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performance disparity between processors and storage devices. To achieve high performance, 
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desired space is not allocated. However, most existing space allocation algorithms utilise 
fixed-size preallocation strategies to preserve space for objects, resulting in poor disk space 
continuity when OSDs concurrently serve multiple objects. In this work, we propose MGPA, an 
adaptive multi-granularity object space preallocation algorithm to improve the I/O performance 
of OSDs. MGPA exploits both a user-informed method and an adaptive varied-size method to 
preallocate disk space. In the simulation-based experimental results, we show that MGPA can 
significantly improve the object space continuity, which will improve the long-term I/O 
performance of OSDs. 
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1 Introduction 

Many applications in important fields, such as astronomy, 
molecular dynamics, and climate modelling, are becoming 
increasingly data-intensive. For example, in Kandemir et al. 
(2008), some applications will generate more than 50 GB 
data on disk systems while more than half of the 
applications’ total execution time is spent on disk I/O 
operations. Thus, efficient I/O support is critical to improve 
the performance of data-intensive applications (He et al., 
2013b). If we can significantly increase the efficiency  
of data access on disk storage systems, an application’s 
performance can benefit from the advancements of  
multi-core systems, and the overall system’s utilisation can 
be largely improved. 

To meet the high I/O demands, many data-intensive 
applications rely on parallel storage systems to provide data 
accesses (He et al., 2013a, 2014; Li et al., 2010; Dong et al., 
2010; Bhardwaj and Sinha, 2006). One of the parallel 
storage systems, object-based storage system (OBSS), has 
recently gained enormous popularity in the network storage 
area (Mesnier et al., 2005; Kang et al., 2011, 2014). This is 
due to the merits of OBSS in cross-platform, including data 
sharing, policy-based security, direct data access, and high 
scalability. Many OBSSs, such as lustre (Schwan, 2003), 
storage tank (Menon et al., 2003), PanFS (Nagle et al., 
2004) and Ceph (Weil et al., 2006), have been developed by 
the industrial community. To regulate the progressively 
sophisticated object-based technology, the object-based 
storage interface standard (Weber, 2009) (also referred as 
T10 OSD standard) is being developed by the Storage 
Network Industry Association. With a more expressive 
object interface, object-based storage devices (OSDs) are 
promisingly gaining intelligence (He et al., 2012). 

OBSS typically consists of clients, metadata servers 
(Hua et al., 2011), and OSDs. OSDs are the ultimate data 
container for user data (He and Feng, 2007, 2008). In a 
large scale OBSS, there may be thousands of OSDs 
cooperating together to support high I/O performance 
(Hospodor and Miller, 2004). As a result, the performance 
of the overall storage system can be significantly improved 
even if the performance improvement of a single OSD is 
minimal. Therefore, designing high-performance OSDs is 
critical to meet the increasing I/O demands of data-intensive 
applications. 

In OBSSs, each OSD relies on an object-based file 
system (OFS) to manage data. Existing OFSs can be divided 
into two categories: LOFSs and SOFSs. LOFSs adopt a 
local file system [such as Ext3 (Ts’o and Tweedie, 2002)]  
to store objects, allowing for simple design and 
implementation. In contrast, SOFSs use specific 
components to manage objects by considering the unique 
workload characteristic of OBSS (Wang et al., 2004b). For 
example, an extent-based object file system (EBOFS)  
(Weil, 2004) is designed to efficiently manage data in Ceph 
system (Weil et al., 2006). In an OFS, object space allocator 

is responsible for allocating disk space for objects. Because 
sequential accesses will reduce disk seek overhead, most 
allocators in both LOFSs and SOFSs attempt to allocate 
continuous space for user objects. To obtain high I/O 
performance, allocators usually preallocate free space  
for an object larger than the actual space needed. For 
example, EBOFS uses a predefined size for object space 
preallocation, and a local file system in LOFSs conserves a 
data region of approximately several kilobytes per request. 

However, most available allocators in both LOFSs and 
SOFSs only use a single-granularity space preallocation 
strategy. Although these methods can help increase I/O 
throughput in a relatively simple environment, their effects 
are limited to situations with low I/O concurrency. As a 
shared resource, it is common in OSDs to concurrently 
serve multiple objects for data-intensive applications. 
Because OSDs need to concurrently allocate space for 
multiple objects, the disk space preallocated for the current 
object may be interleaved with the space allocated for other 
objects. Figure 1 describes an example of space allocation 
when an OFS allocates space for two objects concurrently. 
In this example, we assume that the OFS preallocates  
fixed-size space for a single request when the required space 
has not been allotted. For the first write request W11 on 
Object1, the OFS allocates the needed space. In addition, a 
neighbouring free space is preallocated. When the second 
write request W12 on Object1 arrives, its space has been 
allocated. However, because the OFS also allocates space 
for other requests on Object2 concurrently, the space behind 
W12 is allocated to Object2. In such a way, the object space 
continuity is largely decreased, leading to low disk I/O 
throughput even when the client accesses the object 
sequentially. 

In this paper, we propose MGPA, an adaptive  
multi-granularity object space preallocation algorithm to 
improve the I/O performance for OSDs. MGPA exploits 
both a user-informed method and an adaptive varied-size 
preallocation method to preserve disk space for objects. If 
the size of an object can be obtained in advance, MGPA 
attempts to allocate a continuous disk space for the whole 
object with the informed size. Otherwise, MGPA selects a 
proper preallocation size for the object depending on its 
current size. In this case, MGPA divides the object size in 
the OSD into different ranges, each of which is configured 
with a preallocation granularity. When allocating space for 
an object, MGPA adaptively chooses various preallocation 
granularities depending upon the current object size. 

We extended the user object information attribute page 
in the T10 OSD standard to enable our MGPA algorithm 
and implemented MGPA under EBOFS. Our extensive 
simulation-based experiments validate that MGPA can 
significantly improve the object space continuity when 
OSDs concurrently provide I/O services for multiple 
objects. Consequently, the long-term I/O throughput of the 
OSDs can be significantly improved. 
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Figure 1 Object space allocation example for two objects (see online version for colours) 

 
Note: The colourful box means the space which has been allocated in disk, the white blank box means free space, while the 

colourful box (e.g., W12 and W14) with blue shadow means space preallocated in the previous write request. 
 

The rest of this paper is organised as follows.  
In Section 2, we present the background and the related 
work on object space preallocation. We describe the  
multi-granularity object space preallocation algorithm in 
Section 3. In Section 4, we use extensive experiments to 
evaluate our algorithm and analyse the results. Finally, we 
conclude this paper in Section 5. 

2 Background and related work 

In this section, we first provide an overview of the OBSS; 
then we present the related works on object space 
preallocation. 

2.1 Overview of object-based storage 

An object is a storage container of variable size and can be 
used to store any type of data. It behaves exactly like a file, 
which can be created and deleted, and can grow and shrink 
its size. An object also has numerous attributes that can 
describe the characteristics of the data. 

The architecture of a typical OBSS is shown in Figure 2. 
The OBSS consists of three main parts: the clients, the 
metadata server (MDS), and the OSDs. The MDS provides 
object mapping information and authentication for clients’ 
data accesses. When a client accesses data in an OSD, it 
first contacts the MDS and obtains the mapping information 
about the object. Then the client interacts with the OSD 
directly. Here the request contains an object ID, an offset 
within the object, attribute values, and so on. Finally, the 
OSD receives the object-based request and performs 
corresponding operations. 

The OSD is one of the core components of OBSSs. It is 
a versatile storage device that contains CPU, memory, 
storage media (disk), and network interface. Generally, the 
OSD provides three major functions: object management, 
device security control, and network communication. 

Figure 2 The architecture of an OBSS (see online version  
for colours) 

 

The T10 OSD standard defines the OSD model and the 
basic command set (e.g., READ OBJECT and WRITE 
OBJECT command) that operate data on the OSD. 
Compared to a traditional file, objects provide a more 
expressive interface. Each object is identified by an object 
ID, and can be accessed by offset, length, and so on. 
Besides user objects, there are three kinds of objects, 
namely root objects, partition objects, and collection 
objects. The last three types of objects can help to address 
user objects more efficiently. 

In addition to data access commands, the T10 OSD 
standard also defines attribute commands (e.g., GET 
ATTRIBUTES and SET ATTRIBUTES) that allow users to 
set and get attributes. An object can have many different 
attributes, related attributes are organised into one attribute 
page. Each attribute page has a unique page number, and 
each attribute in the page has a unique attribute number. 
Besides the attributes defined by the OSD standard, if 
necessary a user can define their flown attributes. In this 
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paper, we extend the user object information attribute  
page, and add two attributes – informed-size (Section 3.1) 
and CLOSE (Section 3.2) to support the proposed  
multi-granularity object space preallocation approach. 

2.2 LOFS space preallocation 

Because of the convenience in practical design and 
implementation, LOFSs usually adopt a local file system, 
such as Ext3 (Ts’o and Tweedie, 2002), Ext4 (KV et al., 
2008), Reiserfs (Buchholz, 2006), and XFS (Mostek et al., 
1999), to store objects. In this case, an object is mapped to a 
file, and LOFSs use the conventional preallocation methods 
to prevent disk fragmentation. 

Conventional preallocation methods allocate some disk 
space to store a file prior to write requests (Powell, 1977), 
and these methods can be conducted in the operating system 
kernel or user mode. For the kernel mode, the file space 
allocator preallocates a fixed-size region of tens of  
kilobytes in addition to the size of the file write request. For 
example, EXT3, EXT4, and XFS adopt these methods  
(KV et al., 2008; Ts’o and Tweedie, 2002) to improve I/O 
performance. In this way, a file continually grows by 
processing continuous write requests until the final file is 
generated. While these methods are effective to reduce the 
disk fragmentation, it is difficult to choose suitable sizes for 
different files. If the size is too large, a minimal amount of 
continuous free space is left for the newly created file as the 
file system ages. If the size is too small, it is not very 
effective for large-size files. In contrast, MPGA uses an 
adaptive multiple-granularity method to preserve space for 
objects depending upon their growing sizes. Thus, MPGA 
can keep the preallocation neither conservative nor 
aggressive. 

For the user mode, a user or an application predicts the 
final size of a file and preallocates enough space. For 
example, a POSIX standard function fallocate(⋅) is currently 
implemented by Lustre. In IBM (2014), IBM SAN file 
system has file preallocation policies specified by the 
administrator. It is very effective at reducing file fragments 
if these approaches are properly used. However, they are not 
feasible when the user or application is unable to predict the 
final size of the file. Furthermore, it is difficult to use these 
methods because it is problematic to initiate a preallocation 
with a narrow `file’ interface. Compared to these methods, 
MGPA utilises the expressive object interface to perform 
informed preallocation, and also adds an adaptive strategy 
to preserve space for objects. Thus, MGPA is extremely 
applicable. 

2.3 SOFS space preallocation 

SOFSs use their flown data structures and disk space 
allocators to manage object data. Space allocator is 
responsible for appropriating space when clients write new 
data to an object and reclaiming space when the object is 
deleted. To maximise system efficiency and scalability, 
EBOFS utilises extent as an object space allocation unit 
(McVoy and Kleiman, 1991; Schindler et al., 2002). In 

addition, EBOFS adopts balanced trees (B+trees) to manage 
disk free space and object allocated space, thus 
corresponding lookup overhead can be significantly 
decreased. 

There are numerous object create, write and delete 
operations during the lifetime of an object file system. In 
order to reduce the object fragmentation as the file system 
ages, EBOFS preallocates disk space for each object write 
request. This approach effectively reduces the number of 
extents within an object, and attempts to allocate writes 
adjacently. However, because it uses a fixed-size strategy, 
this approach leads to the drawback mentioned in Section 1. 
MPGA adopts adaptive multiple-granularity to preallocate 
data, allowing object space to be more continuous during 
the lifetime of the object file system. 

3 Multi-granularity object space preallocation 

Traditional preallocation methods are not effective for 
OSDs when they concurrently provide I/O services for 
multiple objects. We propose MGPA, a multi-granularity 
object space preallocation algorithm to improve the I/O 
performance of OSDs. MGPA adjusts its preallocation size 
depending on two policies: the informed object size and the 
growing object size. 

3.1 User-informed preallocation 

For many data intensive applications, data access patterns 
are generally independent of the data values and these 
patterns have predictable alterations (Wang and Kaeli, 
2003; Zhang and Jiang, 2010). For example, the BTIO 
application (Wong and der Wijngaart, 2003), an I/O kernel 
responsible for solving block-tridiagonal matrices on a three 
dimensional array, has the following feature. Once the size 
of the array, the number of time steps, the write interval, 
and the number of processes are given, the I/O behaviours 
of the application are determined and the final size of the 
user object can be predicted before the program executes. 
Users with thorough knowledge about their application can 
easily predict the I/O behaviours of the applications. 

The predictability of object size provides an opportunity 
to achieve improved object space preallocation. This is 
because more accurate preallocation for the whole object 
can largely alleviate object fragmentations when OSDs 
serve multiple objects concurrently. As a result, MPGA uses 
a user-informed preallocation policy to preserve space when 
the size of an object can be obtained in advance. Specially, 
with the expressive object interface, MGPA preallocates 
space for each object as follows. 

1 The user object information attribute page for each 
object in the system is extended to support the 
preallocation method. For each object, an attribute, 
named informed-size, is added into the attribute page. 
Table 1 summaries the content of the extended attribute 
page. 
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2 If users know the final object size in advance when they 
issue CREATE OBJECT commands, users can set the 
informed-size to the desired value with the SET 
ATTRIBUTES command. Otherwise, the size is  
set to 0. 

3 When a user sends a WRITE OBJECT command to the 
OSD, MGPA gets the informed-size in the attribute 
page with the GET ATTRIBUTES interface for the 
current object. If the informed-size is not 0, MGPA will 
set the preallocation size to the informed value, and 
tries to preserve the whole space for the current object. 

Table 1 The user object information attribute page 

Attribute 
number 

Length 
(bytes) Attribute description User 

settable 

0h 40 Page identification No 
1h 8 Partition_ID No 
2h 8 User_object_ID No 
3h 8 Informed-size Yes 
4h 8 CLOSE Yes 
5h–8h  Reserved No 
9h Variable Username Yes 
... ... ... ... 

Notes: The extended attributes are 03h and 04h 
attributes, namely informed-size and CLOSE, and 
they can be set by users. Other attributes in the table 
are defined by the T10 OSD standard. 

3.2 Adaptive varied-size space preallocation 

In practice, there are a number of objects whose sizes 
cannot be determined in advance. Requiring users to inform 
all object sizes is not feasible. In this case, in order to 
reduce disk fragmentation and increase the object space 
continuity for long-term I/O operations, MGPA uses 
adaptive varied-size preallocation to preserve space for 
objects. 

MGPA divides the object size in an OSD into a series of 
excluding ranges, each of which is configured with a 
corresponding preallocation granularity. The larger the 
range of the current object size, the more defined 
granularity of the object. Initially, MGPA allocates its space 
with a small preallocation size when an object is created. 
Gradually, a large preallocation space will be assigned to 
the current object as it grows. In such a way, an adaptive 
varied-size preallocation can be performed for the object 
during its lifetime. Because the preallocation granularity is 
increased gradually, both conservative and aggressive disk 
space allocation can be avoided. 

Assuming s1, s2, ..., and sn are the n boundaries used to 
divide the size of the object, and g1, g2, ..., gn, and gn+1 are 
the n + 1 preallocation granularity, then equation (1) 
calculates the preallocation size for the current object with a 
growing size of Sobj 

1 1

1 1

1

,      if   
- ,    if   

,    if   

obj

i i obj i

n obj n

g S s
prealloc size g s S s

g S s
+ +

+
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⎪= ≤ <⎨
⎪ >⎩
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Figure 3 illustrates the space allocation process of an object 
with growing sizes. In this example, when the object size is 
below S1, MGPA preserves space with size g1 each time for 
the object. This preallocation size is repeated until the 
current object size is above S1. Similarly, a preallocation 
size of g2 is adapted when the object size is between S1 and 
S2. A dynamic size is used to preallocate disk space for the 
object as it grows. 

Theoretically, the object size in an OSD can be divided 
into unlimited ranges. However, because practical I/O 
workloads of OSDs usually demonstrate some unique 
characteristics (Wang and Kaeli, 2003), we only use three 
ranges to preallocate space in our current design. The 
related parameters are chosen based on experiments and 
experience, and our observations show that they are 
effective in preallocating space for objects (in Section 4). 
We leave the more delicate design to our future work. 

Figure 3 Preallocation size is adjusted as the object grows 
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One concern with varied-size preallocation is that the 
preallocated space may not actually be used by the object, 
leading to disk space waste and increased internal disk 
fragmentation. To overcome this potential drawback, 
MGPA releases the unused disk space when the object does 
not grow any longer with an attribute-synergistic method as 
follows. 

1 A new attribute CLOSE is added into the User Object 
Information attribute page described in Table 1. 
CLOSE is a Boolean variable, which indicates whether 
the unused preallocation space should be reclaimed. 

2 Once the users finish their object requests (like the file 
close operations in local file systems), they can set 
CLOSE to be TRUE. 

3 If MGPA detects that the CLOSE value is TRUE 
through the attribute operation interface when 
processing object requests, it will release the unused 
space of the object. 

3.3 Object write process 

Object space preallocation occurs in the process of object 
write operations. Figure 4 shows the flowchart of a write 
operation with the proposed object space preallocation 
method. 

Figure 4 Object write-process flowchart 

 

First, the allocator checks if the data is written to an 
allocated space. If yes, the data will be directly written to 
the allocated space. Otherwise, MGPA is triggered to 
preallocate space for the current object. In this case, MGPA 
first determines whether the informed-size is 0 by getting 
the object’s extended attributes. If it is true, MGPA will use 
the informed-size to preallocate disk space for the current 
request. Otherwise, MGPA will preallocate space based on 
the policy described in Section 3.2. In Figure 4, two sizes of 
s1 and s2 are used to divide the object size into three ranges, 
and three granularity of g1 to g3 are adopted for space 
preallocation respectively. 

4 Evaluation 

In this section, we conduct a number of experiments to 
evaluate the MGPA preallocation algorithm with the 
existing fixed-size preallocation algorithm (FSPA). Since a 
newly created file system has sufficient free disk space and 
is not sensitive to different preallocation policies, we focus 
on aged file systems in this paper. As EBOFS is a typical 
and excellent specific object file system, we evaluate 
different preallocation policies based on the EBOFS file 
system. 

4.1 Experimental setup 

Since benchmarking a fully loaded disk over its expected 
lifetime requires a long time, we use a simulator integrated 
with different preallocation policies to allocate disk space in 
our experiments. The simulator utilises the allocation code 
of EBOFS but performs all allocation operations in memory 
as in Weil (2004). This allows analysis of file system 
fragmentation over much longer time than real benchmarks. 

Modelling file system workload as seen by an individual 
OSD in a large system is a surprisingly complicated 
problem. Since it is impossible to characterise the workload 
of a system that does not exist yet, the simulator instead 
approximates a nearly worst case behaviour pattern:  
all writes are submitted to the device in small increments, 
proceed in parallel, and new write streams continue to arrive 
at regular intervals. The result is that at any given point in 
time, it is likely that one or more large writes are in progress 
to large objects, while writes for small objects continue to 
arrive concurrently. 

The underlying workload being serviced by the OSD is 
assumed to be typical: most writes are sent to small objects, 
most data is written to large objects, and most files are 
deleted either while they are young or never at all. The 
statistics of object operations in our workload are shown in 
Table 2. 

Table 2 The statistic of object operations 

Operation  Number of objects Total space 

Read 200,297 742.4 GB 
Create/write 410,749 1,545.1 GB 
Delete 388,954 1,446.2 GB 
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Figure 5 shows the size distribution for all objects in the 
object-based file system. All objects are between 0 KB and 
2 GB, and a substantial amount are between 512 KB and  
16 MB, occupying 85% of the overall object space. The 
workload characteristics are similar with those in the real 
traces collected from LLNL trace (Wang et al., 2004a). 

Figure 6 describes the number of objects existing in the 
object file system, and Figure 7 illustrates the occupied disk 
space for all objects on a 120 GB disk as the file system 
ages. From these figures, we can see that as users create and 
delete objects, the statistics of objects are changed 
gradually. 

Figure 5 The size distribution for all objects in the file system (see online version for colours) 

 

Figure 6 The number of the objects as file system ages (see online version for colours) 

 

Figure 7 The occupied disk space for all objects as file system ages (see online version for colours) 
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4.2 Evaluation metric 

We use allocated space continuity to evaluate different 
preallocation policies in this paper. Firstly, we introduce the 
concept of block layout score (Smith and Seltzer, 1996), 
denoted by LS(Block), to measure the space continuity for 
each block (or extent) in an object. Assuming Bi,j is the jth 
block of Object Oi, and P(Bi,j) is the physical address of Bi,j 
on the disk, we calculate LS(Bi,j) as in equation (2). 

( ) ( ) ( ), , 1 ,

1,    0
 1,    0 &   1 

0,   otherwise
i j i j i j

j
LS B j P B P B−

=⎧
⎪= > + =⎨
⎪
⎩

 (2) 

Secondly, we adopt LS(alloc) to measure the allocated space 
continuity for all objects in the file system based on block 
layout score. Assuming object Oi has sizeof(Oi) blocks, by 
measuring all objects in the allocated space S, LS(alloc) can 
be calculated as in equation (3). 
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∈ =

∈
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In our experiments, we use LS(alloc) to evaluate the 
behaviours of different object space preallocation 
algorithms. Different algorithms lead to various LS(alloc) 
values. Generally, an algorithm which has a value closer to 
1 means it provides better I/O performance. 

Table 3 The workload description in the experiments 

Experiments Workload descriptions 

set1 All object sizes are informed 
set2 No object size is informed 
set3 Partial object sizes are informed 

4.3 Results 

We conduct three sets of experiments to compare MGPA 
with traditional FSPA algorithm. Table 3 lists the detailed 

workload configurations of each set of experiments. As 
described in previous sections, the user informed and 
varied-size method will be triggered in set1 and 2 
respectively in MGPA, and both will work in set3. 

4.3.1 Result of set1 

Figure 8 describes the allocated space continuity of MGPA 
and FSPA. For the former, the object space is preallocated 
each time in a ‘try to fit’ manner. For the later, the size for 
space preallocation is varied between 512 KB and 16 MB. 
We observe that the former has a better result than the later. 

The allocated space continuity is low when the size is 
smaller in FSPA (see the 512 KB line) because the 
concurrent write requests are served in an interleaved 
fashion. With the increase in preallocation size, the space 
continuity increases, showing that aggressive preallocation 
can alleviate fragmentation and improve disk I/O 
performance. FSPA nearly has the same performance as 
MGPA for the first 105 operations when the size increased 
up to 8 MB and 16 MB. However, with the increase in 
operations, its space continuity is rapidly reduced. This 
indicates that large-size preallocation in FSPA will lead to 
serious fragmentation for aged file systems. In contrast, 
MGPA has a stable high space continuity even for a  
long-term object operations. 

In more detail, Figure 9 describes the number of extents 
when different preallocation algorithms are adopted in the 
experiments. There are a large number of extents in the file 
system when a 512 KB size is used in FSPA. When the size 
is 2 MB, the number of extents is significantly reduced by 
around 60%. This is because smaller sizes require multiple 
allocations to satisfy one object, resulting in more extents in 
the allocated space. When the size is 8 MB, fewer extents 
are needed to accommodate the data of an object. However, 
aggressive preallocation will also increase the number of 
small free extents, and decrease the number of large free 
extents. Consequently, one object is composed of more 
small extents. The situation worsens when the preallocation 
size is 16 MB. 

Figure 8 The space continuity of allocated object space 
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Figure 9 The number of extents in the allocated space 

 

 
4.3.2 Result of set2 

In these experiments, we compare the performance of 
MGPA and FSPA under the workloads with unknown 
object sizes. To show the efficiency of MGPA under a 
comprehensive environment, three configurations are used 
in the MGPA algorithm. Table 4 lists the related parameters 
of MGPA. For FSPA algorithm, since an extreme size, as 
described in Section 4.3.1, will lead to poor performance, 
we only depict the results of FSPA with moderate 
preallocation sizes of 2 MB and 8 MB. 

Table 4 The settings of size-adjusted preallocation 

Experiments Parameters (MB) 

MGPA1 s1 = 1, s2 = 16, g1 = 1, g2 = 4, g3 = 8 
MGPA2 s1 = 2, s2 = 16, g1 = 2, g2 = 4, g3 = 8 
MGPA3 s1 = 4, s2 = 16, g1 = 2, g2 = 4, g3 = 8 

Figure 10 demonstrates the allocated space continuity under 
MGPA and FSPA. From the figure, we can conclude that 
FSPA with a large preallocation size outperforms MGPA, 
when the number of operations is small. For example, FSPA 
has a higher space continuity than MGPA when the number 
of operations is below 4 ∗ 105. For the proposed varied-size 
preallocation algorithms, MGPA1 has the lowest 
performance among the three MGPA algorithms. This is 
because more small extents are allocated for one object 
owing to its smaller preallocation granularity configured 
with a longer size range. Conversely, MGPA3 has the best 
performance. 

However, all of them exceed FSPA as the file system 
ages. 

Figure 11 describes the number of extents of MGPA and 
FSPA in the experiments. MGPA has drastically decreased 
extents in the system compared to FSPA as the number of 
operations is increased gradually. Therefore, improved I/O 
performance can be obtained for an aged file system. 

 

4.3.3 Result of set3 

In these experiments, only a part of the objects have 
informed sizes. In this case, both user informed 
preallocation and varied-size method will work in MGPA. 
Table 5 lists the ratio of objects with informed sizes. For 
MGPA algorithms, the related parameters for preallocation 
are identical to those in the third configuration in Table 4 
because these parameters lead to the best performance. For 
FSPA algorithms, we only use preallocation sizes of 2 MB 
and 8 MB. 

Table 5 The settings in the experiments 

Experiments Configurations 

MGPA1 The sizes of 30% objects are informed 
MGPA2 The sizes of 50% objects are informed 
MGPA3 The sizes of 70% objects are informed 

Figures 12 and 13 display the allocated space continuity and 
the number of extents of MGPA and FSPA respectively. 
Similar to the results in experiment set2, MGPA has a better 
performance than FSPA. MGPA1 has the lowest 
performance among the three MGPA algorithms, and 
MGPA3 is the optimal one. From the three sets of 
experiments, we can observe that MGPA is able to reduce 
the number of extents in the file system, thus decreasing the 
extents per object. As the allocated space continuity is 
significantly increased, the I/O performance of object 
accesses can be improved. 

5 Conclusions and future work 

In this paper, we propose MGPA, an adaptive  
multi-granularity object space preallocation algorithm to 
improve disk I/O performance of OSDs. Our extensive 
simulation-based experiments validate that MGPA can 
significantly improve object space continuity, when the 
system concurrently serves multiple objects. Therefore, the 
long-term I/O performance of OSDs can be considerably 
improved. 
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Though MGPA demonstrates its advantages in the 
simulations under EBOFS, it is also promising under other 
object file systems. In the future, we will extend MGPA to 
other file systems and test its behaviours. Moreover, the 
performance of MGPA is sensitive to the parameters 

configured in the algorithm and dependent on the 
characteristics of I/O workload. We will conduct further 
research on the delicate design of object size division and 
preallocation granularity selection. 

Figure 10 The space continuity of allocated object space 

 

Figure 11 The number of extents in the allocated space 

 

Figure 12 The space continuity of allocated object space 
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Figure 13 The number of extents in the allocated space 
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