
2016, Vol.21 No.3, 249-256

Article ID 1007-1202(2016)03-0249-08

DOI 10.1007/s11859-016-1167-4

Capability-Aware Data Placement
for Heterogeneous Active Storage
Systems

□ LI Xiangyu1,2,3, HE Shuibing1,2†, XU Xianbin1,

WANG Yang 4

1. School of Computer, Wuhan University, Wuhan
430072, Hubei, China;

2. State Key Laboratory of High Performance Computing,
National University of Defense Technology, Changsha 410073,
Hunan, China;

3. School of Computer Science, Wuhan Donghu University,
Wuhan 430212, Hubei, China;

4. Shenzhen Institute of Advanced Technology, Chinese
Academy of Science, Shenzhen 518055, Guangdong, China

© Wuhan University and Springer-Verlag Berlin Heidelberg 2016

Abstract: By moving computations from computing nodes to
storage nodes, active storage technology provides an efficient for
data-intensive high-performance computing applications. The
existing studies have neglected the heterogeneity of storage nodes
on the performance of active storage systems. We introduce CADP,
a capability-aware data placement scheme for heterogeneous ac-
tive storage systems to obtain high-performance data processing.
The basic idea of CADP is to place data on storage nodes based on
their computing capability and storage capability, so that the
load-imbalance among heterogeneous servers can be avoided. We
have implemented CADP under a parallel I/O system. The expe-
rimental results show that the proposed capability-aware data
placement scheme can improve the active storage system perfor-
mance significantly.
Key words: active storage; parallel I/O system; CADP; data
placement
CLC number: TP 393

Received date: 2015-12-10
Foundation item: Supported by the National Science and Technology Foun-
dation of China (61572377), the Natural Science Foundation of Hubei Province
(2014CFB239), the Open Fund from HPCL (201512-02), the Open Fund from
SKLSE (2015-A-06), and the US National Science Foundation(CNS-1162540)
Biography: LI Xiangyu, male, Ph.D. candidate, research direction: file and
storage systems, high performance computing, distributed system, and computer
network. E-mail: xylee@whu.edu.cn
† To whom correspondence should be addressed. E-mail: heshuibing@whu.edu.cn

0 Introduction

Over the past decades, many scientific applications
in the high-performance computing (HPC) domains,
such as astrophysics, geographic systems, climate mod-
eling, medical image processing, and high-energy phys-
ics, have become increasingly data-intensive [1]. For ex-
ample, the astro program in astronomy generates tens of
gigabytes of data in one run [2]. In some climate model-
ing and combustion simulation applications, the data set
sizes range between 100 TB and 10 PB [3].

Moving such large data volumes between compu-
ting nodes and storage nodes takes a large amount of
time, even on today’s highest-performing computer sys-
tems. The main reason is that, although the performance
of each hardware component of a computer system is
continuously increasing with the advancements of VLSI
technology, the I/O bandwidth between computing nodes
and storage nodes has not improved as the same rate as
the data requirements of applications. Data storage and
analysis have become a serious bottleneck for da-
ta-intensive applications.

Active storage provides a promising solution to ad-
dressing the limited I/O bandwidth issue [4-8]. The main
idea of active storage is to move computation from
computing nodes to storage nodes. By offloading appro-
priate data operations to storage nodes and directly
processing the data on storage nodes, active storage can
not only reduce the network traffic, but also provide sig-
nificantly aggregative processing capability when mul-
tiple devices are used in parallelism. Due to its efficiency
in reducing network and disk traffic, active storage has

Wuhan University Journal of Natural Sciences 2016, Vol.21 No.3

250

received intensive attention [9-11].
While effective to improve I/O system performance,

most of the current active storage studies are designed
for homogeneous I/O environments, that is, the storage
nodes are usually built with the same hardware platforms
in terms of CPU, memory and storage device. Since each
node is homogeneous and with the same data process
capability, active storage system usually uses an even
data placement scheme to distribute data on multiple
nodes, so that each node can finish the active storage
operations nearly at the same time.

However, in a practical active storage system, the
storage nodes may run with heterogeneous hardware re-
source: the CPU, memory and storage device of each
node can be greatly different. Therefore, each storage
node has a different data process capability. For the same
amount of data needed to process, the high-performance
storage nodes will finish the tasks quickly while the
low-performance nodes will finish slowly. Since each
node will finish their active storage operations with dif-
ferent rate and the overall data processing time depends
on the straggler of all storage nodes, traditional data
placement schemes will degrade the overall system per-
formance.

It is common that storage nodes have heterogeneous
hardware resources in a practical I/O systems. The first
scenarios appears when a component of a storage node
fails and it needs to be replaced by a new one [12]. As
VLSI technology improves quite rapidly, it is quite
probable for the new storage nodes to be faster and larger
than the ones already in the I/O system. The second sce-
nario appears when the system needs to grow its storage
capability and new nodes have to be acquired. It will also
be difficult to buy the same nodes as the ones in the
original configuration, and thus newer storage nodes will
be added. In both cases, it will make the traditional ac-
tive storage system with sub-optimal performance.

In this paper, we propose CADP (capability-aware
data placement), a novel data placement scheme to dis-
tribute data for heterogeneous active storage systems.
CADP places data on each node based on a holistic me-
tric-processing ratio, which considers the computing ca-
pability and storage capability of the node, so that the
load-imbalance among heterogeneous servers can be
avoided. In summary, we make the following contribu-
tions.

 We develop a novel metric to evaluate the data
processing capability of each storage node in a hetero-
geneous cluster.

 We propose a data placement scheme, CADP,
which distributes the data on each storage node based on
their data processing capability.

 We implement a prototype of CADP under a
parallel I/O system, and evaluated its performance with
typical applications. The experimental results show that
CADP can significantly improve the active storage sys-
tem performance.

The rest of this paper is organized as follows. In
Section 1, we describe the related work. Then, we de-
scribe the design and implementation of CADP in Sec-
tion 2. Section 3 gives the performance evaluation. Fi-
nally, we conclude the paper in Section 4.

1 Related Work

1.1 Device-Level Active Storage
By offloading computing operations to storage de-

vices, active storage technology can largely improve the
computer system performance. Active storage is first
proposed to exploit the computing intelligence inside
disk drives. These techniques are either designed for
general applications [5,6,13], or some special fields (e.g,
database [14,15]). Both hardware architectures [13,16,17] and
programming models [5,6] are studied to address the I/O
bottleneck problem. A stream-based programming model
of active disks was proposed in Ref.[5], which divides an
application into a host part and a disk-resident part.
Ref.[6] presented a detailed analysis of active disks for
scan-intensive database applications. However, these
efforts are only dedicated to utilize the power of embed-
ded processor, thus the systems provide limited compu-
tation-offloading capability.
1.2 System-Level Active Storage

With the performance improvements on storage
nodes, active storage can also be applied to file system.
Sivathanu et al [18] extended the remote procedure call
(RPC) to implement the prototype of active storage. Ma et
al [4] proposed a multi-view storage system architecture
with virtual file system technology to provide a flexible
active storage. Piernas et al [19] gave an active storage
strategy implemented in Lustre parallel file system. Son et
al [3] enabled the active storage implementation in PVFS.
Chen et al [1,20] considered data dependences and data
contention issues in active storage system.

Due to the benefits of object storage technology,
many researchers made efforts to integrate active storage
into the object-based storage systems. Huston et al [21]
used an active storage architecture for interactive search

LI Xiangyu et al : Capability-Aware Data ⋯

251

of non-indexed data. This system does not comply with
the T10 OSD standard [22]. To promote the development of
object-based storage technology, several studies integrated
the active storage technology into the object-based storage
system based on the OSD standard [8,9, 23-25].

Most of the above studies are designed for homo-
geneous storage clusters. In contrast, this study proposes
a data placement scheme to improve the active storage
performance in heterogeneous I/O systems. While recent
work SDD [26] introduces a data distribution scheme for
heterogeneous active storage systems, it does not con-
sider the heterogeneity of processor and the hardware
parameters in a real system are hard to be obtained. In
contrast, CADP addresses these issues by utilizing the
relative execution time of the active storage operation.
1.3 Data Placement in Parallel File Systems

Parallel file systems usually provide several data
placement policies [27], such as simple stripe, two dimen-
sional stripe, and variable stripe, each suitable for a spe-
cial kind of workloads. For complex workloads, seg-
ment-level placement scheme logically divides a file into
several segments such that an optimal stripe size is as-
signed for each segment with non-uniform access pat-
terns [28]. Server-level adaptive placement strategies adopt
different stripe sizes on different file servers to improve
the overall I/O performance [29]. These efforts are devoted
to homogeneous systems. For heterogeneous file systems,
recent studies [30-34] uses skewed data distribution to place
data on HDD and SSD-based storage nodes.

All these studies only consider two kinds of nodes
and they focused on storage performance without consi-
dering the CPU and memory impacts on the overall sys-
tem performance. As opposite to these efforts, CADP can
be applied to a more general heterogeneous system and it
fully considers the holistic processing capability of each
storage nodes to improve the system performance.

2 Capability-Aware Data Placement

In this section, we first introduce the basic idea of
our proposed data placement scheme. Then we describe
the data processing capability measurement and the al-
gorithm used to determine the optimal data block place-
ment on each server. Finally, we present the implementa-
tion of CADP.
2.1 The Basic Architecture of CADP

There are two typical models to deploy computing
and storage nodes for data-intensive applications. The
first one is to separate computing nodes from storage

nodes, which is widely used in MPI applications. The
second one is to perform computing and storage opera-
tions in the same node, which is adopted by MapRe-
duce/Hadoop applications. In this paper, we focus on the
first model since it is the most common architecture in
HPC systems.

Figure 1 illustrates the system architecture for which
the proposed data placement scheme is designed. In
these systems, the user data are distributed to multiple
servers with a data placement scheme. The metadata
sever (MDS) responds to manage the block allocation
information, and the data would be processed in each
node when the active storage code is executed. As the
servers are homogeneous, the main idea of the capabili-
ty-aware data placement scheme is to place data on each
node according to their data processing performance,
instead of with an even data distribution widely used in
current active storage systems. To this end, there are two
components, profiling ratios (PR) and data placements
(DP), located in MDS. PR is responsible for gathering
the execution time of active storage codes downloaded to
each node, and using these times to compute the profil-
ing ratio of the node, which is fed to DP to generate the
data placement plan. Applications interact with the client
of parallel file system (PFS) for normal I/O operations,
and the PFS API is instrumented to contact with MDS
where PR and DP are located to obtain the allocation
scheme for the write data. According to the placement
scheme, the write data are partitioned into several re-
gions, each assigned to a node based on its relative pro-
filing ratio as shown in Fig. 1.

Fig. 1 An overview of the data placement framework for
heterogeneous active storage system

The capability-aware active storage system works
as follows. First, applications pass the active storage
codes to the servers through an active storage client API.

Wuhan University Journal of Natural Sciences 2016, Vol.21 No.3

252

Once the server installs these codes, it will begin to ex-
ecute the active storage operations with a given-size in-
put data. To get the exact performance profile of the node,
measurement codes exercise the local I/O, which is de-
legated to the PFS APIs. Finally, the performance profile
of each node is sent back to PR on MDS, and DP makes
the final data placement plan for a large file according to
the guidance of PR as we mentioned above.
2.2 Heterogeneous Data Processing Capability
Measuring

To achieve the proposed data placement scheme, we
first need to evaluate each node’s data processing capa-
bility. In a practice I/O system, determining this factor is
challenging for the following two reasons. First, the data
processing time is related with the hardware resource of
each node. As we discussed previously, each storage
node in a heterogeneous active storage environment may
have different CPU, memory and storage device. Since
the hardware resource includes multiple components,
only using computing power or storage performance can
not accurately evaluate the overall data processing capa-
bility of each node.

Second, the data processing speed of each storage
node also relies on the application itself. For different
applications, the data processing speed can vary signifi-
cantly because one application can require different
hardware resource. For example, one application can be
more CPU-intensive, but another application can be
more I/O-intensive because it has a large fraction of I/O
operations on storage devices. Thus, the heterogeneity
measurements in the storage cluster may change while
we execute active operations from different applications.

To address above issues, we introduce a simple but
effective metric, processing ratio, to measure each node’s
data processing capability in a heterogeneous active sto-
rage system. processing ratio is a holistic parameter con-
sidering both hardware and application factors. We get
the processing ratios through a profiling procedure as
Algorithm 1, which includes the following steps.

① The active storage operations (data processing
codes) of the HPC application are downloaded to each
storage node.

② We carry out the operations separately on each
node. To fairly compare the data processing speed, we
limit all nodes to process the same amount of data. For
example, in our experiments we limit the input data size
on each node to 256MB to fully reflect its performance
capability while not consuming too much time.

③ We record the data processing time on each
node. The longest processing time is used as a reference
to normalize the data processing time measurements.

④ The normalized values, called processing ratios
(pr), are employed by the data placement algorithm to
allocate file blocks for the given HPC application.

Algorithm 1 Processing capability determination

1. procedure CALCULATING PROCESSING RATIO

2. ▽the following loop can be done in parallel
3. for each storage node i(i∈ [1, n]) do

4. Download processing operations to node i

5. Execute operations with a fixed-size input data

6. Record its data processing time Ti

7. end for

8. S ←∅

9. Γ ← max{T1,T2,⋯,Tn}

10.
11.

for (∀i∈ [1, n]) do

pri
iT

Γ←

12. {pr}
i

S S← ▽S gathers all pri

13. end for
14. return S
15. end procedure

We download the data processing codes as active

storage operations instead of pre-installing some mea-
surement codes in advance because of the following
reasons. First, both the files to be stored and the node
processing ratios are correlated to the measurement
codes as well as their input data. Second, any pre-defined
codes will make us loss the flexibility to configure the
codes according to the files to be stored. Given these
benefits, by moving computations from computing nodes
to storage nodes, active storage technology provides a
promising solution for data-intensive high-performance
computing applications.

We use an example to illustrate how to calculate the
processing ratio of each node. Suppose there are four
heterogeneous storage nodes (i.e., node A, B, C and D) in
a heterogeneous active storage system. After the data
process operations on each node, the processing time of
the application on each node is 50, 100, 50 and 20
seconds, respectively. The processing time of node B is
the longest, thus its processing ratio is set to 1, which is a
reference used to determine processing ratios of other
nodes. Therefore, the processing ratios of node A, C, and
D are 2, 2 and 5, respectively.

LI Xiangyu et al : Capability-Aware Data ⋯

253

2.3 Capability-Aware Data Placement Scheme
Based on the data processing capability of each

node, we devise a heuristic iterative algorithm to deter-
mine the appropriate data placement on each node. As-
suming there are m blocks in a parallel file needing to be
processed, the goal of the algorithm is to distribute this
blocks on the underlying n nodes. The traditional data
placement algorithm adopts a fixed-size block (file stripe)
to distribute data on multiple nodes. In particular, these
blocks are located on the nodes in a round-robin way, so
that each node has the same number of blocks of the file.
Instead of using an even data distribution on each node,
the proposed capability-aware data placement scheme
improves the existing approach by differentiating the
weight of each node to dispatch data blocks.

Algorithm 2 illustrates the data placement proce-
dure of the CADP scheme. The basic idea of this scheme
is to allocate a region of blocks according to the node’s
relative processing ratio. Specifically, after initializing
varphi, the sum of processing ratios of all nodes, a, and R,
the region start point and the allocation scheme (Lines
3-4), the algorithm enters a loop to allocate a region to
each node (Lines 5-12). The size of the region is first
determined by the node’s relative processing ratio (Lines
6-7), and then the location of the region is identified and
gathered in vector R (Lines 8-10). Finally, the starting
point of next region is reset (Line 11). After the regions
for all nodes are achieved, the algorithm returns the
scheme (Line 13).

Algorithm 2 Capability-Aware date placement scheme

1. procedure PLACEMENT (W[1, m]) ▽W[1; m] is the
block array to be stored

2.
1

pr
i

n

i

ϕ
=

← pri : global variables

3. a ← 0 (a,b) represents a region

4. R ← ∅

5. for (∀ i∈ [1, n]) do

6. pr
i

i ϕω ←

7. i im m ω← × mi: region size

8.
i

b a m← +

9. R gathers the placement scheme

10. R ← R {W[a, b]}
11. a ← b

12. end for
13. return R

14. end procedure

Note that although the CADP algorithm is relatively

simple, it is a generalization of those existing approaches
that target the nodes with homogeneous capability. Log-
ically, our algorithm would default to the current data
placement schemes if all the storage nodes have the same
data processing capability.
2.4 Implementation Issues

We implement the proposed data placement scheme
in a parallel I/O system. The I/O middleware is MPICH2
and the parallel file system is OrangeFS. In the profiling
phase, we use a trace collector to obtain the run-time
statistics of data accesses during the application’s execu-
tion. Based on the I/O trace, we obtain the processing
ratios to evaluate the holistic data processing capability
of heterogeneous storage nodes.

During the data placement phase, we distribute the
file data with the optimal data layout. For ease of im-
plementation, we assign different number of blocks on
each node by specifying the stripe size on each node. For
example, for a default stripe size 64 KB, one node will
be allocated two blocks if we configure the stripe size as
128 KB. The OrangeFS file system supports an API for
implementing specific variable stripe distribution. In
OragneFs, a parallel file can either be accessed by the
PVFS2 or the POSIX interface. For PVFS2 interface, we
utilize the “pvfs2-xattr” command to set the data distri-
bution of directories where the application files are lo-
cated. For POSIX interface, we use the “setfattr” com-
mand to reach the similar capability-aware data place-
ment goal.

3 Performance Evaluation

3.1 Experimental Setup

We conducted the experiments on a Linux cluster.
We choose two nodes as the computing nodes, each hav-
ing two AMD Opteron(tm) processors and 8 GB memory.
To simulate heterogeneous storage servers, we choose
two types of file servers. The low-performance storage
servers are configured with Intel i5, 250 GB HDD, and
4 GB memory. The high-performance storage servers are
configured with Intel i7 processor, 100 GB SSD, and
16 GB memory. All nodes are equipped with Gigabit
Ethernet interconnection. The operating system is Ubun-
tu 9.04, the MPI-IO library is MPICH21.4.1p1, and the
parallel file system is OrangeFS 2.8.6. In the experi-
ments, the hybrid OrangeFS file system is built on four
HDD-based servers and four SSD-based servers unless
otherwise specified.

Wuhan University Journal of Natural Sciences 2016, Vol.21 No.3

254

To demonstrate the effectiveness of our proposed
data placement scheme, we evaluate the system perfor-
mance under three schemes: traditional storage (TS),
traditional active storage (TAS), and heterogeneous ac-
tive storage (HAS). In TS, the servers are responsible for
normal I/O operations. The active data processing opera-
tions are carried on the clients; In TAS, the data is dis-
tributed on servers with a default block size (64 KB) in a
round-robin way. Each node has an even data distribution.
This is the default data placement scheme adapted by
current active storage systems; In HAS, we implement
the proposed data placement scheme CADP on the active
storage system.

We use two typical applications, data compression
and data selection, to evaluate the system performance.
The first application is responsible for compressing us-
er’s data with a configurable size. Data compression is a
representative operation in file system and is widely used
in a space-constrained storage environment. In our test,
we use a parallel file to store the user’s data, and each
storage node is only limited to process data on itself.
3.2 Data Compression

In TS, the clients first fetches the given-length data
from the parallel file system to their local memory
through a READ interface, and then carry out the data
compression operations on the clients. After that, the
clients write the result back to the parallel file system.
The execution time of the application consists of data
read time through network, data compression time on the
clients, and data writing back time to the storage server.
In both TAS and HAS, the clients first download the
compression code onto the storage server, and then ex-
ecute the data compression on the server. Finally, the
server stores the result onto itself. The execution time of
the application consists of all the above mentioned parts.

Figure 2 shows the execution time of the data com-
pression application running with TS, TAS, and HAS,
respectively. The file size is 2 GB. We test the perfor-
mance of the application under 10%, 30%, 50%, and
70% of the data is compressed. These results show that,
when the data amount is very small (10% data is com-
pressed), TAS and HAS shows comparable performance
as TS. This is because the network and storage data
movement is not very large, the reduced I/O time is not
obvious. However, when large data movement occurs,
namely 50% to 70% of the data needed to be compressed,
TAS and HAS have much better performance than TS.
The improvements are attributed to the reduced data
movement through network and the increased data

processing capability on multiple servers. Compared
with TAS, HAS has a better behavior. This is because
TAS could lead to an imbalanced resource utilization of
servers due to the even data placement. The proposed
data placement scheme considers the data processing
capability of heterogeneous storage servers and ad-
dresses the limitation of existing active storage systems
well.

Fig. 2 Performance comparison of data compression

application under different schemes

3.3 Data Selection

In TS, the clients first fetches the given-length data
from the servers to their local memory, and then carry
out the data selection operations on the clients. The ex-
ecution time of the application consists of data read time
through network and data selection time on the clients.
Similarly, in both TAS and HAS, the clients first down-
loads the data selection code onto the server, and then
executes the data selection operations on them. The ex-
ecution time of the application consists of all the above
parts. In our tests, the data set is a data sequence consist-
ing of millions of data, each of which is 0-9, and the
large-scale sequence is stored as a 4 GB parallel file on
multiple servers.

Figure 3 describes the application execution time
under different data selection conditions running TS,
TAS, and HAS, respectively. The ratio means how much
data should be selected from the original data set. From
the figure we can observe that the active storage system
is always better than the traditional storage system. More

Fig. 3 Performance comparison of data selection application

LI Xiangyu et al : Capability-Aware Data ⋯

255

important, heterogeneous-aware active storage has the
best performance. This is because HAS adopts the capa-
bility-aware data placement scheme to distribute data on
multiple servers, which can effectively eliminate the
load-imbalance issues in current active storage systems.
These results show that our proposed data placement
scheme is an efficient way to improve the I/O system
performance for data-intensive high-performance com-
puting applications.

4 Conclusion

The great processing capability of storage nodes
makes it feasible to implement active storage technology
in parallel I/O systems. However, the heterogeneity of
storage servers leads to critical challenges to the data
placement schemes in current active storage systems. In
this research, we introduce CADP, a capability-aware
data placement scheme for heterogeneous active storage
system to achieve high-performance data processing.
CADP places data on storage nodes based on a holistic
metric-processing ratio, which considers the computing
capability and storage capability of the node, so that the
load-imbalance among heterogeneous servers can be
avoided. Experimental results show that the proposed
capability-aware data placement scheme can significantly
improve the active system performance.

[1] Chen C, Chen Y. Dynamic active storage for high perfor-

mance I/O [C] // Proceedings of the 41st International Con-

ference on Parallel Processing. Washington D C: IEEE

Press , 2012: 379-388.

[2] Kandemir M, Son S W, Karakoy M. Improving I/O per-

formance of applications through compiler-directed code re-

structuring [C] // Proceedings of the 6th USENIX Confe-

rence on File and Storage Technologies, FAST ’ 08. San

Jose: USENIX Association, 2008: 159-174.

[3] Son S W, Lang S, Carns P, et al. Enabling active storage on

parallel I/O software stacks [C]// Proceedings of the IEEE

26th Symposium on Mass Storage Systems and Technolo-

gies, MSST. Washington D C: IEEE Press, 2010: 1-12.

[4] Ma X N, Reddy A L N. MVSS: An active storage architec-

ture [J]. IEEE Transactions on Parallel and Distributed Sys-

tems, 2003, 14(10): 993-1005.

[5] Acharya A, Uysal M, Saltz J. Active disks: Programming

model, algorithms and evaluation [J]. ACM SIGPLAN No-

tices, 1998, 33(11): 81-91.

[6] Riedel E, Gibson G A, Faloutsos C. Active storage for

large-scale data mining and multimedia [C] // Proceedings of

the 24rd International Conference on Very Large Data

Bases, VLDB. New York: Morgan Kaufmann Press, 1998:

62-73.

[7] Tang H, Gulbeden A, Zhou J, et al. The panasas active scale

storage cluster-delivering scalable high bandwidth storage

[C] // Proceedings of the ACM/IEEE SC2004 Conference on

Supercomputing. Washington D C: IEEE Press, 2004:53-62.

[8] He S B, Xu X B, Yang Y H. Oasa: An active storage archi-

tecture for object-based storage system [J]. International

Journal of Computational Intelligence Systems, 2012, 5(6):

1173-1183.

[9] Xie Y, Muniswamy-Reddy K, Feng D, et al. Design and

evaluation of Oasis: An active storage framework based on

T10 OSD standard [C] // Proceedings of the IEEE 27th Mass

Storage Systems and Technologies, MSST. Washington D C:

IEEE Press, 2011: 1-12.

[10] Tiwari D, Boboila S, Vazhkudai S S, et al. Active flash:

Towards energy-efficient, in-situ data analytics on ex-

treme-scale machines [C] // Proceedings of the 11th USENIX

Conference on File and Storage Technologies, FAST’13. San

Jose: USENIX Association, 2013:119-132.

[11] Rich B, Thain D. Datalab: Transactional data-parallel com-

puting on an active storage cloud [C] // Proceedings of the

17th International Symposium on High Performance Distri-

buted Computing, HPDC’08. Boston: Association for Com-

puting Machinery Press, 2008: 233-234.

[12] Cortes T, Labarta J. Taking advantage of heterogeneity in

disk arrays [J]. Journal of Parallel and Distributed Compu-

ting, 2003, 63(4): 448-464.

[13] Keeton K, Patterson D A, Hellerstein J M. A case for intel-

ligent disks (IDISKs) [J]. ACM SIGMOD Record, 1998, 27

(3): 42-52.

[14] Su W Y S, Lipovski G J. Cassm: A cellular system for very

large data bases [C] // Proceedings of the International Con-

ference on Very Large Data Bases, VLDB. Framingham :
Association for Computing Machinery, 1975: 456-472.

[15] Ozkarahan A E, Schuster S A, Smith K C. Rap: An associa-

tive processor for data base management [C]// Proceedings

of the AFIPS Joint Computer Conferences. Washington D C:

IEEE Press 1975: 379-387.

[16] Chiu S, Liao W K, Choudhary A. Design and evaluation of

distributed smart disk architecture for I/O-intensive work-

loads [C] //Proceedings of International Conference on

Computational Science, ICCS’03. Berlin: Springer-Verlag,

2003: 230-241.

References

Wuhan University Journal of Natural Sciences 2016, Vol.21 No.3

256

[17] Franklin M, Chamberlain R, Henrichs M, et al. An architec-

ture for fast processing of large unstructured data sets [C]//

Proceedings of the IEEE International Conference on Com-

puter Design, ICCD’04. San Jose: Institute of Electrical and

Electronics Engineers, 2004: 280-287.

[18] Sivathanu M, Arpaci-Dusseau A C, Arpaci-Dusseau R H.

Evolving RPC for active storage [J]. ACM SIGPLAN Notic-

es, 2002, 37(10): 264-276.

[19] Piernas J, Nieplocha J, Felix E J. Evaluation of active sto-

rage strategies for the lustre parallel file system [C] // Pro-

ceedings of the 2007 ACM/IEEE Conference on Supercom-

putting, SC’07. New York: Association for Computing Ma-

chinery, 2007: 1-10.

[20] Chen C, Chen Y, Roth P C. Dosas: Mitigating the resource

contention in active storage systems [C] // Proceedings of

the IEEE International Conference on Cluster Computing,

CLUSTER’12. Washington D C: IEEE Press, 2012: 164-172.

[21] Huston L, Sukthankar R, Wickremesinghe R, et al. Di-

amond: A storage architecture for early discard in interactive

search [C] // Proceedings of the 3rd USENIX Conference on

File and Storage Technologies, FAST’04. San Francisco:

USENIX Association, 2004: 73-86.

[22] Weber R O. Information technology—SCSI object-based

storage device commands-2(osd-2), Revision 5[R]. Oklahoma:

INCITS Technical Committee T10/1729-D, 2009.

[23] Qin L, Feng D. Active storage framework for object-based

storage device [C] // Proceedings of the IEEE 20th Interna-

tional Conference on Advanced Information Networking and

Applications. Washington D C: IEEE Press, 2006: 97-101.

[24] Devulapalli A, Murugandi I, Xu D, et al. Design of an Intel-

ligent Object-Based Storage Device [M]. New York: Springer

-Verlag, 2009.

[25] John T M, Ramani A T, Chandy J A. Active storage using

object-based devices [C] // 2008 IEEE International Confe-

rence on Cluster Computing. Washington D C: IEEE Press,

2008: 472-478.

[26] Li X Y, He S B, Xu X B. Skewed data distribution for active

storage systems on hybrid servers [J]. International Journal

of Grid and Distributed Computing, 2016, 9(5): 51-62.

[27] Song H, Yin Y, Chen Y, et al. A cost-intelligent applica-

tion-specific data layout scheme for parallel file systems [C]

// Proceedings of the 20th International Symposium on High

Performance Distributed Computing. San Jose: IEEE Press,

2011: 37-48.

[28] Song H, Yin Y, Sun XH, et al. A segment-level adaptive

data layout scheme for improved load balance in parallel file

systems [C] // Proceedings of the 11th IEEE/ACM Interna-

tional Symposium on Cluster, Cloud and Grid Computing,

CCGrid’11. Washington D C: IEEE Press, 2011: 414-423.

[29] Song H, Jin H, He J, et al. A server-level adaptive data

layout strategy for parallel file systems [C] // Proceedings of

the IEEE 26th International Parallel and Distributed

Processing Symposium Workshops and Ph.D. Forum,

PDPSW’12. Washington D C: IEEE Press, 2012: 2095-2103.

[30] He S B, Sun X H, Feng B, et al. Performance-aware data

placement in hybrid parallel file systems [C] // Proceedings

of the 14 th International Conference on Algorithms and

Architectures for Parallel Processing, ICA3PP. New York:

Springer-Verlag, 2014: 563-576.

[31] He S B, Liu Y, Sun X H. PAS: A performance and

space-aware data layout scheme for hybrid parallel file sys-

tems [C] // Proceedings of the Data Intensive Scalable

Computing Systems Workshop, DISK’14. Washington D C:

IEEE Press, 2014: 41-48.

[32] He S B, Sun X H, Haider A. HAS: Heterogeneity-Aware

selective data layout scheme for parallel file systems on hy-

brid servers [C] // Proceedings of 29th IEEE International

Parallel and Distributed Processing Symposium, IPDPS’15.

Washington D C: IEEE Press, 2015: 613-622.

[33] He S B, Sun X H, Wang Y, et al. A heterogeneity-Aware

region-level data layout scheme for hybrid parallel file sys-

tems [C] // Proceedings of the 44th International Conference

on Parallel Processing, ICPP’15. Washington D C: IEEE

Press, 2015: 340-349.

[34] He S B, Wang Y, Sun X H. Boosting parallel file system

performance via heterogeneity-aware selective data layout

[J]. Journal IEEE Transactions on Parallel and Distributed

System, 2015, 99: 1-14.

□

