
An Eficient Delta Compression Framework Seamlessly Integrated into

Inline Deduplication

YUCHENG ZHANG, School of Mathematics and Computer Sciences, Nanchang University, Nanchang, China

WENBIN ZENG, School of Mathematics and Computer Sciences, Nanchang University, Nanchang, China

HONG JIANG, Department of Computer Science and Engineering, University of Texas at Arlington, Arlington,

United States

DAN FENG, School of Computer Science and Technology, Huazhong University of Science and Technology,

Wuhan, China

ZICHEN XU, School of Mathematics and Computer Sciences, Nanchang University, Nanchang, China

SHUIBING HE∗, College of Computer Science and Technology, Zhejiang University, Hangzhou, China

MINGZHE ZHANG, Ant Group, Beijing, China
DAN WU, Nanchang University, Nanchang, China

Delta compression can complement data deduplication by further minimizing redundancy through the compression of

non-duplicate data chunks. When adding delta compression to deduplication-based backup systems, however, two primary

challenges arise that degrade performance of inline deduplication. First, extra I/Os are introduced along the critical paths of

backup and restoration for retrieving base chunks, slowing the system. Second, rewriting techniques prohibit speciic data

chunks from serving as base chunks for delta compression to improve restore performance, resulting in a loss of compression

eiciency.

In this paper, we introduce LoopDelta, a framework that seamlessly integrates delta compression into inline deduplication

for backup storage, addressing the aforementioned challenges by using three techniques: (1) dual-locality-based similarity

tracking leverages both logical and physical locality to detect most of the similar chunks, which, due to their locality, can be

prefetched by piggybacking on routine operations during deduplication, thereby eliminating extra I/Os during backup; (2)

cache-aware ilter identiies base chunks requiring extra I/Os during restore and prevents their referencing, thus eliminating

extra restore I/Os; and (3) inversed delta compression, which reverses the roles of base and target chunks in the traditional

delta compression approach, thereby allowing for the delta compression of data chunks that are otherwise prohibited as base

chunks due to rewriting techniques. Experiments show that LoopDelta increases the compression ratio by 1.28 to 11.33 times

∗Corresponding Author

Authors’ Contact Information: Yucheng Zhang, School of Mathematics and Computer Sciences, Nanchang University, Nanchang, Jiangxi,

China; e-mail: zhangyc_hust@126.com; Wenbin Zeng, School of Mathematics and Computer Sciences, Nanchang University, Nanchang,

Jiangxi, China; e-mail: wenbinzeng@email.ncu.edu.cn; Hong Jiang, Department of Computer Science and Engineering, University of Texas at

Arlington, Arlington, Texas, United States; e-mail: hong.jiang@uta.edu; Dan Feng, School of Computer Science and Technology, Huazhong

University of Science and Technology, Wuhan, Hubei, China; e-mail: dfeng@hust.edu.cn; Zichen Xu, School of Mathematics and Computer

Sciences, Nanchang University, Nanchang, Jiangxi, China; e-mail: xuz@ncu.edu.cn; Shuibing He, College of Computer Science and Technology,

Zhejiang University, Hangzhou, Zhejiang, China; e-mail: heshuibing@zju.edu.cn; Mingzhe Zhang, Ant Group, Beijing, Beijing, China; e-mail:

smartzmz@gmail.com; Dan Wu, Nanchang University, Nanchang, Jiangxi, China; e-mail: wudan@ncu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1553-3093/2025/3-ART

https://doi.org/10.1145/3721485

ACM Trans. Storage

HTTPS://ORCID.ORG/0000-0001-7716-1214
HTTPS://ORCID.ORG/0009-0002-8980-6352
HTTPS://ORCID.ORG/0000-0002-1477-9751
HTTPS://ORCID.ORG/0000-0002-4674-6006
HTTPS://ORCID.ORG/0000-0001-9293-8028
HTTPS://ORCID.ORG/0000-0002-7075-4153
HTTPS://ORCID.ORG/0000-0002-6440-7550
HTTPS://ORCID.ORG/0009-0000-1872-3715
https://orcid.org/0000-0001-7716-1214
https://orcid.org/0009-0002-8980-6352
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-4674-6006
https://orcid.org/0000-0001-9293-8028
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-6440-7550
https://orcid.org/0009-0000-1872-3715
https://doi.org/10.1145/3721485
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3721485&domain=pdf&date_stamp=2025-03-05

2 • Y. Zhang et al.

over basic deduplication, without signiicantly afecting backup throughput, and enhances restore performance by up to 3.57

times.

CCS Concepts: · Information systems→ Data compression; Deduplication; · Computer systems organization→

Embedded systems.

Additional Key Words and Phrases: Delta Compression, Data Deduplication, Storage System

1 Introduction

Data backup is one of the most important methods for data protection. Backup workloads often involve a
substantial amount of data redundancy. To enhance storage space eiciency, backup systems often employ data
deduplication, a technique which segments backup data stream into data chunks and removes duplicate chunks
from storage. However, data deduplication fails to remove redundancy among non-duplicate but similar chunks.
Delta compression, conversely, addresses this limitation by eliminating redundancy among similar (though non-
duplicate) chunks. Given the complementary nature of these two techniques, delta compression can efectively
complement deduplication, leading to a further reduction of redundant data beyond what deduplication alone
can achieve [17ś19, 33, 44, 45]. In this paper, we focus on adding delta compression to inline deduplication-based
backup systems in a seamless manner.
Delta compression requires base chunks in both the encoding and the decoding processes. For instance, if

chunk �2 is similar to chunk �1 (the base chunk), the delta compression approach encodes �2 relative to �1 and
produces a delta ile containing the contents present in �2 but absent in �1. When �2 is needed, the delta ile is
decoded along with the base chunk �1 to reconstruct �2. In backup systems, this technique requires extra I/O
operations to retrieve base chunks from storage. Hard drive disks (HDDs), despite their poor I/O performance, are
frequently selected as the storage medium for backup systems due to their cost-efectiveness. In this paper, we
focus on HDD-based backup systems. Consequently, backup systems adopting solely deduplication are inherently
I/O-intensive. The implementation of post-deduplication delta compression would further exacerbate the I/O
bottleneck and signiicantly reduce system throughput. Therefore, commercial backup systems often adopt
deduplication alone for data reduction, without integrating delta compression.
To add delta compression to inline deduplication-based backup systems, it is essential to minimize the extra

I/O overhead induced by delta compression for retrieving base chunks during both backup and restore processes.
A typical backup system arranges data chunks into containers, with each container housing several hundred
to thousand data chunks, and retrieves metadata from containers during deduplication to accelerate duplicate
detection. Previous researches on post-deduplication delta compression for tar-format backup datasets containing
numerous small iles indicates that, if the containers housing the potential base chunks are targeted for dedupli-
cation, the base chunks can be retrieved during the backup process without additional I/Os via piggybacking on
I/O operations for prefetching metadata [48, 49].

In backup systems, base chunks for delta compression are not immediately accessible and need to be identiied.
Our investigation into techniques for identifying base chunks in Section 3.1 reveals that there are two techniques
with complementary strengths. One technique leverages the logical locality between adjacent backups to detect
the most highly similar chunks, while the other exploits the physical locality preserved in containers to identify
the most potential similar chunks. Our analyses in Sections 3.1.4 and 3.2.1 further suggest that (1) by leveraging
both logical and physical locality, we can synergize the beneicial attributes of these two techniques, and (2) the
containers that hold similar chunks, identiied through a combination of logical and physical locality, can be
retrieved by piggybacking on I/O operations for retrieving metadata, given that most containers housing the
potential similar chunks are targeted for deduplication.
The I/O overheads for reading base chunks during restore also need to be minimized, as they can degrade

restore performance. To reduce I/O overheads for reading base chunks during restore, it is essential to identify

ACM Trans. Storage

An Eficient Delta Compression Framework Seamlessly Integrated into Inline Deduplication • 3

which base chunks require extra I/Os based on their container IDs. A container ID is an identiier that can be used
to locate the corresponding container. However, our analyses in Section 3.2.2 reveal that when data chunks refer
to previously written (old) deltas, it is challenging to obtain the container IDs of the base chunks of these deltas.
Existing approaches for obtaining them are either susceptible to garbage collection (GC) or require additional I/O
operations. Our analyses also suggest that by utilizing metadata retrieved during deduplication, it is possible to
predict during backup which old deltas will require additional I/Os for fetching their base chunks during restore.

In addition to introducing extra I/Os, adding delta compression to deduplication-based backup systems may also
afect rewriting techniques. Rewriting techniques are often employed by backup systems to identify previously
written (old) containers with sparse references and avoid deduplicating against these containers, aiming to reduce
chunk fragmentation caused by deduplication. It is possible for similar chunks to occur in sparse-reference
containers. Treating these similar chunks as base chunks for delta compression may compromise the efectiveness
of rewriting techniques, whereas abandoning delta compression would lead to a decrease in compression eiciency.
Our analysis in Section 3.3 indicates that by shifting the focus of delta compression to older chunks, as opposed
to targeting the data chunks in the ongoing backup (which is the traditional approach), and creating encoded
duplicates of these data chunks, the original unencoded versions can be removed during GC. This approach
achieves data reduction comparable to delta compression while maintaining the eicacy of rewriting techniques.

Based on the aforementioned observations and insights, this paper introduces LoopDelta 1, a novel framework
that seamlessly integrates delta compression into inline deduplication for backup storage. By combining the
following three techniques, LoopDelta maximizes delta compression for non-duplicate chunks without introducing
additional I/Os.

• Dual-locality Similarity Tracking. LoopDelta identiies containers that house data chunks and base
chunks from the most recent backup to detect most of the similar chunks, including those with high
similarity, by leveraging both logical and physical locality. Due to the locality, similar chunks within these
containers can be retrieved by piggybacking on routine I/O operations for metadata prefetching during
deduplication, thereby eliminating the need for additional I/Os.

• Cache-aware Filter. Leveraging recently prefetched metadata during deduplication, LoopDelta identiies
old deltas whose base chunks would trigger I/O operations during restore. By avoiding reference to such
deltas, LoopDelta prevents additional I/Os during restore for retrieving base chunks.

• Inversed Delta Compression. Regarding detected similar chunks that cannot serve as base chunks due to
the constraint of the rewrite technique, LoopDelta delta-encodes these chunks relative to the data chunks
in the ongoing backup, creating encoded duplicates of these data chunks. The removal of unencoded data
chunks is deferred to the GC process in order to facilitate data reduction. This allows LoopDelta to maximize
delta compression without compromising the eiciency of rewriting techniques.

Using real-world datasets, our experimental results demonstrate that LoopDelta boosts both the compression
ratio and restore eiciency, adding further beneits to deduplication, while maintaining backup throughput
without signiicant compromise.

2 Background and Related Work

2.1 Data Deduplication

Backup and Restore Processes. Data deduplication is a widely-used data reduction technique. When applied
in backup systems, It splits the backup data stream into data chunks, each identiied by a ingerprint generated
by a secure hash function like SHA1 [11, 28, 30, 32, 43, 47]. These ingerprints are then compared to those of
chunks already stored in the system to detect duplicates. Duplicate chunks are referenced to their previously

1https://github.com/good-ncu/LoopDelta

ACM Trans. Storage

4 • Y. Zhang et al.

stored versions, eliminating the need for actual data writing and thereby improving storage space eiciency.
Unique data chunks, on the other hand, are grouped into larger containers and saved to HDDs. Once the backup
process is complete, a recipe is recorded, detailing the ingerprint sequence of the backup data stream for easier
restoration in the future [15].

The restoration process entails reading data chunks from HDDs, sequentially substituting ingerprints in the
recipe with their corresponding data chunks, and ultimately reconstructing the original backup ile. During
this restoration, the read unit is a container, meaning that to retrieve a speciic data chunk, the entire container
holding that chunk is loaded into memory [6]. This facilitates the eicient retrieval of multiple data chunks stored
within the same container.

Redundancy Locality. Backup tasks generally involve a sequence of replicas of the primary data, where each
replica frequently undergoes modiications from a previous backup [2, 26, 38, 40]. Redundancy locality, referring
to repeating patterns of redundant data among backups, is often exploited to address performance bottlenecks in
backup systems that employ data reduction techniques [9, 16, 53].
Redundancy locality can be further categorized into two types: logical locality and physical locality (also

known as spatial locality). Logical locality refers to the repeating pattern of duplicate chunks before deduplication,
preserved within the recipe and the sequence of consecutive data chunks in the backup data stream. On the other
hand, physical locality refers to the pattern of duplicate chunks after deduplication, preserved within containers.
Both categories of locality have been extensively leveraged to enhance deduplication performance, particularly
in terms of deduplication eiciency and index management [8, 16, 23, 25, 41, 53].
Chunk Fragmentation. Chunk fragmentation arises because the deduplication unit (i.e., the data chunk)
represents only a portion of the storage unit (i.e., the container). Unique data chunks from each backup are often
stored in new containers. Initially, all data chunks in a container are referenced by the backup, but some may
lose their reference in later backups if deleted or changed. Consequently, data chunks from later backups become
scattered across multiple containers. This phenomenon is referred to as fragmentation, and chunk fragmentation
decreases restore performance [1, 13, 20, 22, 27, 56].
Rewriting. Due to fragmentation, some containers may only contain a few referenced data chunks, which
are those referenced by the current backup. These containers are referred to as sparse-reference containers, and
the referenced data chunks within them are called fragmented chunks. To alleviate fragmentation, rewriting
techniques are proposed. These techniques identify sparse-reference containers and avoid referencing data
chunks within them, thereby enabling duplicate and fragmented chunks to be rewritten into new containers
alongside unique data chunks, which improves locality [6, 7, 13, 20, 22, 36].
Among various rewriting strategies, Capping [22] partitions the backup data stream into distinct, non-

overlapping segments, where each segment comprises a continuous sequence of data chunks. It restricts the
number of old containers (denoted as �) that each segment can deduplicate against. � , also referred to as the
capping level, is adjustable. Observing that containers sparsely referenced in one backup often remain so in subse-
quent backups, Fu et al. introduced the HAR (History-aware Rewriting) [13, 14], which identiies sparse-reference
containers in one backup and identiies fragmented chunks that reference data chunks from these containers in
the next backup.

2.2 Post-deduplication Delta Compression

Applying delta compression to deduplicated chunks requires three additional stages: (1) similarity detection, (2)
retrieving the base chunks, and (3) delta encoding.

Similarity Detection. A sketch calculation approach computes several weak hashes, known as a sketch, for
each non-duplicate chunk [5, 29, 50, 54]. Two data chunks are considered similar if their sketches match [3, 10, 21].
To eiciently identify similar chunks, a sketch index is required, indexing the sketches of data chunks within the

ACM Trans. Storage

An Eficient Delta Compression Framework Seamlessly Integrated into Inline Deduplication • 5

system. Similar chunks in the system can be detected by querying the index. The strategy for sketch indexing
signiicantly afects the eiciency of delta compression, as it determines which data chunks in the system can
serve as base chunks. This will be further discussed in Section 3.1.
Retrieving the Base Chunks. The detected similar chunks must be retrieved from storage to serve as base

chunks for both delta encoding and delta decoding processes. In HDD-based backup systems, retrieving these
base chunks is a performance bottleneck, especially during the backup process. This bottleneck is the primary
reason why delta compression cannot be eiciently employed in backup systems. Previous work [33, 34] suggests
that the I/O overhead for retrieving base chunks during backup can considerably degrade backup throughput to
an unacceptable level.

Existing solutions adopt two methods to reduce I/O overheads for retrieving base chunks during backup. The
irst approach is improving physical locality. This method aims to minimize the fragmentation, concentrating
base chunks within a limited number of containers, thereby decreasing the number of I/O operations required
for retrieving. For instance, MeGA [55] employs service-disruptive oline reorganization to eliminate chunk
fragmentation in the most recent backup, whereas FaRE [52] abandons both deduplication and delta compression
if fragmentation surpasses a pre-deined threshold to improve physical locality. The second method retrieves
potential base candidates by piggybacking on I/O operations for metadata prefetching during deduplication
[48, 49], which will be discussed in Section 3.2.1.
Typically, reducing I/O overheads for retrieving base chunks during backup simultaneously decreases such

overheads during the restore process. However, there are also studies that directly aim to reduce these overheads
during restore. For example, Zhang et al. [51] replicate the conditions of the restore cache during backup. For data
chunks whose corresponding base chunks are absent from the restore cache, they abandon delta compression.
However, their approach fails to identify base chunks that require additional I/Os during restore when a duplicate
chunk references an old delta, which will be discussed in Section 3.2.2.
Delta Encoding. Typically, delta encoding tools are copy-based algorithms derived from Lempel-Ziv [24].

These tools employ a byte-wise sliding window to identify repeated strings between target and base chunks.
Then, the repeated strings in the target chunk are substituted with copy instructions, encoding the target chunk
into a delta ile. Due to the elimination of duplicate byte sequences common to both chunks, the resulting delta
ile occupies less space than the original target chunk. Delta encoding is compute-intensive as it needs to calculate
and index hash values to align recurring sequences between the target and reference chunks. Some faster delta
encoding approaches such as Edelta [42] and Gdelta [35] have been proposed, which leverage the locality among
similar chunks and faster rolling hash to reduce computational overhead.

2.3 Garbage Collection

Usually, each backup ile is assigned a retention period, and upon the expiration of this period, the corresponding
backup ile is deleted. GC is then employed to eliminate invalid (unreferenced) data from the system, thereby
consolidating free space [4, 13, 16, 37, 56]. Note that backup systems may occasionally write duplicate chunks for
higher write performance. If so, these duplicate chunks are removed during the GC process [1, 9].

Typically, the GC process starts by scanning through active backups to identify and lag the valid data chunks,
known as live chunks, which are referenced by backups that haven’t expired. In cases where a data chunk exists
in multiple physical copies, GC selects one instance, often the most recent, as the live chunk. Following this, these
live chunks are extracted from containers that also hold invalid data, and new containers are formed to store them.
The containers that have been stripped of their live chunks are then freed up for reuse. GC is time-consuming
due to the extensive I/O operations involved. Many techniques have been proposed to decrease its execution
time [9, 13, 16, 37, 56].

ACM Trans. Storage

6 • Y. Zhang et al.

ABackup 1:

Backup 2:

Backup 3:

A

B

C

D

Container 1

B C D

E F C D

A B C D

Fig. 1. Chunks �′, �′, and �′ exhibit similarity to the corresponding chunks �, � , and � , respectively. In backup 3, chunks

� and �′ are derived from backup 1, whereas �′ and �′ are inherited from backup 2. When atempting to identify similar

chunks for the data chunks in backup 3, the logical-locality-based indexing techniques fail to detect chunk � in backup 1 as

a similar chunk to �′.

3 Observations and Motivations

3.1 Distribution of Similar Chunks

The sketch indexing strategy determines which data chunks can be identiied as base chunks. Existing sketch
indexing techniques can be categorized into three types: logical-locality-based sketch indexing, physical-locality-
based sketch indexing, and full sketch indexing. We analyze these three sketch indexing strategies to understand
the distribution of similar chunks.

3.1.1 Logical-locality-based Sketch Indexing. Logical-locality-based sketch indexing approaches, such as MeGA
[55] and HARD [39], create indexes for sketches of data chunks from the most recent backup, as well as the base
chunks of its delta-compressed chunks. Essentially, this sketch indexing technique exploits the logical locality
inherent in consecutive backups. Intuitively, a backup is typically a modiied version of its predecessor. If data
chunks from the previous backup have already been delta compressed and are unsuitable to serve as base chunks
due to the challenges of delta decoding during inline backup, the base chunks used in their compression can
serve as base chunks for the current backup’s delta compression.

One advantage of this sketch indexing technique is the remarkable similarity of base chunks. This advantage
stems from the fact that the emergence of similar chunk pairs often originates from minor alterations made to
the most recent backup. However, a notable limitation of this technique lies in its potential to overlook certain
similar chunks. Our observations indicate that data chunks from a given backup can be derived from multiple
preceding backups. Such occurrences, for instance, may arise during data rollback procedures. Consequently,
similar chunks may appear across diferent backup versions. Due to the absence of a direct correlation with the
most recent backup, these similar chunks may be undetected by the technique leveraging logical locality. Figure
1 provides an example to illustrate how this issue may arise.

3.1.2 Physical-locality-based Sketch Indexing. Stream-Informed Delta Compression (SIDC) [34] is a physical-
locality-based sketch technique that detects similar chunks from containers deduplicated against. During dedu-
plication, the system determines which data chunks’ sketches will be indexed. Speciically, once a container is
selected for deduplication, sketches of all data chunks within that container are indexed.

The advantage of this indexing technique lies in its capacity to capture most similar chunks. Logical-locality-
based indexing techniques are limited to identifying similar chunks directly related to the last backup. In contrast,
the physical-locality-based indexing technique leverages physical locality to overcome this limitation, enabling
the detection of similar chunks in backups older than the last backup, as long as they are stored in the same
container as a previous copy of a data chunk from the current backup. Taking data chunks in Figure 1 as an
example, the physical-locality-based indexing technique can identify the chunk � in Backup 1 as a similar chunk
to �′ in Backup 3, which cannot be achieved by the logical-locality-based indexing technique. This is because
chunk � is stored in Container 1, where a previous version of chunk � also resides.

ACM Trans. Storage

An Eficient Delta Compression Framework Seamlessly Integrated into Inline Deduplication • 7

ABackup N:

A

B1

Container X

B1 D1C1 A B2 D2

write

C1

D1

ded
uplic

at
in

g

ag
ai

nst
Conta

in
er

 X

C2

se
rv

ing as
 bas

e c
hunks

fo
r d

elt
a-c

ompres
sin

g B 2
,

C 2
, a

nd D 2

Fig. 2. In backup � , � is a self-referenced duplicate chunk, while �1, �1, and �1 are similar to �2, �2, and �2, respectively.

Ater being processed by the system, the first four data chunks are stored in container � . When processing the fith chunk

(the second � in the backup data stream), the system chooses container � for deduplication, since it contains a duplicate of

chunk �. Following this, sketches of the data chunks stored in container � are indexed, and �1, �1, and �1 are detected as

the base chunks of �2, �2, and �2.

Within a backup, there may exist both duplicate and similar chunks. The former are termed self-referenced

duplicate chunks, whereas the latter are known as self-referenced similar chunks. When detecting similar chunks
for a given data chunk, those detected from previous backups often exhibit higher similarity compared to those
detected within the current backup. This may be because the given data chunk could have been derived from
similar chunks in previous backups through one or multiple small modiications, whereas no such modiication
relationship exists between the given data chunk and similar chunks within the current backup. When datasets
contain both self-referenced duplicates and self-referenced similar chunks, the physical-locality-based indexing
technique may detect low-similarity self-referenced similar chunks as base chunks, thereby compromising the
compression ratio. Figure 2 presents an example to illustrate how this problem may arise.

3.1.3 Full Sketch Index. The full sketch indexing technique simply indexes the sketch of every stored data chunks.
Since this technique can identify all potential similar chunks, it often serves as an upper bound for compression
ratio evaluations when delta compression is involved [39, 51, 55]. Nonetheless, it faces two primary limitations.

Firstly, the size of the indexes scales linearly with the system’s storage capacity, posing a challenge in organizing
sketch indexes. Storing them on HDDs leads to low query performance, while keeping them in RAM limits the
system’s scalability. Secondly, this method may result in poor compression when processing datasets containing
self-referenced similar chunks, similar to the problem faced by physical-locality-based indexing technique.
Consider two self-referenced similar chunks, �1 and �2. Assume the chunk most similar to �2, denoted as � , is
from a previous backup. If the system processes �1 irst, its sketch may overwrite the sketch of � . This can lead
to �1 being mistakenly detected as the base chunk when processing �2.

3.1.4 Combining the Best of Both Worlds. The sketch indexing technique that leverages logical locality and
the one that exploits physical locality each have distinct advantages in detecting similar chunks, and their
strengths complement each other. The technique based on logical locality excels in detecting highly similar
chunks, whereas the one relying on physical locality can identify most similar chunks. By combining the strengths
of both techniques, we can maximize the beneits of delta compression. Given that data chunks with logical
locality are embedded within the data chunks of the most recent backup, and physical locality is preserved
in containers, to leverage both logical and physical locality in detecting similar chunks, it suices to detect
similar chunks within containers that include the data chunks of the most recent backup and base chunks of
delta-compressed chunks of that backup.

Figures 3 and 4 respectively show the percentage and average delta compression eiciency (���) of detected
similar chunks. These metrics are compared between existing sketch indexing techniques and the approach
that combines both logical and physical locality, across four datasets. We assume that the full sketch indexing
(Greedy) can ind all potential similar chunks. The characteristics of these datasets are detailed in Table 2

ACM Trans. Storage

8 • Y. Zhang et al.

RDB WEB LNX SYN
0%

25%

50%

75%

100%

Dataset

 MeGA (Logical Locality) SIDC (Physical Locality)

 Greedy (Full Indexing) Logical & Physical Locality

Fig. 3. Percentage of potential similar chunks detected by MeGA, SIDC, Greedy, and the approach exploiting both logical

and physical locality on four datasets.

0.930

0.935

0.940

0.945

A
v
e

ra
g
e
 D

C
E

RDB

 MeGA (Logical Locality) SIDC (Physical Locality)

 Greedy (Full Indexing) Logical & Physical Locality

0.94

0.95

0.96

0.97

0.98

WEB

Fig. 4. Average DCE of MeGA, SIDC, Greedy, and the approach exploiting both logical and physical locality on the RDB and

WEB datasets.

of Section 6.1. The RDB and SYN datasets contain a signiicant amount of multi-version inheritance data,
while the WEB dataset contains numerous self-referenced duplicates and similar chunks. ���, calculated as

1 −
�ℎ��� ���� �� ��� ����� �����������

�ℎ��� ���� �� � ��� ����� �����������
, relects the similarity of the detected chunks; a higher value denotes greater

similarity [50, 54]. The results in the two igures support our analysis, namely, that combining both logical
and physical locality when detecting similar chunks can capture most similar chunks, including highly similar
chunks. Notably, on the WEB dataset, the approach combining logical and physical locality achieves a higher
��� compared to other methods, as it avoids identifying self-referenced similar chunks as base chunks.

3.2 Avoiding I/Os for Retrieving Base Chunks

The retrieval of base chunks on both the write and read paths requires additional I/Os, which obstructs the use of
delta compression in inline deduplication-based backup systems. In this subsection, we explore and evaluate
potential strategies to minimize this overhead, ultimately making delta compression a practical and eicient
option for inline deduplication-based backup solutions.

3.2.1 On the Write Path. In container-based deduplication systems, such as Data Domain backup systems
[53], accessing containers to prefetch metadata for accelerating duplicate detection is a routine operation
in data deduplication. This presents an opportunity to minimize I/O overheads for retrieving base chunks.
Speciically, when containers storing potential base chunks are targeted for deduplication, these base chunks can
be anticipatively retrieved by piggybacking on the routine operations, thereby eliminating the necessity for extra
I/O operations. Fortunately, due to redundancy locality, nearly all containers housing similar chunks, identiied
by exploiting both logical and physical locality, are accessed for metadata prefetching during the deduplication
process. This becomes particularly apparent when rewriting is applied, as demonstrated in Figure 5. In other
words, most of potential base chunks can be obtained without necessitating extra I/O operations.

ACM Trans. Storage

An Eficient Delta Compression Framework Seamlessly Integrated into Inline Deduplication • 9

0 40 80 120 160 200
0%

25%

50%

75%

100%

Version number

 w/o rewriting

 w/ rewriting

(a) RDB

0 30 60 90 120
0%

25%

50%

75%

100%

Version number

 w/o rewriting

 w/ rewriting

(b) WEB

Fig. 5. The percentage of containers housing similar chunks, identified by leveraging both logical and physical locality

without and with rewriting, targeted for deduplication on the RDB and WEB datasets. The rewriting technique applied is

Capping with a capping level of 15 (i.e., each segment references a maximum of 15 old containers).

Chunk A

Chunk B

Chunk C

Chunk D

Chunk E

Delta(C', C)

Chunk F

blank

Chunk G

blank

the first
level

the second
level

two-level reference
relationship

Fig. 6. An example of a base-fragmented chunk. Chunk C’ is similar to Chunk C. Delta(C’, C) represents a delta encoded

Chunk C’ using Chunk C as its base. Colored areas in each container represent data chunks required by backup 3. Chunk C’

in backup 3 is a base-fragmented chunk because it refers to an old delta, i.e., Delta(C’, C), whose base chunk, i.e., Chunk C,

requires an extra I/O to fetch Container 1 during the restoration of backup 3. The blank space represents the padding content

added to a container to ensure it reaches its maximum size (e.g., 4MB) when it is saved to the HDD due to the completion of

the backup process.

It is important to note that our claim of eliminating extra I/Os for retrieving base chunks is based on system-
level I/O requests, abstracted from the underlying storage details. In a RAID coniguration, although the physical
I/O operations increase due to the necessity of accessing multiple disks, the strategy of piggybacking base chunk
retrieval on metadata prefetching I/Os still avoids incurring additional system-level I/O requests speciically
for base chunks. This is achieved by leveraging the parallelism inherent in RAID disks to process the metadata
reads, on which the base chunk retrieval is piggybacked. Consequently, despite the increase in physical I/Os, this
approach retains its advantage in reducing overall system latency. In what follows, when we refer to ‘eliminating
extra I/Os for retrieving base chunks’, we are speciically referring to system-level I/O requests.

Zhang et al. [48, 49] adopted a similar prefetching strategy for base chunks. However, their strategy is efective
only when a signiicant number of data chunks are repeatedly rewritten in the system. This situation arises
primarily when the dataset is in a packed format and contains a large number of small iles.

ACM Trans. Storage

10 • Y. Zhang et al.

3.2.2 On the Read Path. During the restore process, base chunks also must be loaded into memory to reconstruct
data chunks via delta decoding. Detected similar chunks, by using both logical and physical locality, are stored
with duplicate chunks (or deltas) that trigger metadata prefetching. This allows for retrieving base chunks during
restore without additional I/Os. However, if a duplicate chunk references an old delta, retrieving the base chunk
of this delta might require an I/O operation during restore. We call data chunks referring to such deltas base-
fragmented chunks and suggest rewriting them for better restore speed. Figure 6 showcases a base-fragmented
chunk.

In an inline backup systemwith both deduplication and delta compression, the single level reference relationship
is common, such as a duplicate chunk referencing a data chunk, or a delta referencing its base chunk. However,
base-fragmented chunks introduce a more complex, two-level reference relationship: a duplicate chunk references
a delta, which then references its base chunk, as exempliied by chunk C’ in Backup 3 in Figure 6. Establishing
each level of the reference relationship typically requires a query, which may require I/Os.
In the aforementioned two-level reference relationship, the irst level is established during deduplication by

querying the ingerprint index. This index maps the ingerprints of data chunks and deltas to their container
IDs. There are two possible methods to establish the second level of the reference relationship, namely, from
deltas to the container IDs of their base chunks. One method is to store base chunk ingerprints alongside deltas
and obtain the base chunks’ container IDs by querying these ingerprints. This approach requires additional I/O
operations. The other approach is to directly store the base chunks’ container IDs with the deltas for immediate
access. However, this method is vulnerable to GC that can obscure the second level reference, as base chunks
may be relocated to other containers during the GC process.

An alternative solution is to rewrite all duplicate chunks referencing old deltas, regardless of whether they are
base-fragmented chunks or not. However, our analysis reveals that this approach would lead to a considerable
increase in I/Os for data writing, ultimately reducing backup throughput. This is because some datasets contain a
large number of duplicate chunks that reference old deltas, while most of these chunks are non-base-fragmented
and thus do not need to be written to the HDD. Taking the RDB dataset as an example, when the rewriting
approach is Capping with a capping level of 10, 36% of duplicate chunks reference old deltas. Among these 36% of
duplicate chunks, 59.9% are non-base-fragmented chunks, which is ive times the number of unique data chunks
written to the HDD, and hence is bound to adversely afect backup throughput.

The fact is that, as we found out, the sequence of data chunk processing for both the backup and restore
processes is identical. Speciically, during restoration, the order of processing data chunks follows the sequence
of ingerprints recorded in the recipe, which corresponds to the order of data chunk processing during backup.
Additionally, both the routine metadata prefetching during backup and the prefetching operations for containers
holding the required data chunks during restore are executed on a per-container basis, with the only diference
being that the former prefetches metadata while the latter prefetches the entire container. Consequently, it
becomes possible to identify during the backup process whether the base chunks of old deltas, referenced by a
speciic backup, will require I/O operations during restore, with the help of the metadata prefetched by routine
operations.

3.3 Rewriting-Aligned Delta Compression

The rewriting technique reduces chunk fragmentation by avoiding references to sparse-reference containers.
This creates duplicate chunks in the system. During GC, only the most recent version of a duplicate chunk is
preserved while older versions are deleted to save storage space. Essentially, rewriting shifts the removal of
duplicate chunks from the current backup to previous backups, thereby transferring fragmentation to those
earlier backups.

ACM Trans. Storage

An Eficient Delta Compression Framework Seamlessly Integrated into Inline Deduplication • 11

A

B

C

Container 1

D

ABackup 1:

Backup 2:

B C D E F G H

A B C D2 E2 F G2 K

E

F

G

Container 2

H

d(D2)

d(E)

G2

Container 3

d(G)

E2

F

Direct delta compression
(the traditional approach)

Inversed delta
compression

Will be removed
during GC

Sparse-reference container

Fig. 7. An example of inversed delta compression. Chunks �2, �2, and�2 in backup 2 are similar to Chunks � , �, and� , in

backup 1. Ater backup 1 is ingested, its chunks are stored in containers 1 and 2. For backup 2, container 2 is a sparse-reference

container because it contains only one referenced chunk (i.e., �). Consequently, the system rewrites � in backup 2 due to its

reference to a chunk in container 2, and performs inversed delta compression for �2 and�2 because their base chunks � and

� are stored in container 2. Here, � (�2) denotes the delta generated by delta-compressing �2 relative to � , while � (�) and

� (�) represent deltas generated by delta-compressing � and � relative to �2 and �2, respectively. Since backup 2 does not

reference any chunk in container 2, thereby preserving the efectiveness of the rewriten of � .

To keep rewriting efective, chunks from sparse-reference containers can’t be used as base chunks for delta
compression, which can lead to compression loss. Delta compression involves two steps: irst, creating a delta
for the target chunk, resulting in encoded and unencoded versions. Second, the unencoded version is deleted.
Inspired by the rewriting technique, we discovered that by applying delta compression to old chunks, in a manner
that can be described as inversed delta compression compared to traditional methods, rather than to current ones
as conventionally done, and by deleting unencoded previous chunks during GC, we can preserve the efectiveness
of rewriting while beneiting from delta compression, even for chunks from sparse-reference containers. Figure 7
illustrates an instance of inversed delta compression to exemplify this concept.

4 The Design of LoopDelta

4.1 LoopDelta Overview

LoopDelta is a framework designed to embed delta compression into a typical deduplication strategy that arranges
data chunks into containers and prefetches container metadata to accelerate duplicate detection. It employs
the following three key techniques to maximize data reduction from delta compression while minimizing I/O
overhead for retrieving base chunks.

• Dual-locality-based Similarity Tracking. Based on the insights in Section 3.1, LoopDelta tracks contain-
ers housing related data chunks from the most recent backup to detect the most similar chunks, including
those with high similarity, as detailed in Section 4.2. Because of redundancy locality, these containers are
prioritized for deduplication, allowing data chunks within them to be retrieved by piggybacking on routine
operations during deduplication to serve as base chunks. This avoids extra I/Os for retrieving base chunks
during backup.

ACM Trans. Storage

12 • Y. Zhang et al.

Stage (1)

Stage (2) Stage (3)
Stage (4)

Container
similarity monitor

Fig. 8. An overview of LoopDelta. The dashed arrows point to key data structures residing in DRAM required for the

corresponding LoopDelta stages.

Table 1. Contents of data chunks and deltas respectively in metadata and data sections of a container.

Category Metadata section Data section

Data chunk Fingerprint
Chunk contents
Sketch

Delta
Fingerprint

Delta contentsSize of its base chunk
Fingerprint of its base chunk

• Cache-aware Filter. By leveraging recently prefetched metadata from routine operations during dedupli-
cation, LoopDelta identiies and rewrites base-fragmented chunks, as detailed in Section 4.3. This eliminates
extra I/Os for retrieving base chunks during restore.

• Inversed Delta Compression. When similar chunks are detected within sparse-reference containers for
speciic data chunks, LoopDelta delta-encodes those chunks using these data chunks as the base, thereby
creating encoded duplicates of the identiied chunks. The removal of unencoded data chunks, a step that
contributes to data reduction, is deferred to the GC process, as detailed in Section 4.4. This allows us to
reap the beneits of delta compression without compromising the eiciency of rewriting techniques.

The overall worklow of LoopDelta is depicted in Figure 8, which comprises four primary stages that seamlessly
integrate delta compression into inline deduplication. In stage (1), the backup workload undergoes chunking
and ingerprinting. Stage (2) identiies duplicate chunks via ingerprint indexing. Concurrently, this stage loads
potentially similar chunks and their sketches into the potential similar chunk cache. During stage (3), the
rewriting technique, if applied, identiies sparse-reference containers and fragmented chunks. Additionally,
base-fragmented chunks are identiied in stages (2) and (3), as elaborated in Section 4.3. In stage (4), LoopDelta
detects similar chunks for unique, fragmented, and base-fragmented chunks within the potential similar chunk
cache. If similar chunks are found, delta compression is performed. Ultimately, any unremoved data chunks and
deltas are compressed by a local compressor (such as ZSTD [12]) and appended to an open container in memory.

ACM Trans. Storage

An Eficient Delta Compression Framework Seamlessly Integrated into Inline Deduplication • 13

In LoopDelta, a container consists of a metadata section and a data section, the same as that in [16, 53]. The
information stored in these two sections is detailed in Table 1. It is important to note that the content saved for a
data chunk and a delta in the metadata section difers. When the container in memory attains its maximum size
(e.g., 4MB), it is saved to the HDD, and a fresh container is initialized to accommodate subsequent data. Each
container in the system is assigned a unique integer ID, which can be used to locate the container. To facilitate
understanding of the LoopDelta process, we irst provide descriptions of the key data structures involved.

• Fingerprint Cache: A cache that stores metadata prefetched from containers.
• Potential Similar Chunk Cache: A cache for data chunks and sketches retrieved from containers.
• HT_similarity: A lookup table that lists container IDs included in the similar container list generated
by the most recent backup. If these containers are accessed during deduplication their data chunks are
prefetched into the Potential Similar Chunk Cache.

• Fingerprint Index: An index that maps data chunks in the system to their corresponding container IDs.
• Similar Container List: A list that records the IDs of containers whose data chunks are referenced during
a backup process. Containers whose IDs are recorded in this list will form the HT_similarity for the next
backup.

4.2 Prefetching Metadata & Base Chunks

In this subsection, we irst describe the routine operation for prefetching metadata in a container-based backup
system during deduplication. Subsequently, we elaborate on how LoopDelta identiies similar chunks, i.e., dual-
locality-based similarity tracking. Finally, we describe the method for piggybacking potential base chunks onto
routine operations.
Routine Operations For Prefetching Metadata. A container includes a metadata section for storing data
chunks’ metadata and a data section for storing the actual data chunks. The backup system stores a full ingerprint
index on disk and employs a ingerprint cache to accelerate duplicate detection by leveraging the physical locality
preserved within containers, along with a Bloom ilter to rapidly identify non-duplicate chunks. Speciically,
each data chunk’s ingerprint is compared to the ingerprint cache during storage. If it’s not found, a Bloom ilter
helps determine if the chunk might exist in the system. If a potential match is indicated, the on-disk ingerprint
index is checked, and relevant container metadata is prefetched into the ingerprint cache. Redundancy locality
increases the chance of inding subsequent chunk ingerprints in the cache, thereby reducing I/O operations for
checking the on-disk index.
Dual-locality-based Similarity Tracking. From the observations in Section 3.1, we learn that detecting similar
chunks among the data chunks from the most recent backup and the base chunks of previously delta-compressed
chunks from the same backup enables the capture of similar chunks with logical locality. Furthermore, identifying
similar chunks among data chunks stored within the same containers as the aforementioned data chunks can
capture similar chunks with physical locality. To eiciently capture both types of similar chunks for delta
compression, LoopDelta identiies the containers housing data chunks from the latest backup and the base chunks
of delta-compressed chunks from that backup.

We evaluate the abundance of similar chunks within a container through a metric called container similarity,

calculated as
�ℎ� ����� ���� � � �� � ������� ����

�ℎ� ��������� ����
. The referenced data comprises of referenced data chunks (including

data chunks written during the current backup) and base chunks. A higher container similarity indicates a greater
abundance of similar chunks. This evaluation method implies that containers with more data from the last backup
are likely to contain a higher number of similar chunks, emphasizing the primacy of logical locality over physical
locality in detecting similar chunks. This is because analyses in Section 3.1 suggest that by solely leveraging
logical locality, a signiicant portion of similar chunks, including those with high similarity, can be identiied.

ACM Trans. Storage

14 • Y. Zhang et al.

Prefetching Potential Base Chunks. LoopDelta uses a container similarity monitor to assess the similarity of
containers referenced during the ongoing backup process. As each data chunk undergoes deduplication and delta
compression, its size, container ID, and, if delta-compressed, the size and container ID of its base chunk, are used
to update the container similarity monitor. Upon completion of a backup, container IDs recorded by the container
similarity monitor are written to a ile called similar container list. Containers in this similar container list, if
chosen for deduplication in the next backup, will have their data chunks prefetched as potential base chunks
during deduplication.
Speciically, at the start of a backup, the last backup’s similarity container list is loaded to memory, and its

container IDs are used to create a lookup table named ��_����������. During deduplication, for each container
to be accessed by routine operations, LoopDelta checks whether it exists in ��_����������. If a match is found,
LoopDelta further checks whether the container is already present in the potential similar chunk cache. If it exists,
only the metadata is prefetched; otherwise, both the data chunks (excluding deltas) and metadata are prefetched.
If the container does not exist in ��_����������, only the metadata is prefetched. The prefetched metadata is
inserted into the ingerprint cache, whereas the prefetched data chunks are inserted into the potential similar
chunk cache. Note that the containers in the last backup’s similarity container list might have been reclaimed by
GC, thereby hindering the prefetching of similar chunks. We will discuss how to update the similarity container
list in Section 4.5. Once the backup completes, the similarity container list from the last backup is no longer
required and thus deleted.
Reducing Transfer Time. Prefetching metadata alone requires minimal disk I/O. Prefetching data chunks along
with metadata, while eliminating the seek time and rotational delay of I/Os for reading base chunks, increases
transfer time. We employ several strategies to mitigate this transfer time.
Firstly, we store data chunks and deltas separately within the container’s data section. As suggested by [33],

only non-delta-compressed data chunks are suitable for use as base chunks, thus eliminating the need to prefetch
deltas during deduplication. If data chunks and deltas are mixed together in the data section, the system has to
read the entire container, including unneeded deltas, to prefetch data chunks and metadata. To address this issue,
we separate data chunks and deltas into two distinct areas within the data section, placing the data chunks closer
to the metadata. This design allows LoopDelta to prefetch only the required data chunks and metadata, excluding
deltas, thereby reducing transfer time.
Moreover, we adopt an approach diferent from SIDC for storing sketches within the container to reduce

transfer time when only prefetching metadata. Unlike SIDC, which stores sketches alongside other metadata,
LoopDelta places the sketch of a data chunk immediately next to the corresponding data chunk in the data section.
This design prevents sketches from being prefetched when only metadata is the prefetch target, thus reducing
transfer time. Compared to SIDC, this design nearly halves the prefetched data size when prefetching metadata
alone.

In addition to redesigning the container, we reduce transfer time by selectively disabling data chunk prefetching
for certain containers. A straightforward method would be to set a similarity threshold and exclude containers
with similarities falling below this threshold from the container similarity monitor, thus keeping them of the
similarity container list [46]. However, unless the container similarity threshold can adjust automatically based
on the dataset, which is diicult, it may result in the loss of numerous potential base chunks or the unnecessary
prefetching of data chunks from containers with minimal similar chunks. This occurs because the average
container similarities difer across datasets. Datasets exhibiting relatively high container similarity require a
higher similarity threshold, whereas datasets with relatively low container similarity necessitate a lower similarity
threshold.

Rather than relying on a similarity threshold to exclude containers from the container similarity monitor, we
utilize a ratio of the total size of removed referenced data to the total size of referenced data. We refer to this
ratio as the similarity cutof. We deine a similarity cutof (say, ���� � �), calculate the total size (say, ��) of all

ACM Trans. Storage

An Eficient Delta Compression Framework Seamlessly Integrated into Inline Deduplication • 15

referenced data, including referenced data chunks and base chunks, and use �� to track the size of referenced
data removed from the container similarity monitor. Upon backup completion, LoopDelta continuously removes
containers with the lowest similarity from the container similarity monitor and adds their referenced data size to
�� until the ratio ��

��
reaches ���� � � . Subsequently, the container IDs that remain in the container similarity

monitor are recorded in the similar container list. This approach automatically disables data chunk prefetching
for containers with the least similar chunks, while precisely controlling the proportion of similar chunks that are
removed.

4.3 Cache-aware Filter

The cache-aware ilter has been devised to detect base-fragmented chunks and rewrite them, thereby enhancing
restore performance. Since the ingerprints of deltas’ base chunks are utilized in identifying base-fragmented
chunks, the ingerprints of deltas’ base chunks along with these deltas’ metadata (including ingerprints, chunk
sizes, and ofsets of deltas in the data section) are stored in the metadata section. These are then prefetched
together into the ingerprint cache during the deduplication process. Since the restore process follows the same
sequential access pattern as the backup process, the states of the ingerprint cache and restore cache would
naturally align if rewriting is not applied. In this scenario, a base-fragmented chunk, which would cause a
restore cache miss and trigger an I/O operation during restoration, would not have its ingerprint present in the
ingerprint cache during duplicate detection. In other words, without rewriting, base-fragmented chunks can be
identiied during the duplicate detection phase.

However, the introduction of rewriting may cause inconsistencies between the states of the ingerprint cache
and the restore cache. Speciically, containers whose metadata has been prefetched into the ingerprint cache
may be classiied as sparsely referenced, thereby bypassing prefetching into the restore cache. Consequently,
when rewriting is applied, the cache-aware ilter employs a two-step process to pinpoint base-fragmented chunks.
Initially, it pinpoints base-fragmented chunks that reference deltas missing their corresponding base chunks in
the ingerprint cache during stage (2). Subsequently, it detects base-fragmented chunks referencing deltas with
base chunks stored in sparse-reference containers.
Speciically, during the duplicate detection stage, when evaluating a particular data chunk, denoted as �� ,

which references an old delta identiied as �������� , the cache-aware ilter checks for the presence of the base
chunk’s ingerprint within the ingerprint cache. If absent, �� is categorized as a base-fragmented chunk. If
present, the determination hinges on whether rewriting is applied. In the absence of rewriting, �� is identiied
as a duplicate chunk. Note that the ingerprint of �������� can be directly obtained because it is stored together
with the ingerprint of �� in the metadata section and is therefore prefetched into the ingerprint cache along
with the ingerprint of �� .

If rewriting is applied, the cache-aware ilter cannot immediately determine whether �� is base-fragmented.
Instead, it associates the detected container ID (���base) with�� for later determination. In the stage of identifying
sparse-reference containers, i.e., stage (3) in Figure 8, if the rewriting approach classiies �� as a fragmented
chunk, further investigation into whether it is base-fragmented becomes unnecessary as it has already been
conirmed for rewriting. Alternatively, if �� is non-fragmented, the cache-aware ilter checks whether the
container with ID ������� is sparsely referenced. If true, �� is identiied as a base-fragmented chunk; otherwise,
it’s considered a duplicate chunk.

4.4 Post-deduplication Delta Compression

Delta Compression Worklow. LoopDelta attempts to perform delta compression on all data chunks requiring
storage, including unique, fragmented, and base-fragmented chunks, in order to minimize the amount of stored
data. To achieve this, LoopDelta identiies similar chunks for each of the aforementioned data chunks from the

ACM Trans. Storage

16 • Y. Zhang et al.

potential similar chunk cache, which holds candidates prefetched during deduplicate detection, and performs
delta compression if a match is found. In LoopDelta, there are two types of delta compression: traditional direct
delta compression and inversed delta compression. The type of delta compression used depends on whether a
similar chunk is found in a sparse-reference container. If so, inversed delta compression is performed, as will be
further discussed later. If rewriting is not applied, LoopDelta applies only direct delta compression.
Inversed Delta Compression. Consider a new chunk (say, �) with a similar chunk (say, �) found in backup
storage. Direct delta compression encodes � relative to � , producing a delta (say, ������,�), which is then stored
instead of � for immediate data reduction. Conversely, inversed delta compression encodes � relative to � ,
generating a delta (������,�), which is stored alongside � . Since inversed delta compression creates an encoded
version of � , the original � becomes redundant in the sparse-reference container and is subsequently removed in
the next GC. Essentially, data reduction via inversed delta compression is deferred until the next GC. Typically,
when decoding a delta created through inversed delta compression, there is no need for an extra I/O operation to
retrieve the base chunk. This is because the delta (e.g., ������,�) and the base chunk (e.g., �) are generally stored
within the same container. However, there are occasions where GC may redistribute them to separate containers.

In addition to achieving data reduction from data chunks with similar chunks in sparse-reference containers,
inversed delta compression ofers two additional advantages. Firstly, it preserves chunk locality, just like the
rewriting technique. Secondly, it enhances the similarity of detected base chunks for the subsequent backups.
Since deltas cannot serve as base chunks, in a sequence of similar chunks from diferent backup versions, if we
apply direct delta compression, the initial data chunk consistently serves as the base chunk for delta-compressing
subsequent similar chunks in later backups. However, as the interval between backup versions increases, the
similarity between the contained chunks typically decreases. Inversed delta compression allows the most recently
written similar chunks to serve as the base chunks, thereby enhancing the similarity of detected base chunks.

However, inversed delta compression also comes with two downsides. Firstly, compared to direct delta com-
pression, it increases I/O overhead during data writing due to the need to store additional data. Secondly, it results
in a higher number of duplicate chunks being eliminated during GC, which will be further discussed in Section
4.5. Given that LoopDelta is I/O-intensive, it favors direct delta compression. To achieve this, when detecting
similar chunks, it gives precedence to similar chunks in sparse-reference containers.

4.5 Garbage Collection

During the GC process, LoopDelta identiies the most recently written instance of a data chunk with multiple
physical instances as the live chunk. In this process, the target chunks for inversed delta compression are
eliminated. Furthermore, GC might diminish the efectiveness of potential similar chunk prefetching, as the
containers whose IDs are recorded in the similar container list could have been reclaimed during GC. To address
this problem, LoopDelta updates the similar container list after each GC process. It’s worth noting that there
is only one list that needs to be updated for each backup data stream. In comparison to GC, the overhead for
updating the similar container lists is negligible.

5 Implementation and Discussion

5.1 Rewriting

LoopDelta supports two rewriting approaches, namely, HAR [13] and Capping [22], in its current implementation.
Implementation of Capping. Capping divides the data chunks of the ongoing backup into segments and limits
the maximum number of containers that a segment can deduplicate against. To avoid reducing the rewriting
eiciency of Capping, base chunks of data chunks in a segment can only be detected from containers that this
segment can deduplicate against. However, containers that are identiied as sparsely referenced by Capping

ACM Trans. Storage

An Eficient Delta Compression Framework Seamlessly Integrated into Inline Deduplication • 17

and thus cannot be deduplicated against may still be prefetched into the potential similar chunk cache. If these
containers contain similar chunks, not performing delta compression on them would result in compression loss.

Since the containers that can be deduplicated against may difer from one segment to another, to address this
issue, each segment records the containers that its data chunks can deduplicate against. When detecting similar
chunks, the system prioritizes detecting similar chunks in such containers recorded by their corresponding
segments. For similar chunks so detected, it performs direct delta compression. Otherwise, it detects similar
chunks in other containers in the potential similar chunk cache and performs inversed delta compression if
similar chunks exist.
Implementation of HAR. HAR deines a container’s utilization for a backup as the fraction of its data chunks

and base chunks that are referenced by the backup, calculated as
�ℎ� ����� ���� � � �� � ������� ���� �ℎ����

�ℎ� ��������� ����
. Containers

with a utilization falling below a certain rewriting threshold (e.g., 50%) are considered sparsely referenced. To
simplify the system design, we modiied the deinition of "container’s utilization" to be consistent with the

deinition of container similarity, which is also calculated as
�ℎ� ����� ���� � � �� � ������� ���� �ℎ���� ��� ���� �ℎ����

�ℎ� ��������� ����
.

When HAR is applied, LoopDelta uses two potential similar chunk caches: one for direct delta compression and
another for inversed delta compression. The system starts with the cache for direct delta compression when
detecting similar chunks. The size of the inversed delta compression cache is set to half of the size of the direct
delta compression cache. Note that when rewriting is not applied or the rewriting algorithm is Capping, only one
potential similar chunk cache is required.
Upon completion of a backup, sparse-reference containers identiied by HAR are stored. At the start of a

backup, sparse-reference containers from the last backup are loaded into memory to create a lookup table. For
a container whose data chunks and metadata are prefetched during deduplication, the system checks whether
its ID exists in this lookup table. If so, data chunks in it are inserted into the potential similar chunk cache for
inversed delta compression; otherwise, they are inserted into the potential similar chunk cache for direct delta
compression.
Discussion. Rewriting, however, may result in LoopDelta missing some similar chunks. This occurs because
rewriting can prevent data sharing among sparse-reference containers and both the current and subsequent
backups. As a consequence, similar chunks within these containers cannot serve as base chunks for delta-
compressing future backups. While inversed delta compression addresses the issue for the current backup, it
leaves the problem unresolved for subsequent backups. Furthermore, rewriting can actually enhance the similarity
of detected base chunks. This is because rewritten chunks can serve as base chunks, and compared to older data
chunks, they tend to share more redundancy with data chunks in the future backups.

5.2 I/O Botleneck Analysis

LoopDelta is I/O-intensive, with multiple tasks in its worklow requiring I/O operations, speciically: (1) looking up
the ingerprint index, (2) prefetchingmetadata, (3) prefetching potential similar chunks, (4) updating the ingerprint
index, and (5) writing back containers. The performance bottleneck varies among these tasks, depending on
the redundancy of the datasets. For datasets with high redundancy, where duplicate chunks are abundant, most
I/O operations are concentrated in tasks (1), (2), and (3), thereby making them the performance bottleneck.
Conversely, datasets with low redundancy, characterized by more unique or dissimilar chunks, result in increased
I/O operations in tasks (4) and (5), making them the performance bottleneck.
Rewriting has an impact on the I/O operations within LoopDelta and, consequently, its backup throughput.

Generally, rewriting can enhance backup throughput by reducing the overall I/O overhead, particularly by
reducing I/O operations for tasks (1), (2), and (3). However, it also results in more data being stored, which raises
I/O operations for tasks (4) and (5). Therefore, for datasets with low redundancy, where the primary bottleneck
lies in tasks (4) and (5), a more rigid rewriting setting may potentially decrease backup throughput as it may

ACM Trans. Storage

18 • Y. Zhang et al.

Table 2. Workload characteristics of the tested datasets.

Name Size Workload descriptions Key property

RDB 1080GB 200 backups of the redis key-value store database.
Multi-version
inheritance

WEB 330GB
120 days’ snapshots of the website: news.sina.com.
Snapshots of each day are combined into a tar ile.

Self-reference
duplicate and
similar chunks

LNX 284GB
300 versions of Linux kernel source code. Each
version is packaged as a tar ile.

SYN 335GB
180 versions of synthetic datasets generated by
simulating ile create/delete/modify operations.

Multi-version
inheritance

worsen the bottleneck. Additionally, direct delta compression helps reduce I/O operations during task (5), whereas
inverted delta compression increases them.

6 Performance Evaluation

6.1 Evaluation Setup

Experimental Platform. Our evaluations were performed on a machine equipped with a 12-core Intel Xeon
Silver 4215R CPU, 64GB of DRAM, a 2TB HDD, and an 8TB SSD. The SSD and HDD were utilized to simulate
user space and backup space, respectively. Initially, datasets were stored on the SSD, read into DRAM during the
experiments, and written to the HDD after undergoing data reduction processing.
System Conigurations. In our evaluations of LoopDelta and other techniques, deduplication was conigured
to employ the Rabin-based chunking algorithm [31]. The minimum, average, and maximum chunk sizes were
set to 2KB, 8KB, and 64KB, respectively, for the chunking process. The SHA1 hash function was employed for
ingerprinting. The ingerprint cache was conigured as a 256-slot LRU cache for storing prefetched metadata.
Additionally, a 512-container (2GB) LRU cache was set as the restore cache for data restoration.

For post-deduplication delta compression, Odess [54] was adopted for similarity detection, and Xdelta [24] for
delta encoding. After deduplication and delta compression, data chunks and deltas were further compressed using
the local compressor ZSTD [12] prior to being written into a container. The container size was ixed at 4MB.
Performance Metrics. Three metrics are employed to evaluate the performance of LoopDelta.The compression

ratio measures the overall data reduction attained through various compression methods, namely data dedupli-

cation, delta compression, and local compression. It is calculated as
�������� �����

���� ����������� �����
. A compression ratio

greater than 1 indicates data reduction. The speed factor (MB/container-read) is deined as the average data size
restored per container read and serves as a metric for evaluating restore performance [6, 7, 22]. Higher speed
factors indicate superior restore performance. The backup throughput is measured as the throughput from the
initial reading of the dataset to its inal writing on the HDD. Each experiment was repeated ive times to ensure
stable and reliable average values for backup throughput. Furthermore, the reported speed factor and backup
throughput represent the averages obtained from the last 20 backups.
Evaluated Datasets. In our performance evaluation, we employed four datasets, each comprehensively described
in Table 2 along with their distinct features. The datasets encompass a wide range of standard workloads,
consisting of snapshots from databases and websites, an open-source coding venture, and a synthetic dataset.

ACM Trans. Storage

An Eficient Delta Compression Framework Seamlessly Integrated into Inline Deduplication • 19

0.002 0.004 0.006 0.008 0.01
0.6%

0.9%

1.2%

1.5%

1.8%

2.1%

 Missed similar chunks

 Reduced I/Os for prefetching potential base chunks

similarity cutoff

M
is

s
e
d
 s

im
ila

r
c
h
u
n
k
s

4%

6%

8%

10%

12%

14%

R
e
d
u
c
e
d
 I
/O

s

(a) RDB

0.002 0.004 0.006 0.008 0.01
0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

 Missed similar chunks

 Reduced I/Os for prefetching potential base chunks

similarity cutoff

M
is

s
e
d
 s

im
ila

r
c
h
u
n
k
s

10%

20%

30%

40%

50%

 R
e
d
u
c
e
d
 I
/O

s

(b) WEB

0.002 0.004 0.006 0.008 0.01
0.3%

0.6%

0.9%

1.2%

1.5%

1.8%

2.1%

 Missed similar chunks

 Reduced I/Os for prefetching potential base chunks

similarity cutoff

M
is

s
e
d
 s

im
ila

r
c
h
u
n
k
s

18%

27%

36%

45%

54%

63%

 R
e
d
u
c
e
d
 I
/O

s

(c) LNX

0.002 0.004 0.006 0.008 0.01
1.5%

3.0%

4.5%

6.0%

7.5%

 Missed similar chunks

 Reduced I/Os for prefetching potential base chunks

similarity cutoff

M
is

s
e
d
 s

im
ila

r
c
h
u
n
k
s

2%

4%

6%

8%

10%

 R
e
d
u
c
e
d
 I
/O

s

(d) SYN

Fig. 9. Percentage of missed similar chunks and the corresponding reduction in I/Os when prefetching data chunks in

containers without applying rewriting, as the similarity cutof varies from 0.001 to 0.01 across four diferent datasets.

6.2 A Performance Study of LoopDelta

6.2.1 Similarity Cutof & Container Design.

Similarity Cutof. The similarity cutof value can inluence the number of detected similar chunks, as it
prevents containers with minimal similar chunks and the potential base chunk from the most recent backup from
being loaded into the potential similar chunk cache. In this subsection, we study LoopDelta’s sensitivity to this
similarity cutof. Figure 9 presents the percentage of missed similar chunks and the corresponding reduction in
I/O operations when prefetching data chunks in containers without applying rewriting, across four datasets, as
the similarity threshold varies from 0.001 to 0.01. Without rewriting, a very small similarity cutof can efectively
reduce I/Os for prefetching potential base chunks. This reduction implies a decrease in transfer time, with only
a minimal loss of base chunks for delta compression. Speciically, when the similarity cutof is set to 0.003,
the reduced I/Os for prefetching potential base chunks across the four datasets are 7.8%, 27.9%, 40.6%, and 5%,
respectively, while the missed similar chunks are 1%, 0.15%, 0.84%, and 3.3%, respectively.
Furthermore, we also conducted experiments using the approach adopted by [46], which sets a similarity

threshold to prevent containers with similarities below this threshold from being loaded into the potential similar
chunk cache. However, as Figure 10 demonstrates, this method does not provide relatively precise control over
the tradeof between the percentage of missed potential similar chunks and the reduction in transfer time for
prefetching potential base chunks. As an example, with a similarity threshold set to 0.5, the missed similar chunks

ACM Trans. Storage

20 • Y. Zhang et al.

0.1 0.2 0.3 0.4 0.5 0.6
0%

20%

40%

60%

80%

 Missed similar chunks (WEB)

 Reduced I/Os for prefetching potential base chunks (WEB)

 Missed similar chunks (LNX)

 Reduced I/Os for prefetching potential base chunks (LNX)

similarity cutoff

M
is

s
e
d
 s

im
ila

r
c
h
u
n
k
s

0%

20%

40%

60%

80%

100%

 R
e
d
u
c
e
d
 I
/O

s

Fig. 10. Percentage of missed similar chunks and the corresponding reduction in I/Os when prefetching data chunks in

containers without applying rewriting, as the similarity threshold varies from 0.1 to 0.6 for the WEB and LNX datasets.

percentage varies considerably between the LNX and WEB datasets, speciically 66.7% and 2.9%, respectively.
The LNX dataset requires a threshold less than 0.1 to minimize missed similar chunks, whereas the WEB dataset
can have a threshold set to 0.5. This suggests that there is no one-size-its-all similarity threshold suitable for all
datasets using this approach.
When rewriting is applied, whether it’s HAR or Capping, there is no need to set a similarity cutof to reduce

I/Os for prefetching potential base chunks. Firstly, rewriting already signiicantly reduces I/Os. For example,
HAR, with a container utilization of 0.4, decreases I/Os for prefetching potential base chunks by 26.5%, 53.4%,
72.9%, and 54.1% on the RDB, WEB, LNX, and SYN datasets, respectively. Additionally, it reduces total I/Os for
prefetching data during deduplication by 23.6%, 28.3%, 75.1%, and 38.5% on these four datasets, respectively.
Moreover, rewriting ensures a more uniform distribution of data chunks and the base chunk from the last backup
across containers, diminishing the beneits of setting a similarity cutof to decrease I/Os for prefetching potential
base chunks. Attempting to drastically reduce these I/Os would result in the loss of a considerable number of
similar chunks. Based on the sensitivity study above, we suggest setting the similarity cutof to 0.003 when
rewriting is not applied, and setting the similarity cutof to 0 when rewriting is applied.
Container Design. To reduce the transfer time for prefetching potential base chunks, we store data chunks and
deltas separately within containers, ensuring that deltas are not read during prefetching. Figure 11 illustrates
the percentage reduction in prefetched size attributable to this design for LoopDelta, both without and with
rewriting, across four datasets. Without rewriting, our design achieves a reduction in the size of prefetched data
ranging from 3.3% to 53.6%. When HAR is employed, the design reduces the prefetched data size by 0.9% to 23.3%.
The efectiveness of this design on the SYN dataset is limited, owing to the limited availability of similar chunks
suitable for delta compression within this dataset. Additionally, rewriting diminishes the efectiveness of this
design, as it can increase the proportion of data chunks in containers.

6.2.2 Potential Similar Chunk Cache Size. The size of the potential similar chunk cache can afect the number of
detected similar chunks. In this subsection, we investigate LoopDelta’s sensitivity to the size of the potential
similar chunk cache. We evaluate the percentage of similar chunks detected by LoopDelta both without and with
rewriting, as the cache size varies from 1 to 200 containers, across four datasets. Figure 12 indicates that, without
rewriting, a cache of 200-container size is capable of capturing almost all potential similar chunks. In fact, for
the RDB, WEB, and LNX datasets, a cache of just 20-container size can capture more than 90% of the potential

ACM Trans. Storage

An Eficient Delta Compression Framework Seamlessly Integrated into Inline Deduplication • 21

RDB WEB LNX SYN
0

10

20

30

40

50

60

%
 o

f
re

d
u
c
e
d
 p

re
fe

tc
h
e
d
 s

iz
e

Dataset

 w/o rewriting w/ rewriting

Fig. 11. Percentage reduction in prefetched size resulting from separate storage of data chunks and deltas for LoopDelta

without and with rewriting on four datasets. The rewriting technique applied is HAR with a container utilization of 0.4.

1 5 10 15 20 30 50 100 150 200

20%

40%

60%

80%

100%

D
e
te

c
te

d
 s

im
ila

r
c
h
u
n
k
s

Potential base chunk cache size (containers)

 RDB WEB LNX SYN

(a) Without rewriting

1 5 10 15 20 30 50 100 150 200

20%

40%

60%

80%

100%
D

e
te

c
te

d
 s

im
ila

r
c
h
u
n
k
s

Potential base chunk cache size (containers)

 RDB WEB LNX SYN

(b) With HAR

Fig. 12. Percentage of detected similar chunks of LoopDelta without rewriting and with HAR as potential similar chunk

cache size varies for the four datasets. Each curve shows varying potential similar chunk cache size from let to right: 1, 5, 10,

15, 20, 30, 50, 100, 150, and 200 containers.

similar chunks, whereas for the SYN dataset, a 100-container-sized cache is required. When HAR is applied,
a 20-container-sized cache suices to capture more than 95% of the potential similar chunks for all datasets,
including the SYN dataset. Note that, when HAR is applied, the percentage of detected similar chunks with a
speciic cache size is determined by dividing the number of similar chunks captured with that cache size by the
total number of potential similar chunks detectable by LoopDelta with HAR. When the rewriting technique
is Capping, the situation is similar to that of HAR. Based on the sensitivity study above, we suggest using a
50-container-sized cache when rewriting is applied and a 200-container-sized cache when no rewriting is used.

6.2.3 Cache-aware Filter (CAF). In this subsection, we assess the eiciency of CAF by comparing the speed factors
of three LoopDelta versions: LoopDelta without rewriting, LoopDelta with capping (LD-Cap), and LoopDelta
with HAR (LD-HAR), both with and without CAF. The results are presented in Table 3. According to Table 3, CAF
does not signiicantly enhance restore performance without rewriting, except in the case of the WEB dataset.

ACM Trans. Storage

22 • Y. Zhang et al.

Table 3. Speed factor comparison of six approaches: LD (LoopDelta) without CAF, LD-Cap without CAF, LD-HAR without

CAF, as well as LD with CAF, LD-Cap with CAF, and LD-HAR with CAF. Capping’s capping level is set to 10, HAR’s utilization

threshold is set to 0.5.

Dataset RDB WEB LNX SYN

LD w/o CAF 3.01 1.85 1.62 0.86
LD w/ CAF 3.05 (+1.4%) 2.87 (+35.5%) 1.65 (+1.5%) 0.86 (+0.1%)
LD-Cap w/o CAF 1.86 4.48 3.38 1.09
LD-Cap w/ CAF 3.14 (+40.8%) 5.61 (+20.3%) 4.72 (+28.4%) 2.01 (+46%)
LD-HAR w/o CAF 3.21 6.39 6.42 1.24
LD-HAR w/ CAF 4.88 (+34.4%) 7.13 (+10.3%) 9.21 (+30.3%) 1.78 (+30.6%)

RDB WEB LNX SYN

0%

25%

50%

75%

100%

Dataset

 Inversed delta compression

 Direct delta compresssion

HAR Cap HAR Cap HAR Cap HAR Cap

Fig. 13. Proportion of data chunks processed by direct delta compression and inversed delta compression achieved by

LoopDelta with HAR and Capping for the four datasets.

This exception is attributed to the existence of self-referenced similar and duplicate chunks in the WEB dataset.
LoopDelta can only identify similar chunks stored within the same containers as duplicates. If a dataset comprises
self-referenced similar and duplicate chunks, a given data chunk might have numerous similar data chunks in the
potential similar chunk cache. This situation can lead to inconsistencies in the locality of the detected similar and
duplicate chunks. Although this inconsistency has minimal efect on restore performance when the restore cache
is adequately sized, it signiicantly impacts restore performance when duplicate chunks reference old deltas. CAF
efectively mitigates this impact and thus improves the restore performance.
When rewriting is applied, CAF considerably improves restore performance, increasing it by 10.3% to 46%.

Rewriting eiciently reduces chunk fragmentation introduced by deduplication. However, due to the inluence of
base-fragmented chunks resulting from delta compression, the improvement in restore performance remains
relatively modest. The combination of rewriting and CAF results in a notable enhancement in restore performance.

6.2.4 Inversed Delta Compression. This subsection evaluates the eiciency of inversed delta compression. In the
evaluation, the utilization threshold for HAR is set to 50%, while the capping level for Capping is set to 10. Figure
13 indicates that, when the rewriting approach is HAR, between 4.7% and 40.8% of data chunks are processed by
inversed delta compression; similarly, when the rewriting approach is Capping, between 1.5% and 37.7% of data
chunks undergo inversed delta compression. Since inversed delta compression is capable of obtaining the beneits
of delta compression without reducing the eiciency of rewriting, a signiicant number of data chunks undergoing
inversed delta compression ensures LoopDelta’s high compression ratio and high restore performance.
However, inversed delta compression leads to more data (extra deltas) being stored. When the rewriting

approach is HAR, it results in an increase of 0.56%, 0.54%, 1.38%, and 0.2% in data storage on the RDB, WEB, LNX,

ACM Trans. Storage

An Eficient Delta Compression Framework Seamlessly Integrated into Inline Deduplication • 23

0 40 80 120 160 200
0

40

80

120

160

T
im

e
 c

o
s
t
(s

)

Version number

 w/o inversed delta compression

 w/ inversed delta compression

(a) RDB

0 20 40 60 80 100 120
0

5

10

15

20

T
im

e
 c

o
s
t
(s

)

Version number

 w/o inversed delta compression

 w/ inversed delta compression

(b) WEB

Fig. 14. Time cost of GC for LD-Cap without and with inversed delta compression on the RDB and WEB datasets.

and SYN datasets, respectively. When the rewriting approach is Capping, the additional data stored on the four
datasets is 0.38%, 0.72%, 0.78%, and 0.31%, respectively. Overall, the additional data required to be written due to
inversed delta compression is minimal, as the deltas being written are much smaller in size compared to the data
chunks.
Moreover, inversed delta compression might result in a higher number of data chunks being deduplicated

during GC, which could potentially increase the time taken by GC. Figure 14 compares the time cost of GC for
LD-Cap, both with and without inversed delta compression, using the RDB and WEB datasets. In this comparison,
the capping level for LD-Cap is set to 10. To accumulate more deltas produced by inversed delta compression,
GC is performed after every 5 backups, starting from the 20�ℎ backup. As shown in Figure 14, the impact of
inversed delta compression on the duration of GC is negligible. This minimal efect stems from the fact that the
bottleneck of GC is in marking and advancing the live chunks, a process that demands a considerable amount of
I/O operations, rather than in eliminating duplicates.

6.3 Comprehensive Evaluation of LoopDelta

In this section, we conduct a thorough evaluation of LoopDelta’s performance based on three critical metrics:
compression ratio, speed factor, and backup throughput. To facilitate comparison, we also evaluate ive other
data reduction techniques: Dedup, Dedup-Cap, MeGA, SIDC, and Greedy. Speciically, Dedup, introduced by Zhu
et al. [53], is a standard deduplication method that does not involve rewriting. Dedup-Cap and Dedup-HAR refer
to Dedup with Capping and HAR, respectively. Similarly, LD, LD-Cap, and LD-HAR refer to basic LoopDelta,
LoopDelta with Capping, and LoopDelta with HAR, respectively. Additionally, Dedup-Cap# and LD-Cap# denote
Dedup-Cap and LD-Cap with varying capping levels, while Dedup-HAR# and LD-HAR# represent Dedup-HAR
and LD-HAR with diferent utilization thresholds of HAR.

Based on the results and analyses presented in Sections 6.2.1 and 6.2.2, for the evaluations in this section, the
similarity cutof is set to 0.003 and the potential similar chunk cache is set to 200-container-sized for LD; for LD-Cap
and LD-HAR, the similarity cutof is set to 0 and the potential similar chunk cache is set to 50-container-sized.
MeGA, SIDC, and Greedy are three data reduction methods that were elaborated on in Section 3.1. MeGA’s

restore performance and backup throughput are not compared to LoopDelta due to its use of additional oline and
service-disruptive operations that rearrange data chunks and deltas into a non-fragmented layout, signiicantly
improving these metrics and making a comparison unfair. For MeGA, the delta selector threshold is set to 0 to
maximize the capture of similar chunks. SIDC’s sketch cache size is set to 20MB, the value which they claimed in
their paper would achieve the maximum hit rate.

ACM Trans. Storage

24 • Y. Zhang et al.

D
ed

up

D
ed

up
-C

ap
10

D
ed

u-
C
ap

15

D
ed

u-
C
ap

20

D
ed

up
-H

AR
0.

3

D
ed

up
-H

AR
0.

4

D
ed

up
-H

AR
0.

5

M
eG

A

SID
C

G
re

ed
y

LD

LD
-C

ap
10

LD
-C

ap
15

LD
-C

ap
20

LD
-H

AR
0.

3

LD
-H

AR
0.

4

LD
-H

AR
0.

5
0

60

120

180

240

C
o

m
p

re
s
s
io

n
 r

a
ti
o

 Dedup Local-comp Delta-comp

(a) RDB

D
ed

up

D
ed

up
-C

ap
10

D
ed

u-
C
ap

15

D
ed

u-
C
ap

20

D
ed

up
-H

AR
0.

3

D
ed

up
-H

AR
0.

4

D
ed

up
-H

AR
0.

5

M
eG

A

SID
C

G
re

ed
y

LD

LD
-C

ap
10

LD
-C

ap
15

LD
-C

ap
20

LD
-H

AR
0.

3

LD
-H

AR
0.

4

LD
-H

AR
0.

5
0

40

80

120

C
o

m
p

re
s
s
io

n
 r

a
ti
o

 Dedup Local-comp Delta-comp

(b) WEB

D
ed

up

D
ed

up
-C

ap
10

D
ed

u-
C
ap

15

D
ed

u-
C
ap

20

D
ed

up
-H

AR
0.

3

D
ed

up
-H

AR
0.

4

D
ed

up
-H

AR
0.

5

M
eG

A

SID
C

G
re

ed
y

LD

LD
-C

ap
10

LD
-C

ap
15

LD
-C

ap
20

LD
-H

AR
0.

3

LD
-H

AR
0.

4

LD
-H

AR
0.

5
0

30

60

90

C
o

m
p

re
s
s
io

n
 r

a
ti
o

 Dedup Local-comp Delta-comp

(c) LNX

D
ed

up

D
ed

up
-C

ap
10

D
ed

u-
C
ap

15

D
ed

u-
C
ap

20

D
ed

up
-H

AR
0.

3

D
ed

up
-H

AR
0.

4

D
ed

up
-H

AR
0.

5

M
eG

A

SID
C

G
re

ed
y

LD

LD
-C

ap
10

LD
-C

ap
15

LD
-C

ap
20

LD
-H

AR
0.

3

LD
-H

AR
0.

4

LD
-H

AR
0.

5
0

9

18

27

36

C
o

m
p

re
s
s
io

n
 r

a
ti
o

 Dedup Local-comp Delta-comp

(d) SYN

Fig. 15. Comparison of compression ratio achieved by the seventeen approaches on the four datasets.

Compression Ratio. Figure 15 indicates that LD obtains a compression ratio comparable to or slightly lower
than SIDC and Greedy on the RDB, LNX, and SYN datasets. This suggests that dual-locality-based similarity
tracking can capture most of the similar chunks, which can then be prefetched during deduplication to serve
as potential similar chunks. On the WEB dataset, LD attains the highest compression ratio, which is consistent
with our analysis in Section 3.1.4 that LD can detect base chunks with higher similarity than other methods on
datasets containing self-referenced similar chunks because it only identiies base chunks from previous backups,
thereby avoiding self-referenced similar chunks in the ongoing backup. Speciically, on the WEB dataset, LD
achieves a compression ratio that is 1.77×, 1.6×, and 1.48× higher than MeGA, SIDC, and Greedy, respectively.
Furthermore, LD also achieves a compression ratio that is 4.05× (RDB), 8.95× (WEB), 11.33× (LNX), and 1.28×
(SYN) higher than Dedup.

Another observation from Figure 15 is that rewriting improves LD’s compression ratio and even surpasses
Greedy’s on the RDB dataset. This improvement stems from the fact that rewriting and inversed delta compression
increase the ��� of base chunks. For instance, on the RDB dataset, the average ��� for LD is 0.94, whereas it
is 0.979 for LD-Cap10. When the compression ratio is already high, eliminating a small amount of redundancy
can lead to a signiicant boost in the compression ratio. This accounts for why rewriting signiicantly improves
LD’s compression ratio on the RDB dataset. However, rewriting can sometimes reduce the compression ratio, as
exempliied by the case of HAR on the WEB dataset. This decrease occurs because rewriting may reduce the
number of detected similar chunks, as discussed in Section 5.1.

ACM Trans. Storage

An Eficient Delta Compression Framework Seamlessly Integrated into Inline Deduplication • 25

RDB WEB LNX SYN
0

2

4

6

8

S
p

e
e

d
 f
a

c
to

r

Dataset

 Dedup

 Dedup-Cap10

 Dedup-Cap15

 Dedup-Cap20

 Dedup-HAR0.3

 Dedup-HAR0.4

 Dedup-HAR0.5

 SIDC

 Greedy

 LD

 LD-Cap10

 LD-Cap15

 LD-Cap20

 LD-HAR0.3

 LD-HAR0.4

 LD-HAR0.5

Fig. 16. Comparison of speed factor achieved by the sixteen approaches on the four datasets.

Note that rewriting in LoopDelta can potentially reduce the compression beneits achieved through dedu-
plication. This is because LoopDelta applies delta compression to rewritten data chunks, thereby converting
the deduplication gain into a delta compression gain. Furthermore, delta compression may reduce the compres-
sion gain obtained from local compression, as there is an overlap in the efectiveness of both delta and local
compression methods.
Speed Factor. Figure 16 suggests that LD achieves the highest speed factor among all approaches without
rewriting. Post-deduplication delta compression can either decrease or increase the speed factor, depending on
the balance between the number of additional I/Os required for retrieving base chunks during restore and the
reduction in I/Os due to writing less data during backup caused by delta compression. If the former exceeds the
latter, the speed factor decreases; conversely, if the latter prevails, the speed factor increases. Since LD achieves a
compression ratio comparable to or slightly lower than SIDC and Greedy, without incurring extra I/Os during
restore (guaranteed by CAF), its speed factor surpasses not only Dedup, which doesn’t use delta compression, but
also SIDC and Greedy. On the SYN dataset, the speed factors of SIDC, Greedy, and LD are comparable, primarily
due to the limited number of similar chunks in this dataset. Speciically, LD achieves a speed factor that is 3.56×
(RDB), 3.4× (WEB), 2.59× (LNX), and 1.25× (SYN) higher than Dedup, 1.04× (RDB), 1.49× (WEB), and 1.02× (LNX)
higher than SIDC, and 1.04× (RDB), 3.07× (WEB), and 2.47× (LNX) higher than Greedy.
Rewriting further improves LD’s speed factor, resulting in a speedup ranging from 1.03 to 5.7. Additionally,

LD-Cap# and LD-HAR# achieve higher speed factors compared to their Dedup counterparts. More speciically,
LD-Cap# achieve 1.02-2.09× higher speed factor than Dedup-Cap#, while LD-HAR# attain 1.05-2.59× higher
speed factor than Dedup-HAR#.
Backup Throughput. Figure 17 indicates that LD, LD-Cap#, and LD-HAR# exhibit lower backup throughput
compared to Dedup, Dedup-Cap#, and Dedup-HAR#, respectively, on the RDB and SYN datasets. The reduction
ranges from 1.6% to 20.1%, with an average of 11.9%. An exception is observed where LD achieves comparable
backup throughput to Dedup on the RDB dataset. On the WEB and LNX datasets, LD, LD-Cap#, and LD-HAR#
demonstrate higher backup throughput than Dedup, Dedup-Cap#, and Dedup-HAR#, respectively, with a speedup
ranging from 1.12× to 1.34×. This improvement is attributed to the relatively lower redundancy in these two
datasets, where the system bottleneck lies in I/O operations for writing data. Delta compression mitigates this
bottleneck.

Furthermore, LD achieves signiicantly higher backup throughput compared to SIDC and Greedy. Speciically,
LD outperforms SIDC by 2.4× (RDB), 1.6× (WEB), 2.5× (LNX), and 1.8× (SYN), and outperforms Greedy by 2.6×

ACM Trans. Storage

26 • Y. Zhang et al.

RDB WEB LNX SYN
0

35

70

105

140

175

210

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Dataset

 Dedup

 Dedup-Cap10

 Dedup-Cap15

 Dedup-Cap20

 Dedup-HAR0.3

 Dedup-HAR0.4

 Dedup-HAR0.5

 SIDC

 Greedy

 LD

 LD-Cap10

 LD-Cap15

 LD-Cap20

 LD-HAR0.3

 LD-HAR0.4

 LD-HAR0.5

Fig. 17. Comparison of backup throughput achieved by the sixteen approaches on the four datasets.

(RDB), 2.2× (WEB), 1.7× (LNX), and 1.8× (SYN). Additionally, LD-Cap# and LD-HAR# achieve 2.2× to 6.5× higher
backup throughput compared to SIDC and Greedy. Moreover, LD-Cap# and LD-HAR# exhibit higher backup
throughput than LD, aligning with the analyses in Section 5.2.

7 Conclusion and Future Work

In this paper, we introduce LoopDelta, a novel framework eiciently integrating delta compression into a
typical deduplication-based backup system, which arranges data chunks into containers and prefetches container
metadata to accelerate duplicate detection. LoopDelta adopts three techniques to maximize data reduction
from delta compression while minimizing I/O overhead for retrieving base chunks. Firstly, dual-locality-based
similarity tracking exploits both logical and physical locality to identify most of the similar chunks, which, due
to their redundancy locality, can be eiciently retrieved by piggybacking on routine prefetching operations,
thus eliminating additional I/O operations during backup. Secondly, cache-aware ilter, with the assistance of
the ingerprint cache, identiies old deltas whose base chunks that would require additional I/O during restore
and prevents referencing these deltas, thereby eliminating extra I/O operations during restore. Thirdly, inversed
delta compression encodes similar chunks detected from sparse-reference containers relative to data chunks
presented for storage, rather than the traditional reverse approach. This allows us to reap the beneits of delta
compression without compromising the eiciency of rewriting techniques. The experimental results demonstrate
that LoopDelta signiicantly enhances the compression ratio and accelerates restore performance compared to
deduplication, while minimally impacting backup throughput.

One challenge faced by LoopDelta is how to store the mapping from old container ID to new container ID for
chunks during GC when updating the similar container list. For backup systems with large physical capacities,
the memory may not be suicient to store this mapping, and storing it on HDDs would result in slow updating
speeds. We plan to address this issue in future work.

8 Acknowledgment

This research was supported by the National Key Research and Development Program of China under Grant
2023YFB4502100, the National Natural Science Foundation of China under Grants 62262042 and 62172361, the
Major Projects of Zhejiang Province under Grant LD24F020012, the Pioneer and Leading Goose R&D Program
of Zhejiang Province under Grant 2024SSYS0002, and the Jiangxi Provincial Natural Science Foundation under
Grant 20224BAB202017.

ACM Trans. Storage

An Eficient Delta Compression Framework Seamlessly Integrated into Inline Deduplication • 27

References

[1] Yamini Allu, Fred Douglis, Mahesh Kamat, Philip Shilane, Hugo Patterson, and Ben Zhu. 2017. Backup to the future: How workload and

hardware changes continually redeine data domain ile systems. Computer 50, 7 (2017), 64ś72.

[2] George Amvrosiadis and Medha Bhadkamkar. 2015. Identifying Trends in Enterprise Data Protection systems. In the 2015 conference on

USENIX Annual Technical Conference (ATC’15). USENIX Association, Santa Clara, CA, 151ś164.

[3] Lior Aronovich, Ron Asher, Eitan Bachmat, Haim Bitner, Michael Hirsch, and Shmuel T Klein. 2009. The design of a similarity based

deduplication system.. In the 2th Annual International Systems and Storage Conference (SYSTOR’09). ACM Association, Haifa, Israe, 1ś14.

[4] Fabiano C Botelho, Philip Shilane, Nitin Garg, and Windsor Hsu. 2013. Memory eicient sanitization of a deduplicated storage system.

In the 11th USENIX Conference on File and Storage Technologies (FAST’13). USENIX Association, San Jose, CA, 81ś94.

[5] Andrei Z Broder. 2000. Identifying and Filtering Near-duplicate Documents. In Combinatorial Pattern Matching. Springer, Montreal,

Canada, 1ś10.

[6] Zhichao Cao, Shiyong Liu, Fenggang Wu, Guohua Wang, Bingzhe Li, and David HC Du. 2019. Sliding look-back window assisted

data chunk rewriting for improving deduplication restore performance. In the 17th USENIX Conference on File and Storage Technologies

(FAST’19). USENIX Association, Boston, MA, USA, 129ś142.

[7] Zhichao Cao, Hao Wen, Fenggang Wu, and David HC Du. 2018. ALACC: Accelerating Restore Performance of Data Deduplication

Systems Using Adaptive Look-Ahead Window Assisted Chunk Caching. In the 16th USENIX Conference on File and Storage Technologies

(FAST’18). USENIX Association, Oakland, CA, USA, 309ś324.

[8] Biplob Debnath, Sudipta Sengupta, and Jin Li. 2010. ChunkStash: Speeding up Inline Storage Deduplication using Flash Memory. In the

2010 conference on USENIX Annual Technical Conference (ATC’10). USENIX Association, Boston, MA, USA, 1ś16.

[9] Fred Douglis, Abhinav Duggal, Philip Shilane, Tony Wong, Shiqin Yan, and Fabiano Botelho. 2017. The Logic of Physical Garbage

Collection in Deduplicating Storage. In the 15th USENIX Conference on File and Storage Technologies (FAST’17). USENIX Association,

Santa Clara, CA, USA, 29ś44.

[10] Fred Douglis and Arun Iyengar. 2003. Application-speciic Delta-encoding via Resemblance Detection. In the 2003 USENIX conference on

USENIX Annual Technical Conference (ATC’03). USENIX Association, San Antonio, TX, USA, 113ś126.

[11] Kruus Erik, Ungureanu Cristian, and Dubnicki Cezary. 2010. Bimodal Content Deined Chunking for Backup Streams. In the 8th USENIX

Conference on File and Storage Technologies (FAST’10). USENIX Association, San Jose, CA, USA, 1ś14.

[12] Facebook. 2024. Zstandard. https://github.com/facebook/zstd. zstd.

[13] Min Fu, Dan Feng, Yu Hua, Zuoning Chen, Wen Xia, Fangting Huang, and Qing Liu. 2014. Accelerating Restore and Garbage Collection

in Deduplication-based Backup Systems via Exploiting Historical Information. In the 2014 USENIX conference on USENIX Annual Technical

Conference (ATC’14). USENIX Association, Philadelphia, PA, USA, 181ś192.

[14] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen, Jingning Liu,Wen Xia, Fangting Huang, and Qing Liu. 2016. Reducing fragmentation

for in-line deduplication backup storage via exploiting backup history and cache knowledge. IEEE Transactions on Parallel and Distributed

Systems 27, 3 (2016), 855ś868.

[15] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen, Wen Xia, Yucheng Zhang, and Yujuan Tan. 2015. Design Tradeofs for Data

Deduplication Performance in Backup Workloads.. In the 13th USENIX Conference on File and Storage Technologies (FAST’15). USENIX

Association, Santa Clara, CA, USA, 331ś345.

[16] Fanglu Guo and Petros Efstathopoulos. 2011. Building A High-performance Deduplication System. In the 2011 USENIX conference on

USENIX Annual Technical Conference (ATC’11). USENIX Association, Portland, OR, USA, 1ś14.

[17] Diwaker Gupta, Sangmin Lee, Michael Vrable, and et al. 2008. Diference Engine: Harnessing Memory Redundancy in Virtual Machines.

In the 5th Symposium on Operating Systems Design and Implementation (OSDI’08). USENIX Association, San Diego, CA, USA, 309ś322.

[18] Yu Hua, Xue Liu, and Dan Feng. April 27 - May 02, 2014. Neptune: Eicient Remote Communication Services for Cloud Backups. In the

33th IEEE International Conference on Computer Communications (INFOCOM’14). IEEE, Toronto, Canada, 844ś852.

[19] Navendu Jain, Michael Dahlin, and Renu Tewari. 2005. TAPER: Tiered Approach for Eliminating Redundancy in Replica Synchronization..

In the 3th USENIX Conference on File and Storage Technologies (FAST’05). USENIX Association, San Francisco, CA, USA, 281ś294.

[20] Michal Kaczmarczyk, Marcin Barczynski, Wojciech Kilian, and Cezary Dubnicki. 2012. Reducing Impact of Data Fragmentation Caused

by In-line Deduplication. In the 5th Annual International Systems and Storage Conference (SYSTOR’12). ACM Association, Haifa, Israe,

1ś12.

[21] Purushottam Kulkarni, Fred Douglis, Jason D LaVoie, and John M Tracey. 2004. Redundancy Elimination within Large Collections of

Files. In the 2004 USENIX Annual Technical Conference (ATC’04). USENIX Association, Boston, MA, USA, 59ś72.

[22] Mark Lillibridge, Kave Eshghi, and Deepavali Bhagwat. 2013. Improving Restore Speed for Backup Systems that Use Inline Chunk-based

Deduplication. In the 11th USENIX Conference on File and Storage Technologies (FAST’13). USENIX Association, San Jose, CA, USA,

183ś197.

[23] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay Deolalikar, Greg Trezise, and Peter Camble. 2009. Sparse Indexing: Large

Scale, Inline Deduplication Using Sampling and Locality.. In the 7th USENIX Conference on File and Storage Technologies (FAST’09), Vol. 9.

ACM Trans. Storage

https://github.com/facebook/zstd

28 • Y. Zhang et al.

USENIX Association, San Jose, CA, 111ś123.

[24] Josh MacDonald. 2000. File system support for delta compression. Ph. D. Dissertation. Masters thesis. Department of Electrical Engineering

and Computer Science, University of California at Berkeley.

[25] Dirk Meister, Jürgen Kaiser, and André Brinkmann. 2013. Block Locality Caching for Data Deduplication. In the 6th International Systems

and Storage Conference (SYSTOR’13). ACM Association, Haifa, Israel, 1ś12.

[26] Dutch T. Meyer and William J. Bolosky. 2011. A Study of Practical Deduplication. In the 9th USENIX Conference on File and Storage

Technologies (FAST’11). USENIX Association, San Jose, CA, USA, 229ś241.

[27] Youngjin Nam, Guanlin Lu, Nohhyun Park, Weijun Xiao, and David HC Du. 2011. Chunk Fragmentation Level: An Efective Indicator

for Read Performance Degradation in Deduplication Storage. In 2011 IEEE 13th International Conference on High Performance Computing

and Communications (HPCC’11). IEEE Computer Society Press, Banf, Canada, 581ś586.

[28] Fan Ni and Song Jiang. 2019. RapidCDC: Leveraging duplicate locality to accelerate chunking in CDC-based deduplication systems. In

the 10th ACM Symposium on Cloud Computing (SoCC’19). ACM Association, Santa Cruz, CA, USA, 220ś232.

[29] Jisung Park, Jeonggyun Kim, Yeseong Kim, Sungjin Lee, and Onur Mutlu. 2022. DeepSketch: A New Machine Learning-Based Reference

Search Technique for Post-Deduplication Delta Compression. In the 20th USENIX Conference on File and Storage Technologies (FAST’22).

USENIX Association, Santa Clara, CA, USA, 247ś264.

[30] Sean Quinlan and Sean Dorward. 2002. Venti: a New Approach to Archival Storage. In the 1st USENIX Conference on File and Storage

Technologies (FAST’02). USENIX Association, Monterey, CA, USA, 89ś101.

[31] Michael O Rabin. 1981. Fingerprinting by Random Polynomials. Center for Research in Computing Techn., Aiken Computation Laboratory,

Univ.

[32] B. Romański, Ł. Heldt, W. Kilian, K. Lichota, and C. Dubnicki. 2011. Anchor-driven Subchunk Deduplication. In The 4th Annual

International Systems and Storage Conference (SYSTOR’11). ACM Association, Haifa, Israel, 1ś13.

[33] Philip Shilane, Mark Huang, Grant Wallace, and Windsor Hsu. 2012. WAN Optimized Replication of Backup Datasets using Stream-

informed Delta Compression. In the 10th USENIX Conference on File and Storage Technologies (FAST’12). USENIX Association, San Jose,

CA, USA, 49ś63.

[34] Philip Shilane, Grant Wallace, Mark Huang, andWindsor Hsu. 2012. Delta Compressed and Deduplicated Storage Using Stream-Informed

Locality. In the 4th USENIX conference on Hot Topics in Storage and File Systems (HotStorage’12). USENIX Association, Boston, MA, USA.

[35] Haoliang Tan, Wen Xia, Xiangyu Zou, Cai Deng, Qing Liao, and Zhaoquan Gu. 2024. The Design of Fast Delta Encoding for Delta

Compression Based Storage Systems. ACM Transactions on Storage 20, 4 (NOV 2024).

[36] Yujuan Tan, Jian Wen, Zhichao Yan, Hong Jiang, Srisa-an Witawas, Baiping Wang, and Hao Luo. 2017. FGDEFRAG: A ine-grained

defragmentation approach to improve restore performance. In the 33th Symposium on Mass Storage Systems and Technologies (MSST’17).

IEEE Computer Society Press, Santa Clara, California.

[37] Michael Vrable, Stefan Savage, and Geofrey M Voelker. 2009. Cumulus: Filesystem Backup to the Cloud. In the 7th USENIX Conference

on File and Storage Technologies (FAST’09). USENIX Association, Santa Clara, CA, USA, 225ś238.

[38] Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shilane, Stephen Smaldone, Mark Chamness, and Windsor Hsu. 2012. Characteristics

of Backup Workloads in Production Systems. In the 10th USENIX Conference on File and Storage Technologies (FAST’12). USENIX

Association, San Jose, CA, 1ś14.

[39] Chunzhi Wang, Yanlin Fu, Junyi Yan, XinyunWu, Yucheng Zhang, Huiling Xia, and Ye Yuan. 2022. A cost-eicient resemblance detection

scheme for post-deduplication delta compression in backup systems. Concurrency and Computation: Practice and Experience 34, 3 (FEB 1

2022).

[40] Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip Shilane, Yu Hua, Min Fu, Yucheng Zhang, and Yukun Zhou. 2016. A Comprehensive

Study of the Past, Present, and Future of Data Deduplication. Proc. IEEE 104, 9 (2016), 1681ś1710.

[41] Wen Xia, Hong Jiang, Dan Feng, and Yu Hua. 2011. Silo: A Similarity-Locality Based Near-Exact Deduplication Scheme with Low Ram

Overhead and High Throughput. In the 2011 conference on USENIX Annual Technical Conference (ATC’11). USENIX Association, Portland,

OR, 285ś298.

[42] Wen Xia, Chunguang Li, Hong Jiang, Dan Feng, Yu Hua, Leihua Qin, and Yucheng Zhang. 2015. Edelta: A Word-enlarging Based

Fast Delta Compression Approach. In the 7th USENIX conference on Hot Topics in Storage and File Systems (HotStorage’15). USENIX

Association, Santa Clara, CA.

[43] Wen Xia, Yukun Zhou, Hong Jiang, Dan Feng, Yu Hua, Yuchong Hu, Qing Liu, and Yucheng Zhang. 2016. FastCDC: A Fast and Eicient

Content-Deined Chunking Approach for Data Deduplication. In the 2016 conference on USENIX Annual Technical Conference (ATC’16).

USENIX Association, Denver, CO, 101ś114.

[44] Cui Yong, Lai Zeqi, Wang Xin, Dai Ningwei, and Miao Congcong. 2015. QuickSync: Improving Synchronization Eiciency for Mobile

Cloud Storage Services. In the 21th annual international conference on Mobile computing and networking (MobiCom’15). ACM Association,

Paris, France, 592ś603.

[45] Lawrence L You, Kristal T Pollack, and Darrell DE Long. 2005. Deep Store: An archival storage system architecture. In the 21st

International Conference on Data Engineering (ICDE’05). IEEE, Tokyo, Japan, 804ś815.

ACM Trans. Storage

An Eficient Delta Compression Framework Seamlessly Integrated into Inline Deduplication • 29

[46] Yucheng Zhang, Hong Jiang, Dan Feng, Nan Jiang, Taorong Qiu, and Wei Huang. 2023. LoopDelta: Embedding Locality-aware

Opportunistic Delta Compression in Inline Deduplication for Highly Eicient Data Reduction. In the 2023 conference on USENIX Annual

Technical Conference (ATC’23). USENIX Association, Boston, MA, USA, 133ś148.

[47] Yucheng Zhang, Hong Jiang, Dan Feng, Wen Xia, Min Fu, Fangting Huang, and Yukun Zhou. April 26th - May 1st, 2015. AE: An

Asymmetric Extremum content deined chunking algorithm for fast and bandwidth-eicient data deduplication. In the 34th IEEE

International Conference on Computer Communications (INFOCOM’15). IEEE, Hong Kong, China, 1337ś1345.

[48] Yucheng Zhang, Hong Jiang, Mengtian Shi, Chunzhi Wang, Nan Jiang, and Xinyun Wu. 2021. A High-performance Post-deduplication

Delta Compression Scheme for Packed Datasets. In IEEE 39th International Conference on Computer Design (ICCD’21). IEEE, 464ś471.

[49] Yucheng Zhang, Hong Jiang, ChunzhiWang,Wei Huang, Meng Chen, Yongxuan Zhang, and Le Zhang. 2024. Applying Delta Compression

to Packed Datasets for Eicient Data Reduction. IEEE Trans. Comput. 73, 1 (JAN 2024), 73ś85.

[50] Yucheng Zhang, Wen Xia, Dan Feng, Hong Jiang, Yu Hua, and Qiang Wang. 2019. Finesse: ine-grained feature locality based fast

resemblance detection for post-deduplication delta compression. In the 17th USENIX Conference on File and Storage Technologies (FAST’19).

USENIX Association, Boston, MA, USA, 121ś128.

[51] Yucheng Zhang, Ye Yuan, Dan Feng, Chunzhi Wang, Xinyun Wu, Lingyu Yan, Deng Pan, and Shuanghong Wang. 2020. Improving

restore performance for in-line backup system combining deduplication and delta compression. IEEE Transactions on Parallel and

Distributed Systems 31, 10 (2020), 2302ś2314.

[52] Yucheng Zhang, Wenxuan Zhu, Dan Feng, Wei Huang, Nan Jiang, Meng Chen, and Renxin Xia. 2024. A fragmentation-aware redundancy

elimination scheme for inline backup systems. Future Generation Computer Systems-The International Journal of eScience 156 (JUL 2024),

53ś63.

[53] Benjamin Zhu, Kai Li, and Patterson Hugo. 2008. Avoiding the Disk Bottleneck in the Data Domain Deduplication File System.. In the

6th USENIX Conference on File and Storage Technologies (FAST’08). USENIX Association, San Jose, CA, USA, 269ś282.

[54] Xiangyu Zou, Cai Deng, Wen Xia, Philip Shilane, Haoliang Tan, Haijun Zhang, and Xuan Wang. 2021. Odess: Speeding up Resemblance

Detection for Redundancy Elimination by Fast Content-Deined Sampling. In the 37th International Conference on Data Engineering

(ICDE’21). IEEE, 480ś491.

[55] Xiangyu Zou, Wen Xia, Philip Shilane, Haijun Zhang, and Xuan Wang. 2022. Building a High-performance Fine-grained Deduplication

Framework for Backup Storage with High Deduplication Ratio. In the 2022 USENIX Annual Technical Conference (ATC’22). USENIX

Association, Carlsbad, CA, USA, 19ś36.

[56] Xiangyu Zou, Jingsong Yuan, Philip Shilane, Wen Xia, Haijun Zhang, and Xuan Wang. 2021. The Dilemma between Deduplication

and Locality: Can Both be Achieved?. In the 19th USENIX Conference on File and Storage Technologies (FAST’21). USENIX Association,

171ś185.

Received 30 August 2024; revised 6 December 2024; accepted 24 January 2025

ACM Trans. Storage

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Data Deduplication
	2.2 Post-deduplication Delta Compression
	2.3 Garbage Collection

	3 Observations and Motivations
	3.1 Distribution of Similar Chunks
	3.2 Avoiding I/Os for Retrieving Base Chunks
	3.3 Rewriting-Aligned Delta Compression

	4 The Design of LoopDelta
	4.1 LoopDelta Overview
	4.2 Prefetching Metadata & Base Chunks
	4.3 Cache-aware Filter
	4.4 Post-deduplication Delta Compression
	4.5 Garbage Collection

	5 Implementation and Discussion
	5.1 Rewriting
	5.2 I/O Bottleneck Analysis

	6 Performance Evaluation
	6.1 Evaluation Setup
	6.2 A Performance Study of LoopDelta
	6.3 Comprehensive Evaluation of LoopDelta

	7 Conclusion and Future Work
	8 Acknowledgment
	References

