
Int. J. Embedded Systems, Vol. 8, Nos. 2/3, 2016 237

Copyright © 2016 Inderscience Enterprises Ltd.

MGPA: a multi-granularity space preallocation
algorithm for object-based storage devices

Shuibing He, Yuanhua Yang* and Xianbin Xu
School of Computer,
Wuhan University,
Wuhan, Hubei, China
Email: heshuibing@whu.edu.cn
Email: yangyuanhua123@163.com
Email: xbxu@whu.edu.cn
*Corresponding author

Xiaohua Xu
EECS Department,
University of Toledo,
Toledo, USA
Email: xiaohua.xu@utoledo.edu

Abstract: Object-based storage systems are promising because they effectively narrow the
performance disparity between processors and storage devices. To achieve high performance,
object-based storage devices (OSDs) generally preallocate disk space for an object when the
desired space is not allocated. However, most existing space allocation algorithms utilise
fixed-size preallocation strategies to preserve space for objects, resulting in poor disk space
continuity when OSDs concurrently serve multiple objects. In this work, we propose MGPA, an
adaptive multi-granularity object space preallocation algorithm to improve the I/O performance
of OSDs. MGPA exploits both a user-informed method and an adaptive varied-size method to
preallocate disk space. In the simulation-based experimental results, we show that MGPA can
significantly improve the object space continuity, which will improve the long-term I/O
performance of OSDs.

Keywords: object-based storage system; OBSS; object-based storage device; OSD; space
preallocation.

Reference to this paper should be made as follows: He, S., Yang, Y., Xu, X. and Xu, X. (2016)
‘MGPA: a multi-granularity space preallocation algorithm for object-based storage devices’,
Int. J. Embedded Systems, Vol. 8, Nos. 2/3, pp.237–248.

Biographical notes: Shuibing He received his PhD in Computing Science from Huazhong
University of Science and Technology, China in 2009. He is a Lecturer at the School of
Computer, Wuhan University, China. His research areas include parallel computer architecture,
distributed storage and file systems, and embedded system.

Yuanhua Yang is a PhD student at the School of Computer, Wuhan University, China. His
research interests include computer architecture, distributed storage systems, embedded systems.

Xianbin Xu received his PhD in School of Computer from Wuhan University, China in 2005. He
is a Professor of School of Computer, Wuhan University. His research areas include computer
architecture and I/O systems.

Xiaohua Xu received his PhD in Computer Science from Illinois Institute of Technology, USA in
2012. He is currently a Research Assistant Professor in the EECS Department of University
of Toledo. His research interests include cyber security, cloud computing, sensor networks, and
wireless networking.

238 S. He et al.

1 Introduction

Many applications in important fields, such as astronomy,
molecular dynamics, and climate modelling, are becoming
increasingly data-intensive. For example, in Kandemir et al.
(2008), some applications will generate more than 50 GB
data on disk systems while more than half of the
applications’ total execution time is spent on disk I/O
operations. Thus, efficient I/O support is critical to improve
the performance of data-intensive applications (He et al.,
2013b). If we can significantly increase the efficiency
of data access on disk storage systems, an application’s
performance can benefit from the advancements of
multi-core systems, and the overall system’s utilisation can
be largely improved.

To meet the high I/O demands, many data-intensive
applications rely on parallel storage systems to provide data
accesses (He et al., 2013a, 2014; Li et al., 2010; Dong et al.,
2010; Bhardwaj and Sinha, 2006). One of the parallel
storage systems, object-based storage system (OBSS), has
recently gained enormous popularity in the network storage
area (Mesnier et al., 2005; Kang et al., 2011, 2014). This is
due to the merits of OBSS in cross-platform, including data
sharing, policy-based security, direct data access, and high
scalability. Many OBSSs, such as lustre (Schwan, 2003),
storage tank (Menon et al., 2003), PanFS (Nagle et al.,
2004) and Ceph (Weil et al., 2006), have been developed by
the industrial community. To regulate the progressively
sophisticated object-based technology, the object-based
storage interface standard (Weber, 2009) (also referred as
T10 OSD standard) is being developed by the Storage
Network Industry Association. With a more expressive
object interface, object-based storage devices (OSDs) are
promisingly gaining intelligence (He et al., 2012).

OBSS typically consists of clients, metadata servers
(Hua et al., 2011), and OSDs. OSDs are the ultimate data
container for user data (He and Feng, 2007, 2008). In a
large scale OBSS, there may be thousands of OSDs
cooperating together to support high I/O performance
(Hospodor and Miller, 2004). As a result, the performance
of the overall storage system can be significantly improved
even if the performance improvement of a single OSD is
minimal. Therefore, designing high-performance OSDs is
critical to meet the increasing I/O demands of data-intensive
applications.

In OBSSs, each OSD relies on an object-based file
system (OFS) to manage data. Existing OFSs can be divided
into two categories: LOFSs and SOFSs. LOFSs adopt a
local file system [such as Ext3 (Ts’o and Tweedie, 2002)]
to store objects, allowing for simple design and
implementation. In contrast, SOFSs use specific
components to manage objects by considering the unique
workload characteristic of OBSS (Wang et al., 2004b). For
example, an extent-based object file system (EBOFS)
(Weil, 2004) is designed to efficiently manage data in Ceph
system (Weil et al., 2006). In an OFS, object space allocator

is responsible for allocating disk space for objects. Because
sequential accesses will reduce disk seek overhead, most
allocators in both LOFSs and SOFSs attempt to allocate
continuous space for user objects. To obtain high I/O
performance, allocators usually preallocate free space
for an object larger than the actual space needed. For
example, EBOFS uses a predefined size for object space
preallocation, and a local file system in LOFSs conserves a
data region of approximately several kilobytes per request.

However, most available allocators in both LOFSs and
SOFSs only use a single-granularity space preallocation
strategy. Although these methods can help increase I/O
throughput in a relatively simple environment, their effects
are limited to situations with low I/O concurrency. As a
shared resource, it is common in OSDs to concurrently
serve multiple objects for data-intensive applications.
Because OSDs need to concurrently allocate space for
multiple objects, the disk space preallocated for the current
object may be interleaved with the space allocated for other
objects. Figure 1 describes an example of space allocation
when an OFS allocates space for two objects concurrently.
In this example, we assume that the OFS preallocates
fixed-size space for a single request when the required space
has not been allotted. For the first write request W11 on
Object1, the OFS allocates the needed space. In addition, a
neighbouring free space is preallocated. When the second
write request W12 on Object1 arrives, its space has been
allocated. However, because the OFS also allocates space
for other requests on Object2 concurrently, the space behind
W12 is allocated to Object2. In such a way, the object space
continuity is largely decreased, leading to low disk I/O
throughput even when the client accesses the object
sequentially.

In this paper, we propose MGPA, an adaptive
multi-granularity object space preallocation algorithm to
improve the I/O performance for OSDs. MGPA exploits
both a user-informed method and an adaptive varied-size
preallocation method to preserve disk space for objects. If
the size of an object can be obtained in advance, MGPA
attempts to allocate a continuous disk space for the whole
object with the informed size. Otherwise, MGPA selects a
proper preallocation size for the object depending on its
current size. In this case, MGPA divides the object size in
the OSD into different ranges, each of which is configured
with a preallocation granularity. When allocating space for
an object, MGPA adaptively chooses various preallocation
granularities depending upon the current object size.

We extended the user object information attribute page
in the T10 OSD standard to enable our MGPA algorithm
and implemented MGPA under EBOFS. Our extensive
simulation-based experiments validate that MGPA can
significantly improve the object space continuity when
OSDs concurrently provide I/O services for multiple
objects. Consequently, the long-term I/O throughput of the
OSDs can be significantly improved.

 MGPA: a multi-granularity space preallocation algorithm for object-based storage devices 239

Figure 1 Object space allocation example for two objects (see online version for colours)

Note: The colourful box means the space which has been allocated in disk, the white blank box means free space, while the

colourful box (e.g., W12 and W14) with blue shadow means space preallocated in the previous write request.

The rest of this paper is organised as follows.
In Section 2, we present the background and the related
work on object space preallocation. We describe the
multi-granularity object space preallocation algorithm in
Section 3. In Section 4, we use extensive experiments to
evaluate our algorithm and analyse the results. Finally, we
conclude this paper in Section 5.

2 Background and related work

In this section, we first provide an overview of the OBSS;
then we present the related works on object space
preallocation.

2.1 Overview of object-based storage

An object is a storage container of variable size and can be
used to store any type of data. It behaves exactly like a file,
which can be created and deleted, and can grow and shrink
its size. An object also has numerous attributes that can
describe the characteristics of the data.

The architecture of a typical OBSS is shown in Figure 2.
The OBSS consists of three main parts: the clients, the
metadata server (MDS), and the OSDs. The MDS provides
object mapping information and authentication for clients’
data accesses. When a client accesses data in an OSD, it
first contacts the MDS and obtains the mapping information
about the object. Then the client interacts with the OSD
directly. Here the request contains an object ID, an offset
within the object, attribute values, and so on. Finally, the
OSD receives the object-based request and performs
corresponding operations.

The OSD is one of the core components of OBSSs. It is
a versatile storage device that contains CPU, memory,
storage media (disk), and network interface. Generally, the
OSD provides three major functions: object management,
device security control, and network communication.

Figure 2 The architecture of an OBSS (see online version
for colours)

The T10 OSD standard defines the OSD model and the
basic command set (e.g., READ OBJECT and WRITE
OBJECT command) that operate data on the OSD.
Compared to a traditional file, objects provide a more
expressive interface. Each object is identified by an object
ID, and can be accessed by offset, length, and so on.
Besides user objects, there are three kinds of objects,
namely root objects, partition objects, and collection
objects. The last three types of objects can help to address
user objects more efficiently.

In addition to data access commands, the T10 OSD
standard also defines attribute commands (e.g., GET
ATTRIBUTES and SET ATTRIBUTES) that allow users to
set and get attributes. An object can have many different
attributes, related attributes are organised into one attribute
page. Each attribute page has a unique page number, and
each attribute in the page has a unique attribute number.
Besides the attributes defined by the OSD standard, if
necessary a user can define their flown attributes. In this

240 S. He et al.

paper, we extend the user object information attribute
page, and add two attributes – informed-size (Section 3.1)
and CLOSE (Section 3.2) to support the proposed
multi-granularity object space preallocation approach.

2.2 LOFS space preallocation

Because of the convenience in practical design and
implementation, LOFSs usually adopt a local file system,
such as Ext3 (Ts’o and Tweedie, 2002), Ext4 (KV et al.,
2008), Reiserfs (Buchholz, 2006), and XFS (Mostek et al.,
1999), to store objects. In this case, an object is mapped to a
file, and LOFSs use the conventional preallocation methods
to prevent disk fragmentation.

Conventional preallocation methods allocate some disk
space to store a file prior to write requests (Powell, 1977),
and these methods can be conducted in the operating system
kernel or user mode. For the kernel mode, the file space
allocator preallocates a fixed-size region of tens of
kilobytes in addition to the size of the file write request. For
example, EXT3, EXT4, and XFS adopt these methods
(KV et al., 2008; Ts’o and Tweedie, 2002) to improve I/O
performance. In this way, a file continually grows by
processing continuous write requests until the final file is
generated. While these methods are effective to reduce the
disk fragmentation, it is difficult to choose suitable sizes for
different files. If the size is too large, a minimal amount of
continuous free space is left for the newly created file as the
file system ages. If the size is too small, it is not very
effective for large-size files. In contrast, MPGA uses an
adaptive multiple-granularity method to preserve space for
objects depending upon their growing sizes. Thus, MPGA
can keep the preallocation neither conservative nor
aggressive.

For the user mode, a user or an application predicts the
final size of a file and preallocates enough space. For
example, a POSIX standard function fallocate(⋅) is currently
implemented by Lustre. In IBM (2014), IBM SAN file
system has file preallocation policies specified by the
administrator. It is very effective at reducing file fragments
if these approaches are properly used. However, they are not
feasible when the user or application is unable to predict the
final size of the file. Furthermore, it is difficult to use these
methods because it is problematic to initiate a preallocation
with a narrow `file’ interface. Compared to these methods,
MGPA utilises the expressive object interface to perform
informed preallocation, and also adds an adaptive strategy
to preserve space for objects. Thus, MGPA is extremely
applicable.

2.3 SOFS space preallocation

SOFSs use their flown data structures and disk space
allocators to manage object data. Space allocator is
responsible for appropriating space when clients write new
data to an object and reclaiming space when the object is
deleted. To maximise system efficiency and scalability,
EBOFS utilises extent as an object space allocation unit
(McVoy and Kleiman, 1991; Schindler et al., 2002). In

addition, EBOFS adopts balanced trees (B+trees) to manage
disk free space and object allocated space, thus
corresponding lookup overhead can be significantly
decreased.

There are numerous object create, write and delete
operations during the lifetime of an object file system. In
order to reduce the object fragmentation as the file system
ages, EBOFS preallocates disk space for each object write
request. This approach effectively reduces the number of
extents within an object, and attempts to allocate writes
adjacently. However, because it uses a fixed-size strategy,
this approach leads to the drawback mentioned in Section 1.
MPGA adopts adaptive multiple-granularity to preallocate
data, allowing object space to be more continuous during
the lifetime of the object file system.

3 Multi-granularity object space preallocation

Traditional preallocation methods are not effective for
OSDs when they concurrently provide I/O services for
multiple objects. We propose MGPA, a multi-granularity
object space preallocation algorithm to improve the I/O
performance of OSDs. MGPA adjusts its preallocation size
depending on two policies: the informed object size and the
growing object size.

3.1 User-informed preallocation

For many data intensive applications, data access patterns
are generally independent of the data values and these
patterns have predictable alterations (Wang and Kaeli,
2003; Zhang and Jiang, 2010). For example, the BTIO
application (Wong and der Wijngaart, 2003), an I/O kernel
responsible for solving block-tridiagonal matrices on a three
dimensional array, has the following feature. Once the size
of the array, the number of time steps, the write interval,
and the number of processes are given, the I/O behaviours
of the application are determined and the final size of the
user object can be predicted before the program executes.
Users with thorough knowledge about their application can
easily predict the I/O behaviours of the applications.

The predictability of object size provides an opportunity
to achieve improved object space preallocation. This is
because more accurate preallocation for the whole object
can largely alleviate object fragmentations when OSDs
serve multiple objects concurrently. As a result, MPGA uses
a user-informed preallocation policy to preserve space when
the size of an object can be obtained in advance. Specially,
with the expressive object interface, MGPA preallocates
space for each object as follows.

1 The user object information attribute page for each
object in the system is extended to support the
preallocation method. For each object, an attribute,
named informed-size, is added into the attribute page.
Table 1 summaries the content of the extended attribute
page.

 MGPA: a multi-granularity space preallocation algorithm for object-based storage devices 241

2 If users know the final object size in advance when they
issue CREATE OBJECT commands, users can set the
informed-size to the desired value with the SET
ATTRIBUTES command. Otherwise, the size is
set to 0.

3 When a user sends a WRITE OBJECT command to the
OSD, MGPA gets the informed-size in the attribute
page with the GET ATTRIBUTES interface for the
current object. If the informed-size is not 0, MGPA will
set the preallocation size to the informed value, and
tries to preserve the whole space for the current object.

Table 1 The user object information attribute page

Attribute
number

Length
(bytes) Attribute description User

settable

0h 40 Page identification No
1h 8 Partition_ID No
2h 8 User_object_ID No
3h 8 Informed-size Yes
4h 8 CLOSE Yes
5h–8h Reserved No
9h Variable Username Yes
...

Notes: The extended attributes are 03h and 04h
attributes, namely informed-size and CLOSE, and
they can be set by users. Other attributes in the table
are defined by the T10 OSD standard.

3.2 Adaptive varied-size space preallocation

In practice, there are a number of objects whose sizes
cannot be determined in advance. Requiring users to inform
all object sizes is not feasible. In this case, in order to
reduce disk fragmentation and increase the object space
continuity for long-term I/O operations, MGPA uses
adaptive varied-size preallocation to preserve space for
objects.

MGPA divides the object size in an OSD into a series of
excluding ranges, each of which is configured with a
corresponding preallocation granularity. The larger the
range of the current object size, the more defined
granularity of the object. Initially, MGPA allocates its space
with a small preallocation size when an object is created.
Gradually, a large preallocation space will be assigned to
the current object as it grows. In such a way, an adaptive
varied-size preallocation can be performed for the object
during its lifetime. Because the preallocation granularity is
increased gradually, both conservative and aggressive disk
space allocation can be avoided.

Assuming s1, s2, ..., and sn are the n boundaries used to
divide the size of the object, and g1, g2, ..., gn, and gn+1 are
the n + 1 preallocation granularity, then equation (1)
calculates the preallocation size for the current object with a
growing size of Sobj

1 1

1 1

1

, if
- , if

, if

obj

i i obj i

n obj n

g S s
prealloc size g s S s

g S s
+ +

+

<⎧
⎪= ≤ <⎨
⎪ >⎩

 (1)

Figure 3 illustrates the space allocation process of an object
with growing sizes. In this example, when the object size is
below S1, MGPA preserves space with size g1 each time for
the object. This preallocation size is repeated until the
current object size is above S1. Similarly, a preallocation
size of g2 is adapted when the object size is between S1 and
S2. A dynamic size is used to preallocate disk space for the
object as it grows.

Theoretically, the object size in an OSD can be divided
into unlimited ranges. However, because practical I/O
workloads of OSDs usually demonstrate some unique
characteristics (Wang and Kaeli, 2003), we only use three
ranges to preallocate space in our current design. The
related parameters are chosen based on experiments and
experience, and our observations show that they are
effective in preallocating space for objects (in Section 4).
We leave the more delicate design to our future work.

Figure 3 Preallocation size is adjusted as the object grows

242 S. He et al.

One concern with varied-size preallocation is that the
preallocated space may not actually be used by the object,
leading to disk space waste and increased internal disk
fragmentation. To overcome this potential drawback,
MGPA releases the unused disk space when the object does
not grow any longer with an attribute-synergistic method as
follows.

1 A new attribute CLOSE is added into the User Object
Information attribute page described in Table 1.
CLOSE is a Boolean variable, which indicates whether
the unused preallocation space should be reclaimed.

2 Once the users finish their object requests (like the file
close operations in local file systems), they can set
CLOSE to be TRUE.

3 If MGPA detects that the CLOSE value is TRUE
through the attribute operation interface when
processing object requests, it will release the unused
space of the object.

3.3 Object write process

Object space preallocation occurs in the process of object
write operations. Figure 4 shows the flowchart of a write
operation with the proposed object space preallocation
method.

Figure 4 Object write-process flowchart

First, the allocator checks if the data is written to an
allocated space. If yes, the data will be directly written to
the allocated space. Otherwise, MGPA is triggered to
preallocate space for the current object. In this case, MGPA
first determines whether the informed-size is 0 by getting
the object’s extended attributes. If it is true, MGPA will use
the informed-size to preallocate disk space for the current
request. Otherwise, MGPA will preallocate space based on
the policy described in Section 3.2. In Figure 4, two sizes of
s1 and s2 are used to divide the object size into three ranges,
and three granularity of g1 to g3 are adopted for space
preallocation respectively.

4 Evaluation

In this section, we conduct a number of experiments to
evaluate the MGPA preallocation algorithm with the
existing fixed-size preallocation algorithm (FSPA). Since a
newly created file system has sufficient free disk space and
is not sensitive to different preallocation policies, we focus
on aged file systems in this paper. As EBOFS is a typical
and excellent specific object file system, we evaluate
different preallocation policies based on the EBOFS file
system.

4.1 Experimental setup

Since benchmarking a fully loaded disk over its expected
lifetime requires a long time, we use a simulator integrated
with different preallocation policies to allocate disk space in
our experiments. The simulator utilises the allocation code
of EBOFS but performs all allocation operations in memory
as in Weil (2004). This allows analysis of file system
fragmentation over much longer time than real benchmarks.

Modelling file system workload as seen by an individual
OSD in a large system is a surprisingly complicated
problem. Since it is impossible to characterise the workload
of a system that does not exist yet, the simulator instead
approximates a nearly worst case behaviour pattern:
all writes are submitted to the device in small increments,
proceed in parallel, and new write streams continue to arrive
at regular intervals. The result is that at any given point in
time, it is likely that one or more large writes are in progress
to large objects, while writes for small objects continue to
arrive concurrently.

The underlying workload being serviced by the OSD is
assumed to be typical: most writes are sent to small objects,
most data is written to large objects, and most files are
deleted either while they are young or never at all. The
statistics of object operations in our workload are shown in
Table 2.

Table 2 The statistic of object operations

Operation Number of objects Total space

Read 200,297 742.4 GB
Create/write 410,749 1,545.1 GB
Delete 388,954 1,446.2 GB

 MGPA: a multi-granularity space preallocation algorithm for object-based storage devices 243

Figure 5 shows the size distribution for all objects in the
object-based file system. All objects are between 0 KB and
2 GB, and a substantial amount are between 512 KB and
16 MB, occupying 85% of the overall object space. The
workload characteristics are similar with those in the real
traces collected from LLNL trace (Wang et al., 2004a).

Figure 6 describes the number of objects existing in the
object file system, and Figure 7 illustrates the occupied disk
space for all objects on a 120 GB disk as the file system
ages. From these figures, we can see that as users create and
delete objects, the statistics of objects are changed
gradually.

Figure 5 The size distribution for all objects in the file system (see online version for colours)

Figure 6 The number of the objects as file system ages (see online version for colours)

Figure 7 The occupied disk space for all objects as file system ages (see online version for colours)

244 S. He et al.

4.2 Evaluation metric

We use allocated space continuity to evaluate different
preallocation policies in this paper. Firstly, we introduce the
concept of block layout score (Smith and Seltzer, 1996),
denoted by LS(Block), to measure the space continuity for
each block (or extent) in an object. Assuming Bi,j is the jth
block of Object Oi, and P(Bi,j) is the physical address of Bi,j
on the disk, we calculate LS(Bi,j) as in equation (2).

() () (), , 1 ,

1, 0
 1, 0 & 1

0, otherwise
i j i j i j

j
LS B j P B P B−

=⎧
⎪= > + =⎨
⎪
⎩

 (2)

Secondly, we adopt LS(alloc) to measure the allocated space
continuity for all objects in the file system based on block
layout score. Assuming object Oi has sizeof(Oi) blocks, by
measuring all objects in the allocated space S, LS(alloc) can
be calculated as in equation (3).

()()
,1()

()

i

i

i

sizeof O
i jO S j

iO S

LS B
LS alloc

sizeof O
∈ =

∈

=
∑ ∑
∑

 (3)

In our experiments, we use LS(alloc) to evaluate the
behaviours of different object space preallocation
algorithms. Different algorithms lead to various LS(alloc)
values. Generally, an algorithm which has a value closer to
1 means it provides better I/O performance.

Table 3 The workload description in the experiments

Experiments Workload descriptions

set1 All object sizes are informed
set2 No object size is informed
set3 Partial object sizes are informed

4.3 Results

We conduct three sets of experiments to compare MGPA
with traditional FSPA algorithm. Table 3 lists the detailed

workload configurations of each set of experiments. As
described in previous sections, the user informed and
varied-size method will be triggered in set1 and 2
respectively in MGPA, and both will work in set3.

4.3.1 Result of set1

Figure 8 describes the allocated space continuity of MGPA
and FSPA. For the former, the object space is preallocated
each time in a ‘try to fit’ manner. For the later, the size for
space preallocation is varied between 512 KB and 16 MB.
We observe that the former has a better result than the later.

The allocated space continuity is low when the size is
smaller in FSPA (see the 512 KB line) because the
concurrent write requests are served in an interleaved
fashion. With the increase in preallocation size, the space
continuity increases, showing that aggressive preallocation
can alleviate fragmentation and improve disk I/O
performance. FSPA nearly has the same performance as
MGPA for the first 105 operations when the size increased
up to 8 MB and 16 MB. However, with the increase in
operations, its space continuity is rapidly reduced. This
indicates that large-size preallocation in FSPA will lead to
serious fragmentation for aged file systems. In contrast,
MGPA has a stable high space continuity even for a
long-term object operations.

In more detail, Figure 9 describes the number of extents
when different preallocation algorithms are adopted in the
experiments. There are a large number of extents in the file
system when a 512 KB size is used in FSPA. When the size
is 2 MB, the number of extents is significantly reduced by
around 60%. This is because smaller sizes require multiple
allocations to satisfy one object, resulting in more extents in
the allocated space. When the size is 8 MB, fewer extents
are needed to accommodate the data of an object. However,
aggressive preallocation will also increase the number of
small free extents, and decrease the number of large free
extents. Consequently, one object is composed of more
small extents. The situation worsens when the preallocation
size is 16 MB.

Figure 8 The space continuity of allocated object space

 MGPA: a multi-granularity space preallocation algorithm for object-based storage devices 245

Figure 9 The number of extents in the allocated space

4.3.2 Result of set2

In these experiments, we compare the performance of
MGPA and FSPA under the workloads with unknown
object sizes. To show the efficiency of MGPA under a
comprehensive environment, three configurations are used
in the MGPA algorithm. Table 4 lists the related parameters
of MGPA. For FSPA algorithm, since an extreme size, as
described in Section 4.3.1, will lead to poor performance,
we only depict the results of FSPA with moderate
preallocation sizes of 2 MB and 8 MB.

Table 4 The settings of size-adjusted preallocation

Experiments Parameters (MB)

MGPA1 s1 = 1, s2 = 16, g1 = 1, g2 = 4, g3 = 8
MGPA2 s1 = 2, s2 = 16, g1 = 2, g2 = 4, g3 = 8
MGPA3 s1 = 4, s2 = 16, g1 = 2, g2 = 4, g3 = 8

Figure 10 demonstrates the allocated space continuity under
MGPA and FSPA. From the figure, we can conclude that
FSPA with a large preallocation size outperforms MGPA,
when the number of operations is small. For example, FSPA
has a higher space continuity than MGPA when the number
of operations is below 4 ∗ 105. For the proposed varied-size
preallocation algorithms, MGPA1 has the lowest
performance among the three MGPA algorithms. This is
because more small extents are allocated for one object
owing to its smaller preallocation granularity configured
with a longer size range. Conversely, MGPA3 has the best
performance.

However, all of them exceed FSPA as the file system
ages.

Figure 11 describes the number of extents of MGPA and
FSPA in the experiments. MGPA has drastically decreased
extents in the system compared to FSPA as the number of
operations is increased gradually. Therefore, improved I/O
performance can be obtained for an aged file system.

4.3.3 Result of set3

In these experiments, only a part of the objects have
informed sizes. In this case, both user informed
preallocation and varied-size method will work in MGPA.
Table 5 lists the ratio of objects with informed sizes. For
MGPA algorithms, the related parameters for preallocation
are identical to those in the third configuration in Table 4
because these parameters lead to the best performance. For
FSPA algorithms, we only use preallocation sizes of 2 MB
and 8 MB.

Table 5 The settings in the experiments

Experiments Configurations

MGPA1 The sizes of 30% objects are informed
MGPA2 The sizes of 50% objects are informed
MGPA3 The sizes of 70% objects are informed

Figures 12 and 13 display the allocated space continuity and
the number of extents of MGPA and FSPA respectively.
Similar to the results in experiment set2, MGPA has a better
performance than FSPA. MGPA1 has the lowest
performance among the three MGPA algorithms, and
MGPA3 is the optimal one. From the three sets of
experiments, we can observe that MGPA is able to reduce
the number of extents in the file system, thus decreasing the
extents per object. As the allocated space continuity is
significantly increased, the I/O performance of object
accesses can be improved.

5 Conclusions and future work

In this paper, we propose MGPA, an adaptive
multi-granularity object space preallocation algorithm to
improve disk I/O performance of OSDs. Our extensive
simulation-based experiments validate that MGPA can
significantly improve object space continuity, when the
system concurrently serves multiple objects. Therefore, the
long-term I/O performance of OSDs can be considerably
improved.

246 S. He et al.

Though MGPA demonstrates its advantages in the
simulations under EBOFS, it is also promising under other
object file systems. In the future, we will extend MGPA to
other file systems and test its behaviours. Moreover, the
performance of MGPA is sensitive to the parameters

configured in the algorithm and dependent on the
characteristics of I/O workload. We will conduct further
research on the delicate design of object size division and
preallocation granularity selection.

Figure 10 The space continuity of allocated object space

Figure 11 The number of extents in the allocated space

Figure 12 The space continuity of allocated object space

 MGPA: a multi-granularity space preallocation algorithm for object-based storage devices 247

Figure 13 The number of extents in the allocated space

Acknowledgements

This research was supported in part by the Natural
Science Foundation of Hubei Province, China (Grant
No. 2014CFB239), and National Science Foundation under
grant NSF ECCS-1310551.

References
Bhardwaj, D. and Sinha, M.K. (2006) ‘GridFS: highly scalable I/O

solution for clusters and computational grids’, International
Journal of Computational Science and Engineering, Vol. 2,
Nos. 5/6, pp.287–291.

Buchholz, F. (2006) The Structure of the Reiser File System,
Technical Report Technical Document.

Dong, B., Li, X., Xiao, L. and Ruan, L. (2010) ‘An optimal
candidate selection model for self-acting load balancing of
parallel file system’, International Journal of High
Performance Computing and Networking, Vol. 7, No. 2,
pp.123–128.

He, S. and Feng, D. (2007) ‘Implementation and performance
evaluation of an object-based storage device’, Proceedings of
the International Workshop on Storage Network Architecture
and Parallel I/Os, pp.129–136.

He, S. and Feng, D. (2008) ‘Design of an object-based storage
device based on I/O processor’, ACM SIGOPS Operating
Systems Review, Vol. 42, No. 6, pp.30–35.

He, S., Sun, X-H. and Feng, B. (2014) ‘S4D-cache: smart selective
SSD cache for parallel I/O systems’, Proceedings of the
International Conference on Distributed Computing Systems.

He, S., Sun, X-H. and Yin, Y. (2013a) ‘BPS: a performance metric
of I/O system’, Proceedings of the International Workshop on
High Performance Data Intensive Computing (HPDIC),
pp.1954–1962.

He, S., Sun, X-H., Feng, B., Huang, X. and Feng, K. (2013b)
‘A cost-aware region-level data placement scheme for hybrid
parallel I/O systems’, Proceedings of the IEEE International
Conference on Cluster Computing.

He, S., Xu, X. and Yang, Y. (2012) ‘OASA: an active storage
architecture for object-based storage system’, International
Journal of Computational Intelligence Systems, Vol. 5, No. 6,
pp.1173–1183.

Hospodor, A. and Miller, E. (2004) ‘Interconnection architectures
for petabyte-scale high-performance storage systems’,
Proceedings of the 21st IEEE/12th NASA Goddard
Conference on Mass Storage Systems and Technologies,
pp.273–281.

Hua, Y., Zhu, Y., Jiang, H., Feng, D. and Tian, L. (2011)
‘Supporting scalable and adaptive metadata management in
ultralarge-scale file systems’, IEEE Transactions on Parallel
and Distributed Systems, Vol. 22, No. 4, pp.580–593.

IBM (2014) SAN File System V2.2.2 [online]
http://publib.boulder.ibm.com/infocenter/tssfsv21/v1r0m0/ind
ex.jsp?.

Kandemir, M., Son, S.W. and Karakoy, M. (2008) ‘Improving I/O
performance of applications through compiler-directed code
restructuring’, Proceedings of the 6th USENIX Conference on
File and Storage Technologies, pp.159–174.

Kang, Y., Pitchumani, R., Marlette, T. and Miller, E.L. (2014)
‘Muninn: a versioning flash key-value store using an
object-based storage model’, Proceedings of International
Conference on Systems and Storage, pp.1–11.

Kang, Y., Yang, J. and Miller, E.L. (2011) ‘Object-based SCM:
an efficient interface for storage class memories’,
Proceedings of the 2011 IEEE 27th Symposium onMass
Storage Systems and Technologies.

KV, A., Cao, M., Santos, J. and Dilger, A. (2008) ‘Ext4 block and
inode allocator improvements’, Proceedings of the Linux
Symposium, pp.263–274.

Li, C., Zhou, K. and Feng, D. (2010) ‘Capturing the object
behaviour for storage system evaluation’, International
Journal of High Performance Computing and Networking,
Vol. 6, Nos. 3/4, pp.226– 233.

McVoy, L. and Kleiman, S. (1991) ‘Extent-like performance from
a unix file system’, Proceedings of the USENIX Winter
Conference, pp.33–43.

Menon, J., Pease, D., Rees, R., Duyanovich, L. and Hillsberg, B.
(2003) ‘IBM storage tank – a heterogeneous scalable
SAN file system’, IBM Systems Journal, Vol. 42, No. 2,
pp.250–267.

Mesnier, M., Ganger, G. and Riedel, E. (2005) ‘Object-based
storage: pushing more functionality into storage’, IEEE
Potentials, Vol. 23, No. 2, pp.31–34.

Mostek, J., Earl, W. and Koren, D. (1999) ‘Porting the SGI XFS
file system’, Proceedings of the Freenix Track: USENIX
Annual Technical Conference.

248 S. He et al.

Nagle, D., Serenyi, D. and Serenyi, D. (2004) ‘The Panasas active
Scale storage cluster: delivering scalable high bandwidth
storage’, Proceedings of the ACM/IEEE Conference on
Supercomputing.

Powell, M. (1977) ‘The DEMOS file system’, ACM SIGOPS
Operating Systems Review, Vol. 11, No. 5, pp.33–42.

Schindler, J., Griffin, J., Lumb, C. and Ganger, G. (2002)
‘Track-aligned extents: matching access patterns to disk drive
characteristics’, Proceedings of the USENIX Conference on
File and Storage Technologies, pp.259–274.

Schwan, P. (2003) ‘Lustre: building a file system for 1000-node
clusters’, Proceedings of the Linux Symposium, Vol. 2003.

Smith, K. and Seltzer, M. (1996) ‘A comparison of FFS disk
allocation policies’, Proceedings of the USENIX Conference,
pp.15–26.

Ts’o, T. and Tweedie, S. (2002) ‘Planned extensions to the Linux
EXT2/EXT3 file system’, Proceedings of the Freenix Track:
USENIX Annual Technical Conference, pp.235–244.

Wang, F., Brandt, S.A., Miller, E.L. and Long, D.D.E. (2004a)
‘OBFS: a file system for object-based storage devices’,
Proceedings of the 21st IEEE/12th NASA Goddard
Conference on Mass Storage Systems and Technologies,
pp.283–300.

Wang, F., Xin, Q., Hong, B., Brandt, S., Miller, E., Long, D. and
McLarty, T. (2004b) ‘File system workload analysis for large
scale scientific computing applications’, Proceedings of the
21st IEEE/12th NASA Goddard Conference on Mass Storage
Systems and Technologies, pp.139–152.

Wang, Y. and Kaeli, D. (2003) ‘Profile-guided I/O partitioning’,
Proceedings of the 17th Annual International Conference on
Supercomputing, pp.252– 260.

Weber, R. (2009) Information Technology – SCSI Object-based
Storage Device Commands-2 (OSD-2), Revision 5, Technical
Report INCITS Technical Committee T10/1729-D.

Weil, S. (2004) Leveraging Intra-Object Locality with EBOFS,
Technical Report UCSC cmps-290s Project Report.

Weil, S., Brandt, S., Miller, E., Long, D. and Maltzahn, C. (2006)
‘Ceph: a scalable, high-performance distributed file system’,
Proceedings of the 7th Symposium on Operating Systems
Design and Implementation, pp.307–320.

Wong, P. and der Wijngaart, R. (2003) NAS Parallel Benchmarks
I/O Version 2.4, Technical Report NASA Ames Research
Center, Moffet Field, CA, Tech. Rep. NAS-03-002.

Zhang, X. and Jiang, S. (2010) ‘Interference removal: removing
interference of disk access for MPI programs through data
replication’, Proceedings of the 24th ACM International
Conference on Supercomputing, pp.223–232.

