
International Journal of Database Theory and Application

Vol.9, No.7 (2016), pp.121-134

http://dx.doi.org/10.14257/ijdta.2016.9.7.11

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2016 SERSC

JAS: JVM-Based Active Storage Framework for Object-based

Storage Systems

Xiangyu Li
1,4

, Shuibing He
1,2, *

, Xianbin Xu
1
 and Yang Wang

3

1
 School of computer, Wuhan University, Wuhan, Hubei 430072, China

2
 State Key Laboratory of High Performance Computing, National University of

Defense Technology, Changsha, Hunan 410073, China

Shenzhen Institute of Advanced Technology, China Academy of Science, Shenzhen

518055, China
4
 Wuhan Donghu University, Wuhan, Hubei 430212, China

*Corresponding author: heshuibing@whu.edu.cn

xylee@whu.edu.cn, xbxu@whu.edu.cn, yang.wang1@siat.ac.cn

Abstract

We propose JAS, a JVM-based active storage framework for object-based storage

systems. JAS programs the active storage functions of users as Java codes, and allows

them to be executed on different OSD platforms (Operating systems and hardware)

without recompiling. JAS offloads the active storage code from a client to the OSD by

extending the standard OSD command set, and execute the Java code on the OSD on-

demand by triggering them through extended client interfaces. We have implemented JAS

under an object-based storage system. Experimental results show that the JVM-based

active storage framework has been successfully set up, and this cross-platform design can

largely improve system performance.

Keywords: Active Storage, Object-Based Storage, Java Virtual Machine

1. Introduction

I/O access has become one of the major performance issues in modern computer

systems. While processor speed has increased nearly 50% per year, the disk performance

improvement is only 7% [1]. Despite this large performance gap, a lot of applications are

becoming increasingly data intensive. For example, the astro program in astronomy,

generates tens of gigabytes of data in one run [2]. As a result, these data intensive

applications often move a large amount of data between the computing nodes and the

storage devices, thus putting unprecedented pressure on both network and storage devices

[3-6].

Storage devices or systems are having increasing powerful processors and plenty of

memories nowadays, with the advancements of VLSI technology. For example, there are

4-8 core embedded processors and a few gigabytes of DRAM in some commercial disks

[7]. Multi-core disks are likely to become more common place, largely due to Moore’s

law. Unfortunately, the considerable processing capabilities of the storage devices have

not been fully utilized in most I/O systems.

Active storage technology has been proposed and is proved to be one of the most

effective approaches to reduce the bandwidth requirements between storage and

computing nodes [8-12]. By exploiting the under-utilized computing power and memory

of storage devices to process data inside the storage devices, active storage can not only

reduce the network traffic, but also provide aggregative processing intelligence when

multiple devices are used in parallelism.

International Journal of Database Theory and Application

Vol.9, No.7 (2016)

122 Copyright ⓒ 2016 SERSC

Due to the benefits of active storage, a variety of research institutions have made

essential contributions to the active storage research field, such as Active Disk [9] and

IDISK [13]. However, these earlier works are based on the narrow block storage interface

(e.g., IDE/SCSI), active storage may result in complicated management and high

communication overhead, and hence offset the potential of active storage.

Object-based storage [14] has gained enormous popularity in storage area. Because of

the benefits of cross-platform data sharing, policy-based security, direct access, and

scalability, object-based storage systems have been developed by the industrial

community [15-16]. To regulate the more and more sophisticated object-based

technology, the object-based storage interface standard [17] (also referred as T10 OSD

standard) was developed by the Storage Network Industry Association. With more

expressive object interface, there is a potential for object-based storage devices (OSDs) to

be more intelligent and effective. To further facilitate the object-based storage, there have

been several efforts to integrate active storage into the object-based storage technology

[12,18-21].

While effective to improve I/O system performance, most of current object-based

active storage studies are designed for homogeneous I/O environments, that is, the clients

and the OSDs usually run with similar operating systems or hardware platforms.

However, in a practical object-based storage system, the clients and the OSDs may run on

a heterogeneous environment, thus the active storage functions could not directly be

executed on the OSDs. For example, clients and OSDs can run on different operating

systems, such as Linux, Windows, and MAC OS X. Even with the same operating system,

clients and OSDs may adopt different hardware platforms. A client may run on X86

processor, but an OSD may run on Intel XScale, ARM, or PowerPC processor. In this

case, a client’s active storage code cannot be directly executed without complicated

recompiling, hence the benefits of active storage are lost.

In this paper, we propose JAS, a JVM-Based active storage framework for object-

based storage systems. JAS programs the active storage functions of users as Java codes,

and allows them to be executed on Java Virtual Machine (JVM) on different OSD

platforms without recompiling. JAS offloads the active storage functions from clients to

the OSDs by extending the standard OSD model, and execute the Java code on the OSDs

on-demand by triggering them through extended client interfaces. In this way, the active

storage functions can not only utilize the benefits of object-based storage system, but also

can provide cross-platform execution.

To support JAS, we extend the standard OSD command set to enable four major

interface: code offloading, code association, code triggering, and code execution.

Furthermore, we implement JAS under an object-based storage system by modifying the

client node and the OSD node. We also test the performance of JAS with two

representative applications. Experimental results show that the JVM-based active storage

framework has been successfully set up, and this cross-platform design can largely

improve system performance.

The rest of this paper is organized as follows. In Section 2, we describe the background

and the related work. Then we describe the design and implementation of JAS in Section

3. Section 4 gives the performance evaluation. Finally, we conclude the paper in Section

5.

2. Background and Related Work

2.1. Object-Based Storage

Object-based storage provides a new solution for large-scale I/O systems. Object is a

logical data unit, it can includes any type of data, and can be created and deleted like a

file. Compared to a traditional file, an object has two main differences. First, it has more

International Journal of Database Theory and Application

Vol.9, No.7 (2016)

Copyright ⓒ 2016 SERSC 123

attributes to describe the characteristics of the data. These attributes can facilitate the

clients or storage nodes to more efficiently manage the data. Second, an object also can

include several methods, which allow the storage devices to directly process the data

without interacting with the clients.

Figure 1. The Architecture of Object-Based Storage System

Object-based storage system (OBSS) [22] mainly consists three parts, as shown in

Figure 1. The client provides standard interfaces for users to store data. The MDS

manages the mapping information between logical objects and physical object-based

storage devices (OSDs). The OSD is the real device to store the user objects. When a

client accesses the data in an OSD, it first gets the data mapping information from the

MDS, then interacts with the OSD(s) directly.

Figure 2. The Comparison of Traditional Computing Model and Active
Storage Computing Model

To promote the development of object-based technology, the T10 OSD standard

defines the OSD model and basic command set (e.g., READ and WRITE command) [17].

There are four classes of objects: user objects, root objects, partition objects, and

International Journal of Database Theory and Application

Vol.9, No.7 (2016)

124 Copyright ⓒ 2016 SERSC

collection objects. Each object is identified by an object ID, and accessed by offset,

length, and so on. In addition to these data access commands, the T10 OSD standard also

defines attribute commands (e.g., GET ATTRIBUTES and SET ATTRIBUTES) that are

responsible for attributes retrieval and setting. Generally, each OSD relies an object-based

file system to manage objects and attributes [16,22-24].

2.2. Active Storage

By exploiting the under-utilized hardware resource of storage nodes to process data

without moving them to the computing nodes, as shown in Figure 2, active storage can

largely improve the computer system performance. Active storage is first proposed to

exploit the computing intelligence inside disk drives. These techniques are either designed

for general applications [9-10,13], or some special fields, such as database [25-26].

However, these efforts are based on the block-level interface, thus incur significant

overhead and hence offset the potential of active storage.

Due to the benefits of object storage, a lot of other researchers have gradually made

efforts to integrate active storage into the object-based storage systems. Piernas et al. gave

an active storage strategy implemented in Lustre parallel File System [19]. Huston et al.

used an active storage architecture for interactive search of non-indexed data [27].

However, these systems do not comply with the T10 OSD standard. To promote the

development of object-based storage technology, several works integrated the active

storage technology into the object-based storage technology based on the T10 OSD

standard [12,18,21,28-29].

Most of the above mentioned studies are especially based on a special OS platform or

hardware architecture, thus the active storage code may not executed on cross-platform

environment. MapReduce [30-31], a concept similar to active storage has also been

employed in cluster computing field, MapReduce splits the computations and maps them

to many computers processing the data locally, then the sub-results of the split

computation are merged for form the global result of the problem.

2.3. Java Virtual Machine

The Java virtual machine is an abstract (virtual) computer defined by a specification.

This specification omits implementation details that are not essential to ensure

interoperability. For example, the memory layout of run-time data areas, the garbage-

collection algorithm used, and any internal optimization of the Java virtual machine

instructions (their translation into machine code). The main reason for this omission is to

not unnecessarily constrain implementors. Any Java application can be run only inside

some concrete implementation of the abstract specification of the Java virtual machine.

For the above reasons, in JAS, user’s active storage function codes are written in Java.

Java is designed to allow application programs to be built that could be run on any

platform without having to be rewritten or recompiled by the user for each separate

platform. A Java virtual machine makes this possible because it is aware of the specific

instruction lengths and other particularities of the platform.

3. Design and Implementation

In order to enable the JVM-based active storage, we need to consider the following

four questions:

 How to offload the user’s active storage code from the client to the OSD, without
introducing significant changes to the existing OSD model?

 How to associate the active storage code with the user’s data to support flexible
and efficient data process?

International Journal of Database Theory and Application

Vol.9, No.7 (2016)

Copyright ⓒ 2016 SERSC 125

 How to trigger the active storage code from the client, so that this code can be
executed on demands?

 How to execute the active storage code on the JVM, without losing the efficiency
of the current OSD software stack?

In this section, we answer these questions by discussing different modules of the JAS

framework.

3.1. System Architecture

Figure 3 depicts the system overview of the proposed active storage framework. On the

client node, the object-based system file system (OBSFS) is registered to VFS and

provides a mounting point for user’s data accesses. The OSD module is responsible for

encapsulating user’s file operations into the object-based operations, and the iSCSI

Initiator sends and receives the OSD commands on the Ethernet network. On the OSD

node, the iSCSI Target receives client’s network commands, and call the OSD module to

resolve the OSD commands. The OSDFS is responsible for storing objects and managing

attributes. To support JAS, the OSD module on both client and OSD, adds new

components in addition to handle the existing OSD commands. We describe the detailed

design of these critical components in the following sections.

Figure 3. An Overview of the JVM-Based Active Framework

3.2. Active Storage Code Offloading

In our design, an active storage code of user is denoted by a piece of executable Java

code, which is compiled on the client node. To run this code on a storage device, the

active storage code needs to be delivered to the OSD in advance. A client provides a code

register interface for users to offload their function codes on OSDs, and each target OSD

returns a client with a function ID to identify which function should be executed later.

On the client, this interface can be achieved by using a new OSD command. To avoid

significant modification of the existing OSD model, each client registers the active

storage code by extending the current OSD_WRITE command, and the code itself are

transferred to the OSDs as additional information in the Data-out Buffer of this extend

OSD_WRITE command.

Once the OSD receives a code register command, it gets the active storage code from

the Data-in Buffer and stores it on its physical storage media, such as hard disk, solid state

disk, or DRAM. The code could be logically stored onto an OSDFS file system, a specific

local file system, or a light-weighted database. For simplification, the OSD stores the

International Journal of Database Theory and Application

Vol.9, No.7 (2016)

126 Copyright ⓒ 2016 SERSC

active code as a regular user object in the OSDFS in our design, each with a unique 64-bit

PARTITION_ID and USER_OBJECT_ID specified by the T10 OSD standard [17]. An

OSD can hold multiple function codes from one client or multiple clients. To lookup the

function code on the store media of the OSD in an efficient way, JAS maintains a code

location table (CLT) to keep the code’s location according to the function ID.

One possible case is that the active storage code may not be needed by the user any

longer, it is necessary for JAS to provide a code remove interface for the user to delete

this code on demands. To keep minimal change of the current OSD model, the client

achieves this by extending the current OSD command. It issues an OSD REMOVE

command to the target OSD, with an additional parameter function ID to specify the code

needed to be deleted. For the OSD, it uses the function ID to search CLT once it receives

a code remove command. After finding the specified location of the active code, the OSD

removes the code on its store media and updates the entry in the CLT table.

3.3. Active Storage Code Association

To support the active storage on the OBSS, JAS must define what data an active

storage code can process. Since data is accessed with the object interface, JAS associates

each active store code with user data by specifying the function ID and the object ID. To

provide a flexible execution for user functions, JAS provides two categories of

associations between the active storage code and the user object.

The first one is one-to-one association, that is, a storage code can only process one user

object in one OSD command. This mapping is straight forward and can be easily

implemented. Previous work [18], [21] falls into this category. The other one is one-to-

many association, in this case a storage code can process multiple objects’ data in one

command. Such a one-to-many mapping can largely reduce the OSD command

transmission times between clients and OSDs. Since the iSCSI protocol in current OBSS

implementation is a heavy-weight protocol [32], the one-to-many design can significantly

improve the overall I/O system performance when the user needs to process small amount

of data many times.

The current OSD standard does not support these associations. We use a new code

trigger command, which we discuss in the next section, to record this information. For the

one-to-one association, the active storage code is identified by the function ID, the object

is specified by the object ID, and the data needed to be processed is specified by the offset

and length parameters in the new command. For the one-to-many association, the active

storage code is still specified by the function ID, but the involved objects are described by

a collection object. Correspondingly, the data needed to be processed is specified by a list

of <offset, length> pairs in the new OSD command.

3.4. Active Storage Code Triggering

An important issue of JAS is when to trigger the code execution? There are two

chances for a client to trigger an OSD to execute the codes resident on them: explicit

triggering and implicit triggering. By default, the framework allows the code to be

executed on demands, which means the code will not run on the OSDs until the client

issues an explicit request. During the execution of the application, the client will send a

code trigger command to OSD if he wants to execute the code. Once the OSD receives

this command, it will begin to invoke the corresponding code on the storage device. Such

an explicit trigger mechanism can make the code execution without affliction to the

execution of normal I/O tasks from clients. JAS also allows the code to run automatically

based on certain system environments, such as a given time in a day or a specified status

of OSD hardware resource, etc. This implicit trigger may work only when there are

unused computing resources and I/O bandwidth on OSDs.

International Journal of Database Theory and Application

Vol.9, No.7 (2016)

Copyright ⓒ 2016 SERSC 127

Another issue is how to trigger the code execution? JAS provides a new code trigger

interface for this purpose. For the explicit triggering, a client will send a trigger command

to the target OSD when it wants to run the code. Similarly, to avoid major changes of the

current OSD command set, we extend the original OSD_READ and OSD_WRITE

command to trigger code execution between a client and an OSD. The former command is

suitable for a ―read-process-write‖ active storage data process pattern, i.e., the code will

read data from the OSD first, then process the data, and finally write the processing result

to the OSD. The latter command is designed for a ―process-write‖ pattern, which means

the code will process data from the client data buffer without fetching them from the

storage device, and then write the result to the OSD. With these two extended commands,

JAS can provide flexible data processes on the storage nodes. For the implicit triggering,

each client also uses the two extended commands to register the conditions triggering the

code execution on the OSD. The OSD uses a background thread to monitor the system

status. Once the given condition is matched, the OSD will invoke the code execution.

Table 1. Read Command Format

Bit Byte 7 6 5 4 3 2 1 0

8 MSB
SERVICE ACTION(8885h)

9 LSB

10 Reserved DPO FUA ISOLATION

11 Reserved GET/SET Reserved→ASC

12 TIMESTAMPS CONTROL

… Reserved

16 MSB
PARTION_ID

23 LSB

24 MSB
USER_OBJECT_ID

31 LSB

… …

… …

235 …

As an example, Table 1 shows the modified command descriptor block (CDB) format

of the OSD_READ command. The bit 3 to 0 of byte at offset 11, which are originally

reserved, are used as an active storage control (ASC) field to support JAS. When the

ASC=0000b, the READ command is the same as that in the current OSD standard. When

the ASC is set to 0001b, the READ command becomes an active storage trigger command

for ―read-process-write‖ data processing pattern. Other values of ASC are reserved for

future function extension. Table 2 lists the Data-out Buffer format of the extended READ

command for a ―read-process-write‖ pattern. It includes three new fields (F1-F4): F1

specifies the function ID of the active storage code, which will process the data specified

by the parameters of CDB in Table 1; F2 specifies the parameters of the code; F3 defines

which object is used to store the process result; F4 specifies the detailed location to store

data in the result object.

International Journal of Database Theory and Application

Vol.9, No.7 (2016)

128 Copyright ⓒ 2016 SERSC

Table 2. Data-out Buffer Format

Bit Byte 7 6 5 4 3 2 1 0

0 MSB
(F1)Function ID

15 LSB

16 MSB
(F2)Function Parameter 1, if any

31 LSB

32 MSB
(F2)Function Parameter 2, if any

47 LSB

... MSB
(F2)Function Parameter n, if any

… LSB

i MSB
(F3)USER_OBJECT ID, if any

i+15 LSB

j MSB
(F4)Data offset, data legth, if any

j+15 LSB

… LSB

3.5. JVM-Based Code Execution on OSDs

Once an OSD receives the code trigger command from the client, it needs to prepare

the run-time environment for this code, load it into the memory, process it, and even store

the result on the OSD. Generally, to support the cross-platform execution, the active

storage code and the JVM run in the user space of the operation system of the OSD.

However, to maintain high efficiency, the current OSD command resolving module is

usually resident in the kernel space. One concern is how to invoke the user space’s code

from the kernel space? To address this issue, we use the Linux API

call_usermodehelper() to execute application’s active storage codes from kernel space

and deliver corresponding parameters to the active storage code.

Another concern is how to transfer result data between the OSD command module and

the user process derived from the active storage code. Since the OSDFS is usually built on

a general purpose local file system, which can also be easily accessed by a user process,

we enable the data exchange between these two parts from different spaces by accessing a

shared file. To improve the communication efficiency, the inter-process communication

mechanism—pipe is used: the user writes the result to a pipe file, and the OSD command

module gets this result from the pipe file with a read operation.

3.6. Implementation

We implement a prototype of JAS on the base of our previous work [24], which is

derived from the Intel iSCSI implementation [33]. On the client side, the initiator realizes

a file system (OBSFS) mounted under VFS. On the OSD side, the target is built on an

OSDFS, which saves user files and directories as objects on OSD. We modify both the

initiator and target to implement the above mentioned function modules to support the

object-based active storage. Furthermore, to enable the cross-platform code execution, the

Java run-time system is stalled on both the client and the OSD side.

International Journal of Database Theory and Application

Vol.9, No.7 (2016)

Copyright ⓒ 2016 SERSC 129

4. Performance Evaluation

In this section, we evaluate the performance of JAS in a real object-based storage

system. We use typical applications to show the benefits of JAS.

4.1. Experimental Setup

The test bed includes one client and one OSD. The MDS is also installed on the OSD.

The client and the OSD have different hardware platforms, and they are connected

through one gigabit Ethernet network. The configuration of the client and OSD node is

shown in Table 3.

Table 3. The Client and OSD Configuration

 CPU Memory Disk Network

Client HW Xeon 3.0G 1GB 200GB/SATA BCM5700

OSD HW XScale 667M 512M 500GB/SATA BCM5700

Switch Cisco Catalyst 3750 GE switch

Client OS CentOS 6, Kernel version 3.0.0

OSD OS Redhat 9, Kernel version 2.4.20

We use two typical applications, data compression and data selection, to evaluate JAS.

The first application is responsible for compressing user’s data with a configurable size.

Data compression is a representative operation in file system and is widely used in a

space-constrained storage environment. In our test, we use a user object to store the user’s

data, and adjust different sizes of data to control how much data should be compressed.

For comparison, we run two group of tests: first, we run the application under the

original storage system without active storage (Original), then we run it again by enabling

the active storage module (Active).

4.2. Data Compression

In the Original test, the client first fetches the given-length data from the remote OSD

to the local memory through an OSD READ command, and then carries out the data

compression operations. After that, the client writes the result back to the OSD. The

execution time of the application consists of object read time through network, object

process time on the client, and the writing back time to the OSD. In the Active test, the

client first downloads the function code onto the OSD device, and then associates the

code and triggers the data compression through a new OSD READ command. Finally, the

OSD performs the data compression and stores the result onto itself. In this test, the

execution time of the application consists of all the above mentioned parts.

International Journal of Database Theory and Application

Vol.9, No.7 (2016)

130 Copyright ⓒ 2016 SERSC

Figure 4. Performance Comparison Under the Input Data of 100MB

Figure 4 shows the application execution times for a small user object of 100MB. We

test the performance of the application under 10%, 30%, and 50% of the object’s data is

compressed. From the figure, we can see that when the data amount is very small (10 %

data is compressed), active storage shows comparable performance as the original storage

architecture. Because the network and storage data movement is not very large, the

reduced I/O time is not obvious. However, for large data processing, namely 30% and

50% of the data are compressed, the active storage can reduce the application’s execution

time by 8.5% and 14.1% respectively, compared to the original test. This result indicates

that active storage can greatly improve the application’s overall performance.

Figure 5. Performance Comparison Under the Input Data of 500MB

Figure 5 shows the application execution time with a large user object of 500MB. We

can find that active storage can reduce the application’s execution time by 17.8%, 45.5%,

and 55.7%. These results show as the processed data amount increases, the benefits of

active storage is more significant.

4.3. Data Selection

In the Original test, the client first fetches the given-length data from the remote OSD,

and then carries out the data selection operations. The execution time of the application

consists of object read time through network and data process time on the client. In the

Active test, the application’s execution time includes the client code offloading time, the

International Journal of Database Theory and Application

Vol.9, No.7 (2016)

Copyright ⓒ 2016 SERSC 131

data selection time on the OSD and the result returning time to the client. In our tests, the

data set is a data sequence consisting of millions of data, each of which is 0-9, and the

large-scale sequence is stored as a 1GB user object on the OSD.

Table 4 describes the application execution time under different data selection

conditions. The percentage means how much data should be selected and returned to the

client. From the table we can observe that the application execution time in the Active test

under different conditions are decreased by 87.4%, 71.2% and 5.9%. With the change of

the data selection conditions, more and more data need to be processed on the OSD, until

the data in the result is nearly to the amount of the original data sequence. As a result, the

difference between execution time in AS test and TS test becomes small. From the above

discusses, it can be seen when the returned data is much smaller than the original data, the

benefit of active storage is particularly evident. Of course, if more than one OSD are

deployed in the system to parallel process, benefit of active storage will be more

significant.

Table 4. Performance Comparison Under Data Selection Operation

Execution time(Seconds) Data Size(1GB)

 10% 40% 70%

Original 910 1309 1452

Active 120 378 1380

5. Conclusions

The great processing capacity and expressive object interface make it feasible to

implement active storage for object-based storage system. In this paper, we propose JAS,

a JVM-based active storage framework to enable cross-platform active code execution for

object-based storage systems. JAS programs the active storage functions of users as Java

codes, and allows them to be executed on different OSD platforms without complicated

recompiling or modifications from users.JAS offloads the active storage codes from

clients to OSDs by extending the standard OSD model, and executes the Java code on

OSDs on-demands by triggering them through extended client interfaces. We have

implemented JAS under an OSD-based device file system. Experimental results with

representative applications show that the JAS supports cross-platform code execution, and

can significantly improve system performance.

Acknowledgements

The authors are thankful to Junxing Yang of Wuhan University for his help toward this

work. This research is supported in part by the China National Basic Research Program

(973 Program, No.2015CB352400), NSFC under grant U1401258, No.61572377,

No.61572370, and No.61373040, the Ph.D. Programs Foundation of Ministry of

Education of China under Grant No.20120141110073, the Natural Science Foundation of

Hubei Province of China under Grant No.2014CFB239, the Open Fund from HPCL under

Grant No.201512-02, and the Open Fund from SKLSE under Grant No.2015-A-06.

References

[1] J. L. Hennessy and D. A. Patterson, ―Computer architecture: a quantitative approach‖, Morgan

Kaufmann, (2011).

[2] M. Kandemir, S. W. Son, and M. Karakoy, ―Improving I/O performance of Applications through

Compiler-DirectedCode Restructuring‖, in Proceedings of the 6th USENIX Conference on File and

Storage Technologies, (2008), pp. 159–174.

[3] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carson, W. Dally, M. Denneau, P. Franzon, W.

Harrod, K. Hill, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A.

International Journal of Database Theory and Application

Vol.9, No.7 (2016)

132 Copyright ⓒ 2016 SERSC

Snavely, T. Sterling, R. S. Williams, and K. Yellick, ―Exascale computing study: Technology challenges

in achieving exascale systems‖, Tech. Rep. TR-2008-13, DARPA, (2008).

[4] S. He, X.-H. Sun, and B. Feng, ―S4D-Cache: Smart Selective SSD Cache for Parallel I/O Systems‖, in

Proceedings of the International Conference on Distributed Computing Systems, (2014), pp. 514-523.

[5] S. He, X.-H. Sun, and A. Haider, ―HAS: Heterogeneity-Aware Selective Data Layout Scheme for

Parallel File Systems on Hybrid Servers‖, in Proceedings of 29th IEEE International Parallel and

Distributed Processing Symposium, (2015).

[6] S. He, X.-H. Sun, Y. Wang, A. Kougkas, and A. Haider, ―A Heterogeneity-Aware Region-Level Data

Layout Scheme for Hybrid Parallel File Systems‖, in Proceedings of the 44th International Conference

on Parallel Processing, (2015).

[7] D. Tiwari, S. Boboila, S. S. Vazhkudai, Y. Kim, X. Ma, P. J. Desnoyers, and Y. Solihin, ―Active flash:

Towards energy-efficient, in-situ data analytics on extreme-scale machines‖, in Proceedings of the 11th

USENIX Conference on File and Storage Technologies (FAST’13), (2013).

[8] X. Ma, A. Reddy, I. Center, and C. San Jose, ―Mvss: an active storage architecture‖, IEEE Transactions

On Parallel and Distributed Systems, vol. 14, no. 10, (2003)¸ pp. 993-1005.

[9] A. Acharya, M. Uysal, and J. Saltz, ―Active disks: Programming model, algorithms and evaluation,‖

ACM SIGPLAN Notices, vol. 33, no. 11, (1998), pp. 81-91.

[10] E. Riedel, G. A. Gibson, and C. Faloutsos, ―Active storage for large-scale data mining and multimedia‖,

in Proceedings of the 24rd International Conference on Very Large Data Bases, (1998), pp. 62–73.

[11] H. Tang, A. Gulbeden, J. Zhou, W. Strathearn, T. Yang, and L. Chu, ―The panasas activescale storage

cluster-delivering scalable high bandwidth storage‖, in Proceedings of the ACM/IEEE SC2004

Conference on Supercomputing, (2004), pp. 53–62.

[12] S. He, X. Xu, and Y. Yang, ―Oasa: An active storage architecture for object-based storage system‖,

International Journal of Computational Intelligence Systems, vol. 5, no. 6, (2012), pp. 1173-1183.

[13] K. Keeton, D. A. Patterson, and J. M. Hellerstein, ―A case for intelligent disks (idisks)‖, ACM SIGMOD

Record, vol. 27, no. 3, (1998), pp. 42-52.

[14] M. Mesnier, G. Ganger, and E. Riedel, ―Object-based storage: pushing more functionality into storage‖,

IEEE Potentials, vol. 24, no. 2, (2005), pp. 31-34.

[15] P. Schwan, ―Lustre: Building a file system for 1000-node clusters‖, in Proceedings of the 2003 Linux

Symposium, (2003), pp. 380-386.

[16] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn, ―Ceph: a scalable, high-

performance distributed file system‖, in Proceedings of the 7th symposium on Operating Systems

Design and Implement. USENIX Association Berkeley, CA, USA, (2006), pp. 307-320.

[17] R. O. Weber, ―Information technologyscsi object-based storage device commands-2 (osd-2), revision 5,‖

Tech. Rep. Technical report, INCITS Technical Committee T10/1729-D, (2009).

[18] T. M. John, A. T. Ramani, and J. A. Chandy, ―Active storage using object-based devices‖, 2008 IEEE

International Conference on Cluster Computing, (2008), pp. 472-478.

[19] J. Piernas, J. Nieplocha, and E. J. Felix, ―Evaluation of active storage strategies for the lustre parallel file

system‖, in Proceedings of the 2007 ACM/IEEE conference on Supercomputing. ACM New York, NY,

USA, (2007), pp. 1-10.

[20] D. Nagle and B. Welch, ―object-based cluster storage system‖, in Proceedings of the 23st IEEE/14th

NASA Goddard Conference on Mass Storage Systems and Technologies, (2006).

[21] L. Qin and D. Feng, ―Active storage framework for object-based storage device‖, in Proceedings of the

IEEE 20th International Conference on Advanced Information Networking and Applications,(2006), pp.

97-101.

[22] S. He and D. Feng, ―Implementation and performance evaluation of an object-based storage device‖, in

Proceedings of the International Workshop on Storage Network Architecture and Parallel

I/Os(SNAPI’07), (2007), pp. 129-136.

[23] F. Wang, S. A. Brandt, E. L. Miller, and D. D. E. Long, ―OBFS: A file system for object-Based storage

devices‖, in Proceedings of the 21st IEEE/12th NASA Goddard Conference on Mass Storage Systems

and Technologies, (2004), pp. 283-300.

[24] S. He and D. Feng, ―Design of an object-based storage device based on I/O processor‖, ACM SIGOPS

Operating Systems Review, vol. 42, no. 6, (2008), pp. 30-35.

[25] S. Y. W. Su and G. J. Lipovski, ―Cassm: A cellular system for very large data bases‖, in Proceedings of

the International Conference on Very Large Data Bases (VLDB), (1975), pp. 456-472.

[26] E. A. Ozkarahan, S. A. Schuster, and K. C. Smith, ―Rap: an associative processor for data base

management‖, in Proceedings of the AFIPS Joint Computer Conferences. ACM New York, NY, USA,

(1975), pp. 379-387.

[27] L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satyanarayanan, G. R. Ganger, E. Riedel, and A.

Ailamaki, ―Diamond: A storage architecture for early discard in interactive search‖, in Proceedings of

the 3rd USENIX Conference on File and Storage Technologies. USENIX Association, (2004), pp. 73-

86.

[28] A. Devulapalli, I. Murugandi, D. Xu, and P. Wyckoff, ―Design of an intelligent object-based storage

device‖, (2009).

International Journal of Database Theory and Application

Vol.9, No.7 (2016)

Copyright ⓒ 2016 SERSC 133

[29] Y. Xie, K. Muniswamy-Reddy, D. Feng, D. Long, Y. Kang, Z. Niu, and Z. Tan, ―Design and evaluation

of oasis: An active storage framework based on t10 osd standard‖, in MSST. IEEE, (2011), pp. 1-12.

[30] J. Dean and S. Ghemawat, ―Mapreduce: Simplified data processing on large clusters‖, in Proceedings of

the 6th symposium on Operating Systems Design and Implement, (2004), pp. 138-150.

[31] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica, ―Improving mapreduce performance in

heterogeneous environments‖, in Proceedings of the 8th symposium on Operating Systems Design and

Implement, (2008), pp. 29-42.

[32] B. K. Kancherla, G. M. Narayan, and K. Gopinath, ―Performance evaluation of multiple tcp connections

in iscsi‖, in Proceedings of the 24th IEEE Conference on Mass Storage Systems and Technologies,

(2007), pp. 239-244.

[33] Intel Corporation, ―Intel iscsi reference implementatioimplementation‖, [Online].Available:

http://sourceforge.net/projects/intel-iscsi, (2015).

Authors

Xiangyu Li, is a Ph.D. candidate of the Computer School, Wuhan

University, Wuhan, China. He received a B.A. degree from

Huazhong University of Science and Technology, China, in 2003 and

a M.S. degree in computer science and technology from Wuhan

University, China, in 2008. He is especially interested in file and

storage systems, high performance computing, distributed system,

and computer network.

Shuibing He, received the Ph.D. degree in computer science and

technology from Huazhong University of Science and Technology,

China, in 2009. He is now an assistant professor at the Computer

School of Wuhan University, China. His current research areas

include parallel I/O systems, file and storage systems, high-

performance computing and distributed computing.

Xianbin Xu, graduated from the department of system architecture

in Huazhong University of science and technology and worked for

teaching in Huazhong University of science and technology from

1977 to 1985. He got Ph.D. computer school of Wuhan University.

He is now a professor at the Computer School of Wuhan University,

China. His research interests focus on network storage, data grid and

distributed system.

Yang Wang, received the BSc degree in applied mathematics from

Ocean University of China (1989), and the MS and Ph.D degrees in

computer science from Carleton University (2001) and University of

Alberta, Canada (2008), respectively. He is currently with Shenzhen

Institute of Advanced Technology, Chinese Academy of Science, as a

professor. His research interests include cloud computing, big data

analytics, and Java Virtual Machine on multicores.

International Journal of Database Theory and Application

Vol.9, No.7 (2016)

134 Copyright ⓒ 2016 SERSC

