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Abstract: By moving computations from computing nodes to 
storage nodes, active storage technology provides an efficient for 
data-intensive high-performance computing applications. The 
existing studies have neglected the heterogeneity of storage nodes 
on the performance of active storage systems. We introduce CADP, 
a capability-aware data placement scheme for heterogeneous ac-
tive storage systems to obtain high-performance data processing. 
The basic idea of CADP is to place data on storage nodes based on 
their computing capability and storage capability, so that the 
load-imbalance among heterogeneous servers can be avoided. We 
have implemented CADP under a parallel I/O system. The expe-
rimental results show that the proposed capability-aware data 
placement scheme can improve the active storage system perfor-
mance significantly. 
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0  Introduction

Over the past decades, many scientific applications 
in the high-performance computing (HPC) domains, 
such as astrophysics, geographic systems, climate mod-
eling, medical image processing, and high-energy phys-
ics, have become increasingly data-intensive [1]. For ex-
ample, the astro program in astronomy generates tens of 
gigabytes of data in one run [2]. In some climate model-
ing and combustion simulation applications, the data set 
sizes range between 100 TB and 10 PB [3]. 

Moving such large data volumes between compu-
ting nodes and storage nodes takes a large amount of 
time, even on today’s highest-performing computer sys-
tems. The main reason is that, although the performance 
of each hardware component of a computer system is 
continuously increasing with the advancements of VLSI 
technology, the I/O bandwidth between computing nodes 
and storage nodes has not improved as the same rate as 
the data requirements of applications. Data storage and 
analysis have become a serious bottleneck for da-
ta-intensive applications. 

Active storage provides a promising solution to ad-
dressing the limited I/O bandwidth issue [4-8]. The main 
idea of active storage is to move computation from 
computing nodes to storage nodes. By offloading appro-
priate data operations to storage nodes and directly 
processing the data on storage nodes, active storage can 
not only reduce the network traffic, but also provide sig-
nificantly aggregative processing capability when mul-
tiple devices are used in parallelism. Due to its efficiency 
in reducing network and disk traffic, active storage has 
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received intensive attention [9-11]. 
While effective to improve I/O system performance, 

most of the current active storage studies are designed 
for homogeneous I/O environments, that is, the storage 
nodes are usually built with the same hardware platforms 
in terms of CPU, memory and storage device. Since each 
node is homogeneous and with the same data process 
capability, active storage system usually uses an even 
data placement scheme to distribute data on multiple 
nodes, so that each node can finish the active storage 
operations nearly at the same time. 

However, in a practical active storage system, the 
storage nodes may run with heterogeneous hardware re-
source: the CPU, memory and storage device of each 
node can be greatly different. Therefore, each storage 
node has a different data process capability. For the same 
amount of data needed to process, the high-performance 
storage nodes will finish the tasks quickly while the 
low-performance nodes will finish slowly. Since each 
node will finish their active storage operations with dif-
ferent rate and the overall data processing time depends 
on the straggler of all storage nodes, traditional data 
placement schemes will degrade the overall system per-
formance. 

It is common that storage nodes have heterogeneous 
hardware resources in a practical I/O systems. The first 
scenarios appears when a component of a storage node 
fails and it needs to be replaced by a new one [12]. As 
VLSI technology improves quite rapidly, it is quite 
probable for the new storage nodes to be faster and larger 
than the ones already in the I/O system. The second sce-
nario appears when the system needs to grow its storage 
capability and new nodes have to be acquired. It will also 
be difficult to buy the same nodes as the ones in the 
original configuration, and thus newer storage nodes will 
be added. In both cases, it will make the traditional ac-
tive storage system with sub-optimal performance. 

In this paper, we propose CADP (capability-aware 
data placement), a novel data placement scheme to dis-
tribute data for heterogeneous active storage systems. 
CADP places data on each node based on a holistic me-
tric-processing ratio, which considers the computing ca-
pability and storage capability of the node, so that the 
load-imbalance among heterogeneous servers can be 
avoided. In summary, we make the following contribu-
tions. 

 We develop a novel metric to evaluate the data 
processing capability of each storage node in a hetero-
geneous cluster.  

 We propose a data placement scheme, CADP, 
which distributes the data on each storage node based on 
their data processing capability. 

 We implement a prototype of CADP under a 
parallel I/O system, and evaluated its performance with 
typical applications. The experimental results show that 
CADP can significantly improve the active storage sys-
tem performance. 

The rest of this paper is organized as follows. In 
Section 1, we describe the related work. Then, we de-
scribe the design and implementation of CADP in Sec-
tion 2. Section 3 gives the performance evaluation. Fi-
nally, we conclude the paper in Section 4. 

1  Related Work 

1.1  Device-Level Active Storage 
By offloading computing operations to storage de-

vices, active storage technology can largely improve the 
computer system performance. Active storage is first 
proposed to exploit the computing intelligence inside 
disk drives. These techniques are either designed for 
general applications [5,6,13], or some special fields (e.g, 
database [14,15]). Both hardware architectures [13,16,17] and 
programming models [5,6] are studied to address the I/O 
bottleneck problem. A stream-based programming model 
of active disks was proposed in Ref.[5], which divides an 
application into a host part and a disk-resident part. 
Ref.[6] presented a detailed analysis of active disks for 
scan-intensive database applications. However, these 
efforts are only dedicated to utilize the power of embed-
ded processor, thus the systems provide limited compu-
tation-offloading capability. 
1.2  System-Level Active Storage 

With the performance improvements on storage 
nodes, active storage can also be applied to file system. 
Sivathanu et al [18] extended the remote procedure call 
(RPC) to implement the prototype of active storage. Ma et 
al [4] proposed a multi-view storage system architecture 
with virtual file system technology to provide a flexible 
active storage. Piernas et al [19] gave an active storage 
strategy implemented in Lustre parallel file system. Son et 
al [3] enabled the active storage implementation in PVFS. 
Chen et al [1,20] considered data dependences and data 
contention issues in active storage system. 

Due to the benefits of object storage technology, 
many researchers made efforts to integrate active storage 
into the object-based storage systems. Huston et al [21] 
used an active storage architecture for interactive search 
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of non-indexed data. This system does not comply with 
the T10 OSD standard [22]. To promote the development of 
object-based storage technology, several studies integrated 
the active storage technology into the object-based storage 
system based on the OSD standard [8,9, 23-25]. 

Most of the above studies are designed for homo-
geneous storage clusters. In contrast, this study proposes 
a data placement scheme to improve the active storage 
performance in heterogeneous I/O systems. While recent 
work SDD [26] introduces a data distribution scheme for 
heterogeneous active storage systems, it does not con-
sider the heterogeneity of processor and the hardware 
parameters in a real system are hard to be obtained. In 
contrast, CADP addresses these issues by utilizing the 
relative execution time of the active storage operation. 
1.3  Data Placement in Parallel File Systems 

Parallel file systems usually provide several data 
placement policies [27], such as simple stripe, two dimen-
sional stripe, and variable stripe, each suitable for a spe-
cial kind of workloads. For complex workloads, seg-
ment-level placement scheme logically divides a file into 
several segments such that an optimal stripe size is as-
signed for each segment with non-uniform access pat-
terns [28]. Server-level adaptive placement strategies adopt 
different stripe sizes on different file servers to improve 
the overall I/O performance [29]. These efforts are devoted 
to homogeneous systems. For heterogeneous file systems, 
recent studies [30-34] uses skewed data distribution to place 
data on HDD and SSD-based storage nodes. 

All these studies only consider two kinds of nodes 
and they focused on storage performance without consi-
dering the CPU and memory impacts on the overall sys-
tem performance. As opposite to these efforts, CADP can 
be applied to a more general heterogeneous system and it 
fully considers the holistic processing capability of each 
storage nodes to improve the system performance. 

2  Capability-Aware Data Placement  

In this section, we first introduce the basic idea of 
our proposed data placement scheme. Then we describe 
the data processing capability measurement and the al-
gorithm used to determine the optimal data block place-
ment on each server. Finally, we present the implementa-
tion of CADP. 
2.1  The Basic Architecture of CADP 

There are two typical models to deploy computing 
and storage nodes for data-intensive applications. The 
first one is to separate computing nodes from storage 

nodes, which is widely used in MPI applications. The 
second one is to perform computing and storage opera-
tions in the same node, which is adopted by MapRe-
duce/Hadoop applications. In this paper, we focus on the 
first model since it is the most common architecture in 
HPC systems. 

Figure 1 illustrates the system architecture for which 
the proposed data placement scheme is designed. In 
these systems, the user data are distributed to multiple 
servers with a data placement scheme. The metadata 
sever (MDS) responds to manage the block allocation 
information, and the data would be processed in each 
node when the active storage code is executed. As the 
servers are homogeneous, the main idea of the capabili-
ty-aware data placement scheme is to place data on each 
node according to their data processing performance, 
instead of with an even data distribution widely used in 
current active storage systems. To this end, there are two 
components, profiling ratios (PR) and data placements 
(DP), located in MDS. PR is responsible for gathering 
the execution time of active storage codes downloaded to 
each node, and using these times to compute the profil-
ing ratio of the node, which is fed to DP to generate the 
data placement plan. Applications interact with the client 
of parallel file system (PFS) for normal I/O operations, 
and the PFS API is instrumented to contact with MDS 
where PR and DP are located to obtain the allocation 
scheme for the write data. According to the placement 
scheme, the write data are partitioned into several re-
gions, each assigned to a node based on its relative pro-
filing ratio as shown in Fig. 1. 

 

Fig. 1  An overview of the data placement framework for 
heterogeneous active storage system  

The capability-aware active storage system works 
as follows. First, applications pass the active storage 
codes to the servers through an active storage client API. 
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Once the server installs these codes, it will begin to ex-
ecute the active storage operations with a given-size in-
put data. To get the exact performance profile of the node, 
measurement codes exercise the local I/O, which is de-
legated to the PFS APIs. Finally, the performance profile 
of each node is sent back to PR on MDS, and DP makes 
the final data placement plan for a large file according to 
the guidance of PR as we mentioned above. 
2.2  Heterogeneous Data Processing Capability 
Measuring 

To achieve the proposed data placement scheme, we 
first need to evaluate each node’s data processing capa-
bility. In a practice I/O system, determining this factor is 
challenging for the following two reasons. First, the data 
processing time is related with the hardware resource of 
each node. As we discussed previously, each storage 
node in a heterogeneous active storage environment may 
have different CPU, memory and storage device. Since 
the hardware resource includes multiple components, 
only using computing power or storage performance can 
not accurately evaluate the overall data processing capa-
bility of each node. 

Second, the data processing speed of each storage 
node also relies on the application itself. For different 
applications, the data processing speed can vary signifi-
cantly because one application can require different 
hardware resource. For example, one application can be 
more CPU-intensive, but another application can be 
more I/O-intensive because it has a large fraction of I/O 
operations on storage devices. Thus, the heterogeneity 
measurements in the storage cluster may change while 
we execute active operations from different applications. 

To address above issues, we introduce a simple but 
effective metric, processing ratio, to measure each node’s 
data processing capability in a heterogeneous active sto-
rage system. processing ratio is a holistic parameter con-
sidering both hardware and application factors. We get 
the processing ratios through a profiling procedure as 
Algorithm 1, which includes the following steps. 

① The active storage operations (data processing 
codes) of the HPC application are downloaded to each 
storage node. 

② We carry out the operations separately on each 
node. To fairly compare the data processing speed, we 
limit all nodes to process the same amount of data. For 
example, in our experiments we limit the input data size 
on each node to 256MB to fully reflect its performance 
capability while not consuming too much time. 

③ We record the data processing time on each 
node. The longest processing time is used as a reference 
to normalize the data processing time measurements. 

④ The normalized values, called processing ratios 
(pr), are employed by the data placement algorithm to 
allocate file blocks for the given HPC application.  

Algorithm 1  Processing capability determination 

1.   procedure  CALCULATING PROCESSING RATIO 

2.            ▽the following loop can be done in parallel 
3. for each storage node i(i∈ [1, n]) do 

4. Download processing operations to node i 

5. Execute operations with a fixed-size input data 

6. Record its data processing time Ti 

7. end for 

8. S ←∅  

9. Γ ← max{T1,T2,⋯,Tn} 

10. 
11. 

for (∀i∈ [1, n]) do 

pri
iT

Γ←  

12. {pr}
i

S S←                 ▽S gathers all pri 

13. end for 
14.  return S 
15.  end procedure 

 
We download the data processing codes as active 

storage operations instead of pre-installing some mea-
surement codes in advance because of the following 
reasons. First, both the files to be stored and the node 
processing ratios are correlated to the measurement 
codes as well as their input data. Second, any pre-defined 
codes will make us loss the flexibility to configure the 
codes according to the files to be stored. Given these 
benefits, by moving computations from computing nodes 
to storage nodes, active storage technology provides a 
promising solution for data-intensive high-performance 
computing applications. 

We use an example to illustrate how to calculate the 
processing ratio of each node. Suppose there are four 
heterogeneous storage nodes (i.e., node A, B, C and D) in 
a heterogeneous active storage system. After the data 
process operations on each node, the processing time of 
the application on each node is 50, 100, 50 and 20 
seconds, respectively. The processing time of node B is 
the longest, thus its processing ratio is set to 1, which is a 
reference used to determine processing ratios of other 
nodes. Therefore, the processing ratios of node A, C, and 
D are 2, 2 and 5, respectively. 
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2.3  Capability-Aware Data Placement Scheme 
Based on the data processing capability of each 

node, we devise a heuristic iterative algorithm to deter-
mine the appropriate data placement on each node. As-
suming there are m blocks in a parallel file needing to be 
processed, the goal of the algorithm is to distribute this 
blocks on the underlying n nodes. The traditional data 
placement algorithm adopts a fixed-size block (file stripe) 
to distribute data on multiple nodes. In particular, these 
blocks are located on the nodes in a round-robin way, so 
that each node has the same number of blocks of the file. 
Instead of using an even data distribution on each node, 
the proposed capability-aware data placement scheme 
improves the existing approach by differentiating the 
weight of each node to dispatch data blocks. 

Algorithm 2 illustrates the data placement proce-
dure of the CADP scheme. The basic idea of this scheme 
is to allocate a region of blocks according to the node’s 
relative processing ratio. Specifically, after initializing 
varphi, the sum of processing ratios of all nodes, a, and R, 
the region start point and the allocation scheme (Lines 
3-4), the algorithm enters a loop to allocate a region to 
each node (Lines 5-12). The size of the region is first 
determined by the node’s relative processing ratio (Lines 
6-7), and then the location of the region is identified and 
gathered in vector R (Lines 8-10). Finally, the starting 
point of next region is reset (Line 11). After the regions 
for all nodes are achieved, the algorithm returns the 
scheme (Line 13). 

Algorithm 2  Capability-Aware date placement scheme 

1.  procedure  PLACEMENT (W[1, m])   ▽W[1; m] is the  
block array to be stored 

2.  
1

pr
i

n

i

ϕ
=

←                 pri : global variables 

3.   a ← 0                  (a,b) represents a region 

4.   R ← ∅  

5.   for ( ∀ i∈ [1, n] ) do 

6.   pr
i

i ϕω ←  

7.   i im m ω← ×                  mi: region size 

8.   
i

b a m←  +   

9.                     R gathers the placement scheme 

10.        R ← R  {W[a, b]} 
11.        a ← b 

12.     end for 
13.     return R 

14.  end procedure 
 

Note that although the CADP algorithm is relatively 

simple, it is a generalization of those existing approaches 
that target the nodes with homogeneous capability. Log-
ically, our algorithm would default to the current data 
placement schemes if all the storage nodes have the same 
data processing capability. 
2.4  Implementation Issues 

We implement the proposed data placement scheme 
in a parallel I/O system. The I/O middleware is MPICH2 
and the parallel file system is OrangeFS. In the profiling 
phase, we use a trace collector to obtain the run-time 
statistics of data accesses during the application’s execu-
tion. Based on the I/O trace, we obtain the processing 
ratios to evaluate the holistic data processing capability 
of heterogeneous storage nodes. 

During the data placement phase, we distribute the 
file data with the optimal data layout. For ease of im-
plementation, we assign different number of blocks on 
each node by specifying the stripe size on each node. For 
example, for a default stripe size 64 KB, one node will 
be allocated two blocks if we configure the stripe size as 
128 KB. The OrangeFS file system supports an API for 
implementing specific variable stripe distribution. In 
OragneFs, a parallel file can either be accessed by the 
PVFS2 or the POSIX interface. For PVFS2 interface, we 
utilize the “pvfs2-xattr” command to set the data distri-
bution of directories where the application files are lo-
cated. For POSIX interface, we use the “setfattr” com-
mand to reach the similar capability-aware data place-
ment goal. 

3  Performance Evaluation 

3.1  Experimental Setup 

We conducted the experiments on a Linux cluster. 
We choose two nodes as the computing nodes, each hav-
ing two AMD Opteron(tm) processors and 8 GB memory. 
To simulate heterogeneous storage servers, we choose 
two types of file servers. The low-performance storage 
servers are configured with Intel i5, 250 GB HDD,  and 
4 GB memory. The high-performance storage servers are 
configured with Intel i7 processor, 100 GB SSD,  and 
16 GB memory. All nodes are equipped with Gigabit 
Ethernet interconnection. The operating system is Ubun-
tu 9.04, the MPI-IO library is MPICH21.4.1p1, and the 
parallel file system is OrangeFS 2.8.6. In the experi-
ments, the hybrid OrangeFS file system is built on four 
HDD-based servers and four SSD-based servers unless 
otherwise specified. 



Wuhan University Journal of Natural Sciences 2016, Vol.21 No.3 

 

254

To demonstrate the effectiveness of our proposed 
data placement scheme, we evaluate the system perfor-
mance under three schemes: traditional storage (TS), 
traditional active storage (TAS), and heterogeneous ac-
tive storage (HAS). In TS, the servers are responsible for 
normal I/O operations. The active data processing opera-
tions are carried on the clients; In TAS, the data is dis-
tributed on servers with a default block size (64 KB) in a 
round-robin way. Each node has an even data distribution. 
This is the default data placement scheme adapted by 
current active storage systems; In HAS, we implement 
the proposed data placement scheme CADP on the active 
storage system. 

We use two typical applications, data compression 
and data selection, to evaluate the system performance. 
The first application is responsible for compressing us-
er’s data with a configurable size. Data compression is a 
representative operation in file system and is widely used 
in a space-constrained storage environment. In our test, 
we use a parallel file to store the user’s data, and each 
storage node is only limited to process data on itself. 
3.2  Data Compression 

In TS, the clients first fetches the given-length data 
from the parallel file system to their local memory 
through a READ interface, and then carry out the data 
compression operations on the clients. After that, the 
clients write the result back to the parallel file system. 
The execution time of the application consists of data 
read time through network, data compression time on the 
clients, and data writing back time to the storage server. 
In both TAS and HAS, the clients first download the 
compression code onto the storage server, and then ex-
ecute the data compression on the server. Finally, the 
server stores the result onto itself. The execution time of 
the application consists of all the above mentioned parts. 

Figure 2 shows the execution time of the data com-
pression application running with TS, TAS, and HAS, 
respectively. The file size is 2 GB. We test the perfor-
mance of the application under 10%, 30%, 50%, and 
70% of the data is compressed. These results show that, 
when the data amount is very small (10% data is com-
pressed), TAS and HAS shows comparable performance 
as TS. This is because the network and storage data 
movement is not very large, the reduced I/O time is not 
obvious. However, when large data movement occurs, 
namely 50% to 70% of the data needed to be compressed, 
TAS and HAS have much better performance than TS. 
The improvements are attributed to the reduced data 
movement through network and the increased data 

processing capability on multiple servers. Compared 
with TAS, HAS has a better behavior. This is because 
TAS could lead to an imbalanced resource utilization of 
servers due to the even data placement. The proposed 
data placement scheme considers the data processing 
capability of heterogeneous storage servers and ad-
dresses the limitation of existing active storage systems 
well. 

 
Fig. 2  Performance comparison of data compression  

application under different schemes  

3.3  Data Selection 

In TS, the clients first fetches the given-length data 
from the servers to their local memory, and then carry 
out the data selection operations on the clients. The ex-
ecution time of the application consists of data read time 
through network and data selection time on the clients. 
Similarly, in both TAS and HAS, the clients first down-
loads the data selection code onto the server, and then 
executes the data selection operations on them. The ex-
ecution time of the application consists of all the above 
parts. In our tests, the data set is a data sequence consist-
ing of millions of data, each of which is 0-9, and the 
large-scale sequence is stored as a 4 GB parallel file on 
multiple servers. 

Figure 3 describes the application execution time 
under different data selection conditions running TS, 
TAS, and HAS, respectively. The ratio means how much 
data should be selected from the original data set. From 
the figure we can observe that the active storage system 
is always better than the traditional storage system. More  

 
Fig. 3  Performance comparison of data selection application 
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important, heterogeneous-aware active storage has the 
best performance. This is because HAS adopts the capa-
bility-aware data placement scheme to distribute data on 
multiple servers, which can effectively eliminate the 
load-imbalance issues in current active storage systems. 
These results show that our proposed data placement 
scheme is an efficient way to improve the I/O system 
performance for data-intensive high-performance com-
puting applications. 

4 Conclusion 

The great processing capability of storage nodes 
makes it feasible to implement active storage technology 
in parallel I/O systems. However, the heterogeneity of 
storage servers leads to critical challenges to the data 
placement schemes in current active storage systems. In 
this research, we introduce CADP, a capability-aware 
data placement scheme for heterogeneous active storage 
system to achieve high-performance data processing. 
CADP places data on storage nodes based on a holistic 
metric-processing ratio, which considers the computing 
capability and storage capability of the node, so that the 
load-imbalance among heterogeneous servers can be 
avoided. Experimental results show that the proposed 
capability-aware data placement scheme can significantly 
improve the active system performance. 
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