 8 and 9 show the throughputs normal-
ized to LevelDB’s, and the IOPS of LevelDB are presented at the
bottom. The tail latency will also be discussed.

6.2 Hash-Load Performance
Hash load is the default load method of YCSB, in which unordered
records without collisions (no updates) are written into stores by in-
sert operations. Figure 6 shows the detailed throughputs for 100GB
data loaded in SSD, 100GB data in HDD and 1TB data in HDD. In
general, LSA is the best for the smallest write ampli�cations and
IAM takes the second place. The ampli�cations of LevelDB are 8.83,
8.71 and 14.66 for the three tests, which decrease to 3.16, 3.15 and
4.10 of LSA and 4.70, 4.72 and 8.71 of IAM. RocksDB is the largest,
9.90, 9.61 and 19.00 respectively, leading to the poorest throughputs
when con�gured with single-threaded compaction. Here the write
ampli�cations do not include what is incurred by writing log.

After hash loading 100GB data, both LevelDB and RocksDB
have serious data over�ows. The over�ow makes the factor for the
increase in actual data sizes of two adjacent levels less than 10. For

ICPP 2019, August 5–8, 2019, Kyoto, Japan Caixin Gong, et al.

Table 4: The write ampli�cation caused by each level after
hash loading 1TB data for HDD.

Level L R-1t R-4t A-1t A-4t I-1t I-4t

0 1.03 1.03 1.03 - - - -
1 2.05 1.73 1.88 1.03 1.03 1.03 1.03
2 4.66 5.07 5.32 1.03 1.03 1.03 1.03
3 5.48 6.68 6.82 1.03 1.05 2.52 2.63
4 1.44 4.48 4.47 0.97 1.00 4.05 3.96
5 0 0.01 0.01 0.04 0.13 0.08 0.29

Sum 14.66 19.00 19.53 4.10 4.24 8.71 8.94

1TB data, LevelDB still allows serious over�ows while RocksDB
barely does. For example, The actual data size in Level 1 in LevelDB
is 5.6⇥ the threshold size, and that in Level 2 is 3.0⇥. As a result,
the actual factor for level 1 and 2 of LevelDB with 1TB data is 5.4
instead of 10. Accordingly, the number of children of a node is
fewer, making the write ampli�cation smaller. RocksDB has less
serious or no over�ows and thus su�ers larger write ampli�cation
and lower throughput. However, the over�ow not only lengthens
the time to reach the stable performance but deteriorates the tail
latency. Speci�cally, the data over�ow need be compacted, which
is concurrent with the running workload and occupies part of the
disk bandwidth. The phase involving compactions to move down
all data over�ows is called the tuning phase.

The write ampli�cation caused by each internal level of LSA is
about 1, as shown in Table 4. In IAM, level 3 is the mixed level.
The write ampli�cation of each level above level 3 is about 1, and
the one of level 3 is 2.52. Level 4 is a merging level and the write
ampli�cation is larger, 4.05. All the phenomena conform to the
theoretical analysis in Section 5.3.1. Most nodes in level 5 are moved
directly from level 4 without rewriting, and therefore the write
ampli�cation is small. Multi-threaded IamDB and RocksDB have
a slight increase in write ampli�cation because they perform data
�ush or compaction more promptly.

LevelDB su�ers serious bursts and stalls[17] while RocksDB
has extra control for stalls[5]. For SSD, LevelDB has a very large
maximum latency, 136.2s, but a good 99% latency, 1.48ms. The
maximum latency of RocksDB is better, 0.80s, but the 99% latency
is worse, 4.54ms. With various maximum latencies, comparing the
99% latencies is meaningless.

Without the extra control of RocksDB, LSA achieves the similar
maximum latency with RocksDB and better 99% latency than Lev-
elDB. Speci�cally, the maximum latency is 1.12s and the 99% one is
only 0.31ms. IAM-tree falls in-between of LevelDB and RocksDB
for both tail latencies, whose maximum latency is 7.4s and 99%
latency is 2.67ms. The results are similar in HDD, and thus are
omitted here. Accordingly, reducing write ampli�cation not only
improves throughput but also QoS. It is reasonable to infer that the
QoS of IamDB will be better with the optimizations of RocksDB.

6.3 Write-intensive Workloads
YCSB de�nes six workloads, namely workload A, B, ... and F. Work-
load A and F are write-intensive ones. Workload A, the update
heavy workload, has a mix of 50/50 reads and writes. Workload

F, the read-modify-write workload, has a mix of 50/50 reads and
reads-modi�es-writes. Figure 7 shows all the results normalized
to LevelDB’s throughputs. For workload A and F in SSD, the con-
clusions for tail latencies are similar with for loads and thus the
speci�c numbers are omitted, that is, LSA is the best and IAM takes
the second place, both way outperforming LSM.

The bottleneck for HDD is with random reads and the perfor-
mance of all trees is alike. However, due to serious over�ows in
LSM, LSA and IAM have better throughputs than LevelDB for HDD
with 100GB data by 40%-50%. For 1TB data, LSA and IAM obtain
1.1 and 1.3⇥ better throughputs. RocksDB performs similarly with
IAM for no over�ows. For the scenarios where the bottleneck are
queries, no stalls occur, thus the maximum latencies are all small.
Hence the comparison of 99% latency is meaningful. For 100GB
data in HDD with workload A, the 99% latency of LevelDB is 0.31s
and RocksDB is 0.37s, whereas both LSA and IAM are 0.18s. For
1TB HDD, LevelDB is 0.39s and RocksDB is 0.27s, while LSA is
0.33s and IAM is 0.26s. The results of workload F are similar with
those of workload A. In a word, IAM is the best for HDD in both
throughput and QoS.

6.4 Read-intensive Workloads
Workload B, C and D are read-intensive workloads. Workload B is
read heavy and workload D is read latest, both of which have a mix
of 95/5 reads and writes. workload C is the read only workload.

Due to serious over�ows and large write ampli�cations in LSM,
it takes time for the system to become stable after loading. In Figure
7 the throughputs are the average performance of the default one-
hour runs. The number for RocksDB in Figure 7c is also the stable
performance since it has no over�ows with 1TB data for HDD. SSD
has higher bandwidth, thus the systems get into the stable state
faster than in HDD. In Figure 8, the stable performance is used for
each system, which is in favor of the LSMs.

First, we discuss the performances of IamDB and LevelDB for
the read-only workload C. Since LevelDB has the longer tuning
phase, LSA and IAM obtain 15% and 25% improvement for SSD,
outperform it by 1.5⇥ for HDD with 100GB data, and by 1.3⇥ and
1.4⇥ for 1TB data, respectively. Their stable throughputs are nearly
the same, as shown in Figure 8. The throughputs for workload B are
similar with those of workload C, while LSA and IAM respectively
obtain 23% and 32% enhancement for SSD. The 5% writes are faster,
furthermore occupy less bandwidth leading to the improvement.
For HDD, the bottleneck is reads, and adding a few writes makes
little di�erence. For the read-latest workload D, IamDB always
achieves the best because it divides the latest data in top levels into
smaller pieces and obtains better cache locality.

For the stable performances with the three workloads in both
SSD and HDD, both IAM and RocksDB have their own advantages
and the di�erence is small, as shown in Figure 8 and 7c. It further
con�rms the read performances of IAM and LSM are almost the
same. However, when RocksDB needs a long tuning phase, IAM
wins, as shown in Figure 7a and 7b. Generally speaking, IAM and
LSA have similar throughputs, while IAM is the most stable one
and always obtains the �rst or second best in both throughput
and QoS, shown in Table 5. This is because on one side, IAM has
smaller write ampli�cation and shorter tuning phase as well as the

On Integration of Appends and Merges in Log-Structured Merge Trees ICPP 2019, August 5–8, 2019, Kyoto, Japan

0

0.5

1

1.5

2

2.5

A B C D E F G

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

L

20.6k 44.1k 41.7k 92.1k 3.1k 20.8k 55.8

R-1t
R-4t
A-1t

A-4t
I-1t

I-4t

a Throughputs for 100GB data in SSD

0

0.5

1

1.5

2

2.5

A B C D E F G

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

L

566 553 537 1397 96 567 12.8

R-1t A-1t I-1t

b Throughputs for 100GB data in HDD

0

0.5

1

1.5

2

A B C D E F G

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

L

381 383 386 644 66.7 419 10.0

R-1t A-1t I-1t

c Throughputs for 1TB data in HDD

Figure 7: The normalized throughputs under the YCSB workloads.

Table 5: The 99% latencies for queries-intensive workloads. A cell contains the latencies for 100GB SSD, 100GB HDD and 1TB
HDD respectively. The top two results for each workload are shown in boldface.

B C D E G

L 2.75ms, 0.31s, 0.37s 2.78ms, 0.32s, 0.41s 1.78ms, 0.20s, 0.30s 116.9ms, 1.00s, 1.19s 0.49s, 5.49s, 5.44s
R-1t 2.25ms, 0.35s, 0.24s 2.15ms, 0.34s, 0.24s 2.47ms, 0.18s, 0.19s 138.1ms, 1.14s , 0.87s 0.54s, 6.02s, 3.79s
A-1t 2.87ms, 0.18s, 0.30s 2.95ms, 0.18s, 0.29s 1.79ms, 0.10s, 0.21s 86.4ms, 1.41s, 2.17s 0.36s, 6.81s, 7.70s
I-1t 2.58ms, 0.18s, 0.25s 2.58ms, 0.18s, 0.25s 1.73ms, 0.11s, 0.19s 33.6ms, 0.82s, 0.96s 0.29s, 4.88s, 4.16s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

B C D E G

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

L

46.4k 49.2k 93.2k 3.6k 63.9

R-1t A-1t I-1t

Figure 8: The stable throughputs in
query-intensive workloads for 100GB
data in SSD.

0

0.5

1

1.5

2

2.5

fllseq-SSD fllseq-HDD readseq-SSD readseq-HDD

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

L

113k 78.7k 121k 55.5k

R-1t A-1t I-1t

Figure 9: The throughputs of sequential
load and read for 100GB data. They are
nearly impervious to loaded data size.

 60
 80

 100
 120
 140
 160
 180
 200
 220

fillseq hash-load fillrandom overwrite

sp
ac

e
us

ag
e(

GB
)

L R-1t A-1t I-1t

Figure 10: The space usages ofwrite tests
for 100GB data in SSD. The space usage is
impervious to the media.

same read ampli�cation; on the other side, the performance of LSA
excessively depends on the Bloom �lters which have false positive
and lengthen the tail latency.

6.5 Short-running Scan Workloads
Workload E, the short range (0-100 records) workload, has a mix of
95/5 short range scans and writes. Workload G, the relatively long
range (0-10,000 records) workload, has a mix of 95/5 relatively long
range scans and writes. The queries in both workload E and G are
regarded as short-running because several requests �nish in only
one second even for slow HDD. The performance of long range
scans is investigated in Section 6.6.

Compared with LevelDB for workload E, LSA respectively su�ers
more than 2.3⇥ worse throughputs because of the 5⇥ larger read
ampli�cation, as described in Section 5.3.2. For workload G, LSA
does not lose in throughputs in SSD but still has 1.7⇥ and 1.9⇥
smaller throughputs in HDD. On the contrary, IAM obtains small
improvement for both workload E and G. The reasons lies in the

same read ampli�cation and the shorter tuning phase. For the stable
performances shown in Figure 8, LSA su�ers 2.9⇥worse throughput
and loses 11% throughput, respectively, while IAM has the same
throughputs with LevelDB for both workloads.

Comparedwith RocksDB for bothworkloads in SSD, IAMachieves
the similar performance. For workload E in HDD with 100GB data,
IAM outperforms by 11%. For workload E and G in HDD with 1TB
data, RocksDB achieves 1.4⇥ better throughputs than LevelDB and
4.0⇥ and 2.6⇥ better than LSA, respectively. Because of the same
read ampli�cation, IAM only loses 15% and 14% performances to
RocksDB. The performance loss is due to the smaller probability
that the disk seek for the mixed level is cached in memory, as men-
tioned in Section 5. Because RocksDB has optimized especially for
SSD[7], the stable performance of workload E in SSD is better, that
is, it obtains 1.3⇥ better performance than both LevelDB and IAM.

For 100GB tests in both SSD and HDD, IAM always has the best
99% latency. For 1TB data, RocksDB achieves only a little bit better
than IAM. LSA is the worst and usually much worse than the others,

ICPP 2019, August 5–8, 2019, Kyoto, Japan Caixin Gong, et al.

while IAM outperforms LevelDB. IAM takes at least the second
place in both throughput and QoS and accordingly is comparable
to that of LSM.

6.6 db_bench Tests
For comprehensive evaluation, we also run two tests included in
db_bench. One is the sequential load, inserting ordered records,
and the other is the sequential read (long range scan), scanning all
records in a data store. Figure 9 shows the throughputs.

For sequential load, all trees write the inserted data to disk twice,
�rst to the log and then from immutable memtable to the corre-
sponding on-disk level of a tree. In consequence, the throughputs
of LevelDB and IamDB are nearly the same. However, RocksDB has
about 25% performance drop. For sequential read, IAM is the best.
The bandwidth of reading each sorted sequence from disk becomes
the bottleneck, especially for SSD. Though the throughputs of all
trees should be similar in theory, the long tuning phase weakens
the performance of two LSM implementations.

6.7 Space Usage
Figure 10 shows the space usage, another important factor espe-
cially for expensive SSD, under sequential load, hash load, random
load and overwrite tests. The �rst two have no updates or deletes,
therefore the space usages are the same. Since random load involves
many updates and overwrite only contains updates, the space us-
ages di�er. The throughputs of random load and overwrite are
similar with that of hash load and hence are not shown. Compared
with LevelDB, RocksDB has fewer over�ows and accumulates fewer
outdated records. Speci�cally, it saves 4.1% and 1.5% space after
random load and overwrite. IAM has the similar space ampli�ca-
tion with LSM, as discussed in Section 5. In practice, IAM saves
space because it has no data over�ows. It respectively saves 6.0%
and 11.6% spaces compared with LevelDB and saves 2.0% and 10.3%
with RocksDB. As analyzed theoretically, LSA takes much more
space, 25.8% more for random load and 2.3⇥ more for overwrite
due to its larger space ampli�cation.

6.8 Discussion on Append Trees
Section 4 describes how LSA solves the issues of existing append
trees shown in Table 2. LSA/IAM avoids the worst write case since
the number of children of a node cannot exceed 20. The performance
of LSA/IAM for sequential write is good because no records need
rewrites, which is veri�ed in Section 6.6. The performance of FLSM
for sequential write is also tested under the default con�guration
for 100GB data in SSD. The records are always rewritten when
compacted to a level, and its write ampli�cation is 6.42. The IOPS
is 16.7k, which is 6.7⇥ worse than LevelDB and IamDB. LSA/IAM
supports scan as planned. As the experiments show, LSA solves the
issues of the existing append trees, so is IAM since it is designed
based on LSA.

7 CONCLUSIONS
This paper proposes Log-Structured Append-tree (LSA-tree), based
on which further proposes Integrated Append/Merge-tree (IAM-
tree). Compared with LSM for both HDD and SSD, IAM gains much
better performance for loads and write-intensive workloads, the

same (even better) performance for read-intensive workloads and
matches LSM for short-running scans. In addition, IAM obtains the
most stable tail latency and saves 10-12% disk space in the overwrite
test. The smaller write ampli�cation of IAM may lengthen the life
span of SSD. In a word, IAM outperforms LSM in many aspects and
is a better alternative to LSM in almost every practical scenario.

LSA is a special case of IAM with minimum merges. The write
ampli�cation increases merely by about 1 when the data stored
increase by a factor of 10. LSA gains the best performance for
writes but has very poor performance for short-running scans and
takes much more space for overwrite. Thus, LSA is suitable for the
scenarios with few short-running scans, updates and deletes.

8 ACKNOWLEDGEMENTS
This research was sponsored by the National High Technology
Research and Development Program of China, grant 2017YFC08038,
and the National Science Foundation of China, grant 61572377 and
61572373.

REFERENCES
[1] Oana Balmau, Rachid Guerraoui, Vasileios Trigonakis, and Igor Zablotchi. 2017.

FloDB: Unlocking memory in persistent key-value stores. In Proceedings of Eu-
roSys’17. 80–94.

[2] Burton H Bloom. 1970. Space/time trade-o�s in hash coding with allowable
errors. Commun. ACM 13, 7 (1970), 422–426.

[3] Fay Chang, Je�rey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008.
Bigtable: A distributed storage system for structured data. TOCS 26, 2 (2008), 4.

[4] Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better Space-Time Trade-O�s for
LSM-Tree Based Key-Value Stores via Adaptive Removal of Super�uous Merging.
In Proceedings of SIGMOD’18. 505–520.

[5] Facebook. 2017. Write stalls. https://github.com/facebook/rocksdb/wiki/writestalls.

[6] Facebook. 2019. MyRocks. http://myrocks.io/.
[7] Facebook. 2019. RocksDB. https://rocksdb.org/.
[8] Google. 2019. LevelDB. http://leveldb.org/.
[9] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, Andrea ArpaciDusseau, and

Remzi Arpaci-Dusseau. 2018. Redesigning LSMs for nonvolatile memory with
NoveLSM. In Proceedings of ATC’18. 993–1005.

[10] Avinash Lakshman and Prashant Malik. 2010. Cassandra: A decentralized struc-
tured storage system. ACM SIGOPS Operating Systems Review 44, 2 (2010), 35–40.

[11] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C Arpacidusseau,
and Remzi H Arpacidusseau. 2016. WiscKey: Separating keys from values in
SSD-conscious storage. In Proceedings of FAST’16. 133–148.

[12] Chen Luo and Michael J. Carey. 2018. LSM-based Storage Techniques: A Survey.
https://arxiv.org/abs/1812.07527.

[13] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Informatica 33, 4 (1996), 351–385.

[14] Raju Pandian, Kadekodi Rohan, Chidambaram Vijay, and Abraham Ittai. 2017.
PebblesDB: Building key-value stores using fragmented log-structured merge
trees. In Proceedings of SOSP’17. 497–514.

[15] Kai Ren and Garth A Gibson. 2013. TABLEFS: enhancing metadata e�ciency in
the local �le system. In Proceedings of ATC’13. 145–156.

[16] Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson. 2017. SlimDB: A space-
e�cient key-value storage engine for semi-sorted data. In Proceedings of the
VLDB Endowment, Vol. 10. 2037–2048.

[17] Russell Sears and Raghu Ramakrishnan. 2012. bLSM: a general purpose log
structured merge tree. In Proceedings of SIGMOD’12. ACM, 217–228.

[18] Hoang TamVo, ShengWang, Divyakant Agrawal, Gang Chen, and Beng Chin Ooi.
2012. LogBase: a scalable log-structured database system in the cloud. Proceedings
of the VLDB Endowment 5 (2012), 1004–1015.

[19] Wu Xingbo, Xu Yuehai, Shao Zili, and Jiang Song. 2015. LSM-trie: An LSM-
tree-based ultra-large key-value store for small data. In Proceedings of ATC’15.
71–82.

[20] Ting Yao, Jiguang Wan, Ping Huang, Xubin He, Qingxin Gui, Fei Wu, and Chang-
sheng Xie. 2017. A light-weight compaction tree to reduce I/O ampli�cation
toward e�cient key-value stores. In Proceedings of MSST’17.

[21] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G Andersen, Michael
Kaminsky, Kimberly Keeton, and Andrew Pavlo. 2018. SuRF: Practical range
query �ltering with fast succinct tries. In Proceedings of SIGMOD’18. 323–336.

	Abstract
	1 Introduction
	2 Background
	2.1 LSM and LevelDB
	2.2 The Issues of Append Trees

	3 Related Work
	4 The Log-Structured Append-tree
	4.1 The Overall Structure
	4.2 LSA Operations

	5 The Integrated Append/Merge-Tree
	5.1 The Flush Strategy
	5.2 User Operations
	5.3 Amplification Analysis

	6 Performance Evaluation
	6.1 Experiment Setup
	6.2 Hash-Load Performance
	6.3 Write-intensive Workloads
	6.4 Read-intensive Workloads
	6.5 Short-running Scan Workloads
	6.6 db_bench Tests
	6.7 Space Usage
	6.8 Discussion on Append Trees

	7 Conclusions
	8 Acknowledgements
	References

