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Abstract 

We propose JAS, a JVM-based active storage framework for object-based storage 

systems. JAS programs the active storage functions of users as Java codes, and allows 

them to be executed on different OSD platforms (Operating systems and hardware) 

without recompiling. JAS offloads the active storage code from a client to the OSD by 

extending the standard OSD command set, and execute the Java code on the OSD on-

demand by triggering them through extended client interfaces. We have implemented JAS 

under an object-based storage system. Experimental results show that the JVM-based 

active storage framework has been successfully set up, and this cross-platform design can 

largely improve system performance. 

 

Keywords: Active Storage, Object-Based Storage, Java Virtual Machine 

 

1. Introduction 

I/O access has become one of the major performance issues in modern computer 

systems. While processor speed has increased nearly 50% per year, the disk performance 

improvement is only 7% [1]. Despite this large performance gap, a lot of applications are 

becoming increasingly data intensive. For example, the astro program in astronomy, 

generates tens of gigabytes of data in one run [2]. As a result, these data intensive 

applications often move a large amount of data between the computing nodes and the 

storage devices, thus putting unprecedented pressure on both network and storage devices 

[3-6]. 

Storage devices or systems are having increasing powerful processors and plenty of 

memories nowadays, with the advancements of VLSI technology. For example, there are 

4-8 core embedded processors and a few gigabytes of DRAM in some commercial disks 

[7]. Multi-core disks are likely to become more common place, largely due to Moore’s 

law. Unfortunately, the considerable processing capabilities of the storage devices have 

not been fully utilized in most I/O systems. 

Active storage technology has been proposed and is proved to be one of the most 

effective approaches to reduce the bandwidth requirements between storage and 

computing nodes [8-12]. By exploiting the under-utilized computing power and memory 

of storage devices to process data inside the storage devices, active storage can not only 

reduce the network traffic, but also provide aggregative processing intelligence when 

multiple devices are used in parallelism. 
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Due to the benefits of active storage, a variety of research institutions have made 

essential contributions to the active storage research field, such as Active Disk [9] and 

IDISK [13]. However, these earlier works are based on the narrow block storage interface 

(e.g., IDE/SCSI), active storage may result in complicated management and high 

communication overhead, and hence offset the potential of active storage. 

Object-based storage [14] has gained enormous popularity in storage area. Because of 

the benefits of cross-platform data sharing, policy-based security, direct access, and 

scalability, object-based storage systems have been developed by the industrial 

community [15-16]. To regulate the more and more sophisticated object-based 

technology, the object-based storage interface standard [17] (also referred as T10 OSD 

standard) was developed by the Storage Network Industry Association. With more 

expressive object interface, there is a potential for object-based storage devices (OSDs) to 

be more intelligent and effective. To further facilitate the object-based storage, there have 

been several efforts to integrate active storage into the object-based storage technology 

[12,18-21]. 

While effective to improve I/O system performance, most of current object-based 

active storage studies are designed for homogeneous I/O environments, that is, the clients 

and the OSDs usually run with similar operating systems or hardware platforms. 

However, in a practical object-based storage system, the clients and the OSDs may run on 

a heterogeneous environment, thus the active storage functions could not directly be 

executed on the OSDs. For example, clients and OSDs can run on different operating 

systems, such as Linux, Windows, and MAC OS X. Even with the same operating system, 

clients and OSDs may adopt different hardware platforms. A client may run on X86 

processor, but an OSD may run on Intel XScale, ARM, or PowerPC processor. In this 

case, a client’s active storage code cannot be directly executed without complicated 

recompiling, hence the benefits of active storage are lost. 

In this paper, we propose JAS, a JVM-Based active storage framework for object-

based storage systems. JAS programs the active storage functions of users as Java codes, 

and allows them to be executed on Java Virtual Machine (JVM) on different OSD 

platforms without recompiling. JAS offloads the active storage functions from clients to 

the OSDs by extending the standard OSD model, and execute the Java code on the OSDs 

on-demand by triggering them through extended client interfaces. In this way, the active 

storage functions can not only utilize the benefits of object-based storage system, but also 

can provide cross-platform execution. 

To support JAS, we extend the standard OSD command set to enable four major 

interface: code offloading, code association, code triggering, and code execution. 

Furthermore, we implement JAS under an object-based storage system by modifying the 

client node and the OSD node. We also test the performance of JAS with two 

representative applications. Experimental results show that the JVM-based active storage 

framework has been successfully set up, and this cross-platform design can largely 

improve system performance. 

The rest of this paper is organized as follows. In Section 2, we describe the background 

and the related work. Then we describe the design and implementation of JAS in Section 

3. Section 4 gives the performance evaluation. Finally, we conclude the paper in Section 

5. 

 

2. Background and Related Work 
 

2.1. Object-Based Storage 

Object-based storage provides a new solution for large-scale I/O systems. Object is a 

logical data unit, it can includes any type of data, and can be created and deleted like a 

file. Compared to a traditional file, an object has two main differences. First, it has more 
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attributes to describe the characteristics of the data. These attributes can facilitate the 

clients or storage nodes to more efficiently manage the data. Second, an object also can 

include several methods, which allow the storage devices to directly process the data 

without interacting with the clients. 

 

 

Figure 1. The Architecture of Object-Based Storage System 

Object-based storage system (OBSS) [22] mainly consists three parts, as shown in 

Figure 1. The client provides standard interfaces for users to store data. The MDS 

manages the mapping information between logical objects and physical object-based 

storage devices (OSDs). The OSD is the real device to store the user objects. When a 

client accesses the data in an OSD, it first gets the data mapping information from the 

MDS, then interacts with the OSD(s) directly. 

 

 

Figure 2. The Comparison of Traditional Computing Model and Active 
Storage Computing Model 

To promote the development of object-based technology, the T10 OSD standard 

defines the OSD model and basic command set (e.g., READ and WRITE command) [17]. 

There are four classes of objects: user objects, root objects, partition objects, and 
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collection objects. Each object is identified by an object ID, and accessed by offset, 

length, and so on. In addition to these data access commands, the T10 OSD standard also 

defines attribute commands (e.g., GET ATTRIBUTES and SET ATTRIBUTES) that are 

responsible for attributes retrieval and setting. Generally, each OSD relies an object-based 

file system to manage objects and attributes [16,22-24]. 

 

2.2. Active Storage 

By exploiting the under-utilized hardware resource of storage nodes to process data 

without moving them to the computing nodes, as shown in Figure 2, active storage can 

largely improve the computer system performance. Active storage is first proposed to 

exploit the computing intelligence inside disk drives. These techniques are either designed 

for general applications [9-10,13], or some special fields, such as database [25-26]. 

However, these efforts are based on the block-level interface, thus incur significant 

overhead and hence offset the potential of active storage. 

Due to the benefits of object storage, a lot of other researchers have gradually made 

efforts to integrate active storage into the object-based storage systems. Piernas et al. gave 

an active storage strategy implemented in Lustre parallel File System [19]. Huston et al. 

used an active storage architecture for interactive search of non-indexed data [27]. 

However, these systems do not comply with the T10 OSD standard. To promote the 

development of object-based storage technology, several works integrated the active 

storage technology into the object-based storage technology based on the T10 OSD 

standard [12,18,21,28-29]. 

Most of the above mentioned studies are especially based on a special OS platform or 

hardware architecture, thus the active storage code may not executed on cross-platform 

environment. MapReduce [30-31], a concept similar to active storage has also been 

employed in cluster computing field, MapReduce splits the computations and maps them 

to many computers processing the data locally, then the sub-results of the split 

computation are merged for form the global result of the problem. 

 

2.3. Java Virtual Machine 

The Java virtual machine is an abstract (virtual) computer defined by a specification. 

This specification omits implementation details that are not essential to ensure 

interoperability. For example, the memory layout of run-time data areas, the garbage-

collection algorithm used, and any internal optimization of the Java virtual machine 

instructions (their translation into machine code). The main reason for this omission is to 

not unnecessarily constrain implementors. Any Java application can be run only inside 

some concrete implementation of the abstract specification of the Java virtual machine. 

For the above reasons, in JAS, user’s active storage function codes are written in Java. 

Java is designed to allow application programs to be built that could be run on any 

platform without having to be rewritten or recompiled by the user for each separate 

platform. A Java virtual machine makes this possible because it is aware of the specific 

instruction lengths and other particularities of the platform. 

 

3. Design and Implementation 

In order to enable the JVM-based active storage, we need to consider the following 

four questions: 

 How to offload the user’s active storage code from the client to the OSD, without 
introducing significant changes to the existing OSD model? 

 How to associate the active storage code with the user’s data to support flexible 
and efficient data process? 
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 How to trigger the active storage code from the client, so that this code can be 
executed on demands? 

 How to execute the active storage code on the JVM, without losing the efficiency 
of the current OSD software stack? 

In this section, we answer these questions by discussing different modules of the JAS 

framework. 

 

3.1. System Architecture 

Figure 3 depicts the system overview of the proposed active storage framework. On the 

client node, the object-based system file system (OBSFS) is registered to VFS and 

provides a mounting point for user’s data accesses. The OSD module is responsible for 

encapsulating user’s file operations into the object-based operations, and the iSCSI 

Initiator sends and receives the OSD commands on the Ethernet network. On the OSD 

node, the iSCSI Target receives client’s network commands, and call the OSD module to 

resolve the OSD commands. The OSDFS is responsible for storing objects and managing 

attributes. To support JAS, the OSD module on both client and OSD, adds new 

components in addition to handle the existing OSD commands. We describe the detailed 

design of these critical components in the following sections. 

 

 

Figure 3. An Overview of the JVM-Based Active Framework 

 

3.2. Active Storage Code Offloading 

In our design, an active storage code of user is denoted by a piece of executable Java 

code, which is compiled on the client node. To run this code on a storage device, the 

active storage code needs to be delivered to the OSD in advance. A client provides a code 

register interface for users to offload their function codes on OSDs, and each target OSD 

returns a client with a function ID to identify which function should be executed later. 

On the client, this interface can be achieved by using a new OSD command. To avoid 

significant modification of the existing OSD model, each client registers the active 

storage code by extending the current OSD_WRITE command, and the code itself are 

transferred to the OSDs as additional information in the Data-out Buffer of this extend 

OSD_WRITE command. 

Once the OSD receives a code register command, it gets the active storage code from 

the Data-in Buffer and stores it on its physical storage media, such as hard disk, solid state 

disk, or DRAM. The code could be logically stored onto an OSDFS file system, a specific 

local file system, or a light-weighted database. For simplification, the OSD stores the 
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active code as a regular user object in the OSDFS in our design, each with a unique 64-bit 

PARTITION_ID and USER_OBJECT_ID specified by the T10 OSD standard [17]. An 

OSD can hold multiple function codes from one client or multiple clients. To lookup the 

function code on the store media of the OSD in an efficient way, JAS maintains a code 

location table (CLT) to keep the code’s location according to the function ID. 

One possible case is that the active storage code may not be needed by the user any 

longer, it is necessary for JAS to provide a code remove interface for the user to delete 

this code on demands. To keep minimal change of the current OSD model, the client 

achieves this by extending the current OSD command. It issues an OSD REMOVE 

command to the target OSD, with an additional parameter function ID to specify the code 

needed to be deleted. For the OSD, it uses the function ID to search CLT once it receives 

a code remove command. After finding the specified location of the active code, the OSD 

removes the code on its store media and updates the entry in the CLT table. 

 

3.3. Active Storage Code Association 

To support the active storage on the OBSS, JAS must define what data an active 

storage code can process. Since data is accessed with the object interface, JAS associates 

each active store code with user data by specifying the function ID and the object ID. To 

provide a flexible execution for user functions, JAS provides two categories of 

associations between the active storage code and the user object. 

The first one is one-to-one association, that is, a storage code can only process one user 

object in one OSD command. This mapping is straight forward and can be easily 

implemented. Previous work [18], [21] falls into this category. The other one is one-to-

many association, in this case a storage code can process multiple objects’ data in one 

command. Such a one-to-many mapping can largely reduce the OSD command 

transmission times between clients and OSDs. Since the iSCSI protocol in current OBSS 

implementation is a heavy-weight protocol [32], the one-to-many design can significantly 

improve the overall I/O system performance when the user needs to process small amount 

of data many times. 

The current OSD standard does not support these associations. We use a new code 

trigger command, which we discuss in the next section, to record this information. For the 

one-to-one association, the active storage code is identified by the function ID, the object 

is specified by the object ID, and the data needed to be processed is specified by the offset 

and length parameters in the new command. For the one-to-many association, the active 

storage code is still specified by the function ID, but the involved objects are described by 

a collection object. Correspondingly, the data needed to be processed is specified by a list 

of <offset, length> pairs in the new OSD command. 

 

3.4. Active Storage Code Triggering 

An important issue of JAS is when to trigger the code execution? There are two 

chances for a client to trigger an OSD to execute the codes resident on them: explicit 

triggering and implicit triggering. By default, the framework allows the code to be 

executed on demands, which means the code will not run on the OSDs until the client 

issues an explicit request. During the execution of the application, the client will send a 

code trigger command to OSD if he wants to execute the code. Once the OSD receives 

this command, it will begin to invoke the corresponding code on the storage device. Such 

an explicit trigger mechanism can make the code execution without affliction to the 

execution of normal I/O tasks from clients. JAS also allows the code to run automatically 

based on certain system environments, such as a given time in a day or a specified status 

of OSD hardware resource, etc. This implicit trigger may work only when there are 

unused computing resources and I/O bandwidth on OSDs. 
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Another issue is how to trigger the code execution? JAS provides a new code trigger 

interface for this purpose. For the explicit triggering, a client will send a trigger command 

to the target OSD when it wants to run the code. Similarly, to avoid major changes of the 

current OSD command set, we extend the original OSD_READ and OSD_WRITE 

command to trigger code execution between a client and an OSD. The former command is 

suitable for a ―read-process-write‖ active storage data process pattern, i.e., the code will 

read data from the OSD first, then process the data, and finally write the processing result 

to the OSD. The latter command is designed for a ―process-write‖ pattern, which means 

the code will process data from the client data buffer without fetching them from the 

storage device, and then write the result to the OSD. With these two extended commands, 

JAS can provide flexible data processes on the storage nodes. For the implicit triggering, 

each client also uses the two extended commands to register the conditions triggering the 

code execution on the OSD. The OSD uses a background thread to monitor the system 

status. Once the given condition is matched, the OSD will invoke the code execution. 

Table 1. Read Command Format 

Bit Byte 7 6 5 4 3 2 1 0 

8 MSB 
SERVICE ACTION(8885h) 

 

9  LSB 

10 Reserved DPO FUA ISOLATION 

11 Reserved GET/SET Reserved→ASC 

12 TIMESTAMPS CONTROL 

… Reserved 

16 MSB 
PARTION_ID 

 

23  LSB 

24 MSB 
USER_OBJECT_ID 

 

31  LSB 

… … 

… … 

235 … 

 

As an example, Table 1 shows the modified command descriptor block (CDB) format 

of the OSD_READ command. The bit 3 to 0 of byte at offset 11, which are originally 

reserved, are used as an active storage control (ASC) field to support JAS. When the 

ASC=0000b, the READ command is the same as that in the current OSD standard. When 

the ASC is set to 0001b, the READ command becomes an active storage trigger command 

for ―read-process-write‖ data processing pattern. Other values of ASC are reserved for 

future function extension. Table 2 lists the Data-out Buffer format of the extended READ 

command for a ―read-process-write‖ pattern. It includes three new fields (F1-F4): F1 

specifies the function ID of the active storage code, which will process the data specified 

by the parameters of CDB in Table 1; F2 specifies the parameters of the code; F3 defines 

which object is used to store the process result; F4 specifies the detailed location to store 

data in the result object. 
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Table 2. Data-out Buffer Format 

Bit Byte 7 6 5 4 3 2 1 0 

0 MSB 
(F1)Function ID 

 

15  LSB 

16 MSB 
(F2)Function Parameter 1, if any 

 

31  LSB 

32 MSB 
(F2)Function Parameter 2, if any 

 

47  LSB 

... MSB 
(F2)Function Parameter n, if any 

 

…  LSB 

i MSB 
(F3)USER_OBJECT ID, if any 

 

i+15  LSB 

j MSB 
(F4)Data offset, data legth, if any 

 

j+15  LSB 

… LSB 

 

3.5. JVM-Based Code Execution on OSDs 

Once an OSD receives the code trigger command from the client, it needs to prepare 

the run-time environment for this code, load it into the memory, process it, and even store 

the result on the OSD. Generally, to support the cross-platform execution, the active 

storage code and the JVM run in the user space of the operation system of the OSD. 

However, to maintain high efficiency, the current OSD command resolving module is 

usually resident in the kernel space. One concern is how to invoke the user space’s code 

from the kernel space? To address this issue, we use the Linux API 

call_usermodehelper() to execute application’s active storage codes from kernel space 

and deliver corresponding parameters to the active storage code. 

Another concern is how to transfer result data between the OSD command module and 

the user process derived from the active storage code. Since the OSDFS is usually built on 

a general purpose local file system, which can also be easily accessed by a user process, 

we enable the data exchange between these two parts from different spaces by accessing a 

shared file. To improve the communication efficiency, the inter-process communication 

mechanism—pipe is used: the user writes the result to a pipe file, and the OSD command 

module gets this result from the pipe file with a read operation. 
 
3.6. Implementation 

We implement a prototype of JAS on the base of our previous work [24], which is 

derived from the Intel iSCSI implementation [33]. On the client side, the initiator realizes 

a file system (OBSFS) mounted under VFS. On the OSD side, the target is built on an 

OSDFS, which saves user files and directories as objects on OSD. We modify both the 

initiator and target to implement the above mentioned function modules to support the 

object-based active storage. Furthermore, to enable the cross-platform code execution, the 

Java run-time system is stalled on both the client and the OSD side. 
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4. Performance Evaluation 

In this section, we evaluate the performance of JAS in a real object-based storage 

system. We use typical applications to show the benefits of JAS. 

 

4.1. Experimental Setup 

The test bed includes one client and one OSD. The MDS is also installed on the OSD. 

The client and the OSD have different hardware platforms, and they are connected 

through one gigabit Ethernet network. The configuration of the client and OSD node is 

shown in Table 3. 

Table 3. The Client and OSD Configuration 

 CPU Memory Disk Network 

Client HW Xeon 3.0G 1GB 200GB/SATA BCM5700 

OSD HW XScale 667M 512M 500GB/SATA BCM5700 

Switch Cisco Catalyst 3750 GE switch 

Client OS CentOS 6, Kernel version 3.0.0 

OSD OS Redhat 9, Kernel version 2.4.20 

 

We use two typical applications, data compression and data selection, to evaluate JAS. 

The first application is responsible for compressing user’s data with a configurable size. 

Data compression is a representative operation in file system and is widely used in a 

space-constrained storage environment. In our test, we use a user object to store the user’s 

data, and adjust different sizes of data to control how much data should be compressed. 

For comparison, we run two group of tests: first, we run the application under the 

original storage system without active storage (Original), then we run it again by enabling 

the active storage module (Active). 

 

4.2. Data Compression 

In the Original test, the client first fetches the given-length data from the remote OSD 

to the local memory through an OSD READ command, and then carries out the data 

compression operations. After that, the client writes the result back to the OSD. The 

execution time of the application consists of object read time through network, object 

process time on the client, and the writing back time to the OSD. In the Active test, the 

client first downloads the function code onto the OSD device, and then associates the 

code and triggers the data compression through a new OSD READ command. Finally, the 

OSD performs the data compression and stores the result onto itself. In this test, the 

execution time of the application consists of all the above mentioned parts. 
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Figure 4. Performance Comparison Under the Input Data of 100MB 

Figure 4 shows the application execution times for a small user object of 100MB. We 

test the performance of the application under 10%, 30%, and 50% of the object’s data is 

compressed. From the figure, we can see that when the data amount is very small (10 % 

data is compressed), active storage shows comparable performance as the original storage 

architecture. Because the network and storage data movement is not very large, the 

reduced I/O time is not obvious. However, for large data processing, namely 30% and 

50% of the data are compressed, the active storage can reduce the application’s execution 

time by 8.5% and 14.1% respectively, compared to the original test. This result indicates 

that active storage can greatly improve the application’s overall performance. 

 

 

Figure 5. Performance Comparison Under the Input Data of 500MB 

Figure 5 shows the application execution time with a large user object of 500MB. We 

can find that active storage can reduce the application’s execution time by 17.8%, 45.5%, 

and 55.7%. These results show as the processed data amount increases, the benefits of 

active storage is more significant. 

 

4.3. Data Selection 

In the Original test, the client first fetches the given-length data from the remote OSD, 

and then carries out the data selection operations. The execution time of the application 

consists of object read time through network and data process time on the client. In the 

Active test, the application’s execution time includes the client code offloading time, the 
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data selection time on the OSD and the result returning time to the client. In our tests, the 

data set is a data sequence consisting of millions of data, each of which is 0-9, and the 

large-scale sequence is stored as a 1GB user object on the OSD. 

Table 4 describes the application execution time under different data selection 

conditions. The percentage means how much data should be selected and returned to the 

client. From the table we can observe that the application execution time in the Active test 

under different conditions are decreased by 87.4%, 71.2% and 5.9%. With the change of 

the data selection conditions, more and more data need to be processed on the OSD, until 

the data in the result is nearly to the amount of the original data sequence. As a result, the 

difference between execution time in AS test and TS test becomes small. From the above 

discusses, it can be seen when the returned data is much smaller than the original data, the 

benefit of active storage is particularly evident. Of course, if more than one OSD are 

deployed in the system to parallel process, benefit of active storage will be more 

significant. 

Table 4. Performance Comparison Under Data Selection Operation 

Execution time(Seconds) Data Size(1GB) 

 10% 40% 70% 

Original 910 1309 1452 

Active 120 378 1380 

 

5. Conclusions 

The great processing capacity and expressive object interface make it feasible to 

implement active storage for object-based storage system. In this paper, we propose JAS, 

a JVM-based active storage framework to enable cross-platform active code execution for 

object-based storage systems. JAS programs the active storage functions of users as Java 

codes, and allows them to be executed on different OSD platforms without complicated 

recompiling or modifications from users.JAS offloads the active storage codes from 

clients to OSDs by extending the standard OSD model, and executes the Java code on 

OSDs on-demands by triggering them through extended client interfaces. We have 

implemented JAS under an OSD-based device file system. Experimental results with 

representative applications show that the JAS supports cross-platform code execution, and 

can significantly improve system performance. 
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