
Implementation and Performance Evaluation of
 an Object-based Storage Device

Shuibing He, Dan Feng

Key Laboratory of Data Storage Systems, Ministry of Education of China
School of Computer, Huazhong University of Science and Technology, Wuhan, China

E-mail: hesbingxq@163.com, dfeng@hust.edu.cn

Abstract

Object-based Storage System (OBSS) has led to a

new wave in network storage area .Object-based Stor-
age Device (OSD) which is the cornerstone of OBSS
plays a decisive role in the performance of the whole
OBSS. This paper describes how we implemented an
object-based storage device which adopts a unique
hardware architecture based on switching fabric sup-
porting parallel data transfer in multiple I/O channels,
and a new object-based storage device file system
(HustOSDFS) that can reduce the software overloads
to achieve high performance. The experimental evalua-
tion results show that the OSD performs well for sys-
tem performance. Furthermore, the OSD provides
characteristic of large capacity and low cost.

1. Introduction

Storage system has become the bottleneck which
heavily influences the further development of today’s
computer systems. Various problems existing in tradi-
tional storage architecture make it difficult to largely
improve the performance, reliability and security for
storage system. However, the idea of the Object-based
Storage System (OBSS) [1] [2] eases the pressure.

Traditional storage system provides the client either
with block-based interface (i.e SAN) or with file-based
interface (i.e NAS). However, both of the NAS and the
SAN have some shortcomings. NAS provides good
cross-platform file sharing, but the performance is
limited by the file sever. SAN has high throughput by
providing direct access to the storage device, but it is
not suitable for cross-platform data sharing. Further-
more, SAN has large cost for its security. Contrastively,
the OBSS effectively represents a convergence of the
NAS and SAN architectures with an object-based inter-
face. The OBSS overcomes the deficiencies in NAS
and SAN and makes a perfect solution for network data
storage by providing high performance, scalable capac-

ity and throughput, secure object sharing for heteroge-
neous Operating System.

Object, composed of application data and attributes,
is the base logical unit for data access in OBSS. Object
is of variable size and can be used to store every type
of data such as files, database tables, medical images,
or multimedia. Object attribute is used to describe
characteristics of object data. For example, a quality of
service attribute may describe latency and throughput
requirements for a multimedia object. Hence, object
attribute is useful to provide the storage device with an
awareness of the storage application and enable more
intelligence in the device. In OBSS, the object-based
storage device (OSD) which is a device stores the ob-
jects will represent the next generation of disk drives
for network storage[3]. Among the OBSS components,
OSD is the most important one and plays a decisive
role in the performance of the whole OBSS. Since the
petabyte-scale OBSS has thousands of self-contained
OSDs working together to provide storage service
[8][9], a little improvement of single OSD’s perform-
ance will result in tremendous performance increase of
the large-scale storage system.

 This paper presents an implementation of OSD.
The goal is to build a high performance OSD mean-
while considering the cost and the capacity. To achieve
it, we make efforts in both hardware architecture and
software design which is different from many related
works. We use special hardware architecture with
switching fabric as the platform of the OSD. Based on
the platform, a new object-based file system which can
reduce the process overheads is implemented. As the
switching fabric provides two independent PCI-X
buses, it is easy to expand the storage capacity by add-
ing more disks. Meanwhile, the cost is low due to the
embedded chips is used as the hardware platform.

The rest of this paper is organized as follow: in Sec-
tion 2, we give an overview of the Object-Based Stor-
age System and show further details on the functions of
the OSD. Section 3 describes the related works on the
implementation of the OSD. In Section 4, we discuss
the hardware, object-base file system for our OSD. The
evaluation results in Section 5 show that the OSD is

Fourth International Workshop on Storage Network Architecture and Parallel I/Os

0-7695-3097-4/08 $25.00 © 2008 IEEE
DOI 10.1109/SNAPI.2007.11

129

Fourth International Workshop on Storage Network Architecture and Parallel I/Os

0-7695-3097-4/08 $25.00 © 2008 IEEE
DOI 10.1109/SNAPI.2007.11

129

Authorized licensed use limited to: Zhejiang University. Downloaded on May 11,2023 at 11:36:19 UTC from IEEE Xplore. Restrictions apply.

suitable for OBSS and provides better performance as
compared to NFS file system and other OSD imple-
mentation. We conclude in Section 6 with some discus-
sions on further works.

2. OBSS Architecture Overview and OSD

The OBSS architecture is shown in Figure 1.The
OBSS has three main components: the Metadata Server
(MDS), the OSDs and clients. The Metadata Server
(MDS) provides objects mapping information in OSDs
and authentication for clients’ data access. When a
client accesses the data in an OSD, it first contacts with
the MDS and gets the mapping information about the
objects. Then the client interacts with the OSD directly.
Unlike request to a block device, the request here con-
tains object ID, an offset within the object, attribute
values and so on. Finally, the OSD receives the object-
based request and performs corresponding operations.

Figure 1. OBSS architecture

The OSD is the cornerstone of the OBSS. It is an in-

telligent storage device that contains CPU, memory,
the storage media (disk), and the network interface
which allow it to manage the local object store, and
autonomously serve and store data from the network.

The OSD provides three major functions:
Object management. It includes two functions. The

first is to reliably store and retrieve object data and
object attributes from physical media which includes
object meta data management, free space management,
object space allocation and so on. The second is to
optimize the storage management by using its memory
and processor. OSD has the potential to actively learn
important characteristics of the environments in which
they operate and can understand some of the relation-
ship among the blocks on the device. They can use this
information to better organize the data such as intelli-
gent data layout and prefetching .

Device security management. The OSD plays a new
security control mechanism. Each request to the OSD

must be accompanied with a capability which author-
izes the client and its action. The capability is a secure,
cryptographic token provided to the client, describing
to the OSD which object that the client is allowed to
access, with what privileges, and for what length of
time. The OSD inspects each incoming transmission
for the proper authorization capabilities and rejects any
that are missing, invalid or expired[7].

Network communication. The OSD is attached to
the TCP/IP network as a network storage device, the
network interface is gigabit Ethernet instead of fiber
channel and the protocol is iSCSI. The OSD must man-
age the network communication so that it can receive
the iSCSI command from clients and the MDS and
resolve the corresponding commands.

As the OSD takes charge of so many functions, it
has heavy workload. The intelligent management and
the resolution of complex storage protocols greatly
increase the workload of the OSD. Therefore, the proc-
essing capacity, network interface speed and the disk
interface speed must be increased. Otherwise, the OSD
will be the bottleneck of the OBSS.

3. Related Works

The Object-based storage system is a hot research
field today in network storage technology, a lot of
researches has been done to improve the OSD perform-
ance.

Typically, as far as we know, IBM Haifa Labs, Lus-
ter Inc and Panasas Inc have implemented their own
OSD or its prototype. IBM Haifa Labs implemented an
OSD prototype: ObjectStone[16], it runs on a Linux
server. This hardware architecture has high perform-
ance, but its price is expensive .The OST in Lustre
project can be view as a OSD and it is implemented
with general-purpose PC[4] [5].The OST exports ob-
ject interface, it translates the object access into the file
access which based on the general purpose file system
(i.e ext2/3,resiserfs,xfs and jfs) through an internal
OBD Filter. Indeed, this implementation has shortcom-
ings both in hardware architecture and software design.
In term of hardware platform, though it has relatively
lower cost compared with server, but the PC platform
has potential limitations in performance and capacity.
For example, the disk controllers, network interface
controller, and other devices usually are attached to the
single I/O bus (PCI) and they share the I/O bus band-
width. As a result, the PCI bus maybe becomes the
bottleneck to further improve the performance of both
the disk I/O and network I/O. Furthermore, as limited
storage devices can be added to the PCI slot in the
main board of PC, it suffers drawbacks of storage ca-
pacity. From the view of software design, as the OST is

130130

Authorized licensed use limited to: Zhejiang University. Downloaded on May 11,2023 at 11:36:19 UTC from IEEE Xplore. Restrictions apply.

based on local file system rather than an independent
object-base file system, the OST degrades the OSD
performance. Similarly, the OSD in Panasas is Stor-
ageBlade [6][7],it uses 1.2GHz Intel Celeron CPU and
2 SATA disks as its hardware platform. This OSD has
good performance ,but has poor scalability for capacity
in one StorageBlade . Consequently, to build a large-
scale OBSS, too many StorageBlade will be needed!

To have an excellent trade-off between the perform-
ance, capacity and cost, a new OSD architecture based
on switch fabric is presented in this paper. Additionally,
the object-based device file system also has crucial
relationship with the OSD performance. As the tradi-
tional object-based file system is usually based on the
VFS and general file system, which leads to additional
software overheads in the object store, we design a
completely independent object-base file system which
mapping the object accesses directly to the block de-
vice without passing the requests to the VFS. Hence,
the OSD performance will be improved.

4. The Object-based Storage Device Design

4.1 The Hardware Design of an OSD Based on

Switching Fabric

As mentioned earlier, the OSD has heavy workloads,
with the increase of the clients in OBSS, this character-
istic will be more notable. To implement an OSD with
high performance, the ideal hardware architecture must
provide powerful processor, high speed network inter-
face and disk interface. Certainly, the OSD perform-
ance will further improved if the hardware platform
supports short I/O data path and parallel data transfer in
multiple I/O channel.

Since the main task of OSD is processing the object-
based I/O requests, we chose the special I/O processor
Intel 80200 to support the high process capability. At
the same time, we use the Intel I/O companion chip
80314 with switch fabric to transfer data simultane-
ously in multiple data paths. Rather than relying on the
traditional 33MHz 32-bit PCI bus, we chose the
133MHz 64-bit PCI-X bus to transfer data so that the
higher I/O throughput can be obtained.

The new hardware architecture is shown in Figure
2.The Intel 80314 is the interconnection core of the
OSD，with two Intel 80200 processors attached to its
Core Interface Unit (CIU). The 80200 is the chief proc-
essing unit to perform the major tasks of OSD, such as
network protocol resolve，basic system operations and
advanced task management. Besides these main chips,
some peripheral components are employed. A DIMM
SDRAM is connected to the 80314 as system main
memory, while a flash memory is used to keep the

necessary data needed to boot the system attached to
the Peripheral Bus Interface (PBI) of 80314. Two Gi-
gabit Ethernet PHY Transceivers, Marvel 88E1020,
connect to the 80314’s two integrated MAC ports.
Connected to the 80314 by PCI-X bus, the four Intel
31244 serial ATA controllers realize the communica-
tion between host and disk storage, and bring large
capacity for OSD since they each has four serial ATA
disk interfaces. A LCD display attached to the PBI is
used to display the system status. Also, a JTAG port is
provided for advanced hardware debugging.

Figure 2. The OSD architecture based on
switch fabric

The Intel 80200 processor based on Intel XScale ar-

chitecture supports frequency from 200 MHz to 733
MHz[10]. What is the much surprising is that even at
600 MHz the 80200 processor dissipates less than a
watt. This will make the OSD provide high perform-
ance and low power. Indeed, the iSCSI protocol is a
heavy weight protocol, the resolution of iSCSI protocol
and the disk processing may result in a high utilization
of one CPU. Consequently, the OSD can only provide
goodish performance. As the OSD has two 80200 chips,
one of them can resolve the iSCSI protocol, the other
can take charge of the disk operations and run the OS
to have an excellent performance.

 The Intel 80314 I/O companion chip includes the
following main parts: two 80200 bus interfaces, inte-
grated DDR SDRAM controller, two integrated Gigabit
Ethernet MAC controllers, two integrated PCI-X inter-
faces, and the peripheral bus interface [11]. The dual-
ported SDRAM memory controller interface runs at
200 MHz, and offers two-port concurrent access to
memory with programmable arbitration for each port.
The two integrated Gigabit Ethernet controllers provide
high network bandwidth for the OSD. The Intel 31244

131131

Authorized licensed use limited to: Zhejiang University. Downloaded on May 11,2023 at 11:36:19 UTC from IEEE Xplore. Restrictions apply.

serial ATA controller is a single-chip solution for a
PCI-X-to-Serial ATA Host Bus Adapter (HBA) [12]. It
supports serial ATA speed of 150 MB/s of raw data.

The significant characteristic of the OSD is that the
80314 is designed as a fabric-centric, any-port-to-any-
port bridge. It uses an internal switching fabric and
supports concurrent transactions from any interface to
any other interface. Such a unique characteristic which
can’t be obtained from other popular hardware archi-
tecture brings a lot of benefits to improve the OSD
performance. In the OSD, the above characteristic is
used to optimize the I/O performance through three
methods:
1. Data is transferred in parallel by using two inde-

pendent high-speed PCI-X buses attached to the
switch fabric, the OSD disk I/O performance can be
improved.

2. Two network interfaces can work concurrently to
increase the throughput and reduce the network la-
tency.

3. The direct data transfer between the disk and the
network interface is used, so the I/O data path is
shorter and additional memory copy is avoided.
The complete design of the OSD includes two im-

portant issues: the hardware design and the porting of
bootloader and embedded OS for the hardware. In the
hardware design of the OSD, a fundamental hardware
platform is rapidly developed using the Intel IQ80315
processor evaluation platform. Redboot is choosed as
the bootloader and it is successfully ported on the
hardware platform. Above redboot, a commercial em-
bedded linux OS -Timesys linux is then ported to man-
age the hardware resources and perform the functions
of TCP/IP protocol stacks.

4.2 The Object-based File System

In order to provide the Object-based data store func-
tions, storage software is implemented based on the
new hardware architecture in the OSD. Figure 3 shows
the software layers. The iSCSI module waits for the
iSCSI packages from the clients and puts them into a
system queue. The iOM module is implemented as a
kernel module. It gets package from the system queue
and resolves the iSCSI commands, once a SCSI/OSD
command is received, it performs the data access
through Object-based File System (OBFS) and the
corresponding device driver. According to the informa-
tion in the SCSI commands, the iOM module imple-
ments the operation of Primary Command such as
INQUIRY, REPORT LUNS, MODE SELECT and
OSD Command, such as OSD READ, OSD WRITE
[2].

 Figure 3.The software architecture in OSD

Table 1. The interface functions in OBFS
The functions related Object operation Descrip-

tion
int osdfs_create_partition (uint64_t lun,

uint64_t * pid)
Create parti-
tion object

int osdfs_remove_partition (uint64_t lun,
uint64_t pid)

Delete
 partition
object

int osdfs_create_object (uint64_t lun,
uint64_t pid, uint64_t* uid)

Create object

int osdfs_remove_object (uint64_t lun,
uint64_t pid, uint64_t uid)

Remove
object

int osdfs_read_object (uint64_t lun,
uint64_t pid, uint64_t uid,char* buf,
uint64_t offset, uint64_t count)

Read object

int osdfs_write_object (uint64_t lun,
uint64_t pid, uint64_t uid,char *buf,
uint64_t offset, uint64_t count)

Write object

Int osdfs_flush_object (uint64_t lun,
uint64_t pid, uint64_t uid,)

Flush
object to disk

int osdfs_read_attr (uint64_t lun, uint64_t
pid, uint64_t uid,uint32_t page, uint32_t
index, char * buf, uint32_t maxlen)

Read attribute

int osdfs_write_attr (uint64_t lun, uint64_t
pid, uint64_t uid,uint32_t page, uint32_t
index, uint32_t len, char * buf)

Write
 attribute

The OBFS implements the specific object-based op-

erations derived from the iOM module. It maps the
object level requests to the block level requests through
a certain mechanism, and then accomplishes the disk
read/write operations by calling the underlay disk de-
vice driver. Several functions are provided for iOM in
OBFS and they are listed in table 1.

The OBFS is a crucial layer to the OSD perform-
ance. In the OSD, two kinds of OBFS: OSDFS and
HustOSDFS are implemented. The OSDFS is a former
version and it is based on the general-purpose file sys-

132132

Authorized licensed use limited to: Zhejiang University. Downloaded on May 11,2023 at 11:36:19 UTC from IEEE Xplore. Restrictions apply.

tem as shown in Figure 3. The OSDFS is based on the
OBFS in [8] and the OSD reference implementation of
Intel [13].As the object processing is passed to the VFS
and ext2/3 file system, much additional overhead is
generated. To improve the performance, the new
OBFS-HustOSDFS is designed, which maps the ob-
ject-based access to lower block-based access directly.
It manages the object store in the OSD independently
without interacting with the VFS and the file system
such as ext2, ext3 and so on. The structure of the Hus-
tOSDFS is shown in Figure 4.

Figure 4.The structure of HustOSDFS

HustOSDFS has several modules working together
to provide object-based data store with high efficiency.
The BTM takes charge of all kinds of operations in B+
tree such as insert, delete and select. In HustOSDFS,
B+ tree is a widely used structure to effectively organ-
ize the disk space and other information .The OSM is
the core of the HustOSDFS, it manages all the free
blocks in system by calling the BTM and it stores the
B+ tree node structure in cache. The OMM manages
the metadata of the objects and accomplishes the map-
ping between the logical block to the physical block in
an object. Analogous to the inode structure in the VFS,
the object metadata exists in the onode. The OMM
allocates and retrieves the disk space for the object in
the OSD. Besides object data related modules, the
OAM accomplishes the store and retrieval of the object
attributes in the disk with Extensible Hashing.

5. Experimental Evaluation

The OSD Prototype has been implemented. Pres-
ently, only one CPU is running on the OSD because the
Timesys linux doesn’t support two CPUs now; modify-

ing the kernel to support both CPUs is the future work.
Nevertheless, the OSD still exhibits excellent perform-
ance in our experiments. In this section, we present
experimental setup and numerical results.

5.1 Experimental Setup

For the purpose of performance evaluation, an ob-
ject-based client file system mounted on the client
machine is also developed. Furthermore, the MDS is
implemented on a PC. The experiment platform is
show in table 2.

Table 2. The Configure information of the MDS

and the Client
 CPU Main

board
Memory Disk Network

MDS

Client

Intel
Xeon
3.0GHz

Super-
micro
X6DHE-
XB

DDR
ECC
 RG
512M

Maxtor
Diamond
Max10/
SATA150
 200GB/
7200RPM/
8MB buffer

Bcm570
0 Gigabit
Ethernet

Switch
Cisco Catalyst 3750 series Gigabit Ethernet

Switch

OS Redhat 9, Kernel Version 2.4.20

The MDS, Client and the OSD are connected to the

Switch. In the experiment, only one Gigabit Ethernet
interface in the OSD is used and the other will be used
in the future. The OSD directly provides 8 Serial ATA
disks in every PCI-X bus and more disks can be pro-
vided to expand the capacity by adding a Serial ATA
control card into the PCI-X slot. In the experiment,
only one disk is tested, indeed, more disks can be con-
figured as a MD with RAID technique to improve the
disk I/O performance. To access the data in OSD, a test
directory is created in the Client machine, and the cli-
ent object-based file system is mounted on the direc-
tory, and then all kinds of operations can be done in the
directory as in a general file system. The client object-
based file system first requests the MDS with a file-
based interface, then the MDS maps the file informa-
tion into the object information and returns the Client
the object mapping list which indicates that the OSD
address is the OSD IP and the object ID in the OSD.
After that, the Client accesses the data with an object-
based interface through the Gigabit Ethernet network.
Iozone is a popular benchmark that has been used ex-
tensively for basic evaluation of file systems [14], and
iozone is choosed as the benchmark for the experiment.

133133

Authorized licensed use limited to: Zhejiang University. Downloaded on May 11,2023 at 11:36:19 UTC from IEEE Xplore. Restrictions apply.

5.2 Results

In the first experiment, the read and write perform-
ances are measured and it is compared with the NFS
configuration. The motive of this experiment is to
measure the performance of the OSDFS, HustOSDFS
and NFS. For the NFS configuration, the NFS daemon
is set up on the OSD and exported a directory and the
directory is mounted from the Client. In the experiment,
an 8MB file is tested with multiple transfer sizes. Fig-
ure 5, Figure 6 shows the results of this experiment.

Write Rate

0

2

4

6

8

10

12

14

8 16 32 64 128 256 512 1024 2048
Request Block Size (KByte)

W
r
i
t
e

R
a
t
e

(
M
B
/
s
)

OSDFS NFS HustOSDFS

Figure 5. The write performance comparison

Read Rate

0

5

10

15

20

8 16 32 64 128 256 512 1024 2048
Request Block Size (KByte/s)

R
e
a
d

R
a
t
e

(
M
B
/
s
)

OSDFS NFS HustOSDFS

Figure 6. The read performance comparison

The HustOSDFS has better write and read perform-
ance than OSDFS due to the reduced VFS and general
file system overloads in HustOSDFS. It can also be
noticed that both the OSDFS and HustOSDFS have
better write performance than NFS. This can be ex-
plained as follow. First, when the OSD platform is
configured with the NFS, it manages all the metadata
of the file includes user component and storage com-
ponent, but OSDFS and HustOSDFS only manage the
storage component. In addition, an important issue to
the performance of write is the disk space management
and disk free space allocation algorithm. In the OSDFS
and HustOSDFS, disk space management and disk free

space allocation are implement with B+ tree which can
lead a high efficiency. In term of read performance,
NFS is excellent than OSDFS and HustOSDFS. As the
OSDFS and HustOSDFS provide only cache for data
has been accessed without prefetching the data will be
accessed in the future, they can not provide excellent
read performance.

Meanwhile, the performance of HustOSDFS is
compared with the result in [15].It can be found that
the OSD has a better write performance and a compa-
rable read performance. Still, the OSD has potential to
further improve the performance in Gigabit Ethernet
network. As iSCSI is a heavy weight protocol, the CPU
utility and network throughput is studied in the second
experiment. The CPU utility reaches from 73 to 82
when the write and read performance is above 13MB/s.
As a result, decreasing the CPU utility is a future work.

6. Conclusions and Future Work

Object-based Storage Device (OSD) which is the
foundation of OBSS plays a decisive role in the per-
formance of the whole OBSS. How to build an OSD
with low cost, large capacity and high performance for
large scale storage system is a challenge. This paper
describes how to implement an OSD with two unique
characteristics which is different from other OSD de-
sign. First, the OSD adopts a unique hardware architec-
ture based on switching fabric which can supports
parallel data transfer in multiple I/O channels so as to
improve the performance. Meanwhile, it supports large
capacity for its two independent high speed PCI-X
buses and low cost as it’s an embedded platform. Sec-
ond, based on the hardware platform, a new object-
based storage device file system (HustOSDFS) is run-
ning on the OSD. Rather than depending on the VFS
and general file system such as ext2/3, the HustOSDFS
manages its own object-based access which can reduce
the software overload.

In the future, a lot of works will be done on software
layer to make full use of the characteristic of the OSD
hardware architecture. For example, the OS kernel will
be modified to support both CPUs in the OSD. Fur-
thermore, the storage software will be optimized and an
adaptive prefetching algorithm will be designed for the
OSD to further improve the OSD performance.

Acknowledgements

This work was supported by the National Basic Re-
search Program of China (973 Program) under Grant
No.2004CB318201, the Program for New Century
Excellent Talents in University NCET-04-0693, Wu-

134134

Authorized licensed use limited to: Zhejiang University. Downloaded on May 11,2023 at 11:36:19 UTC from IEEE Xplore. Restrictions apply.

han Project 20061002031&200750730307, and the
National Science Foundation of China No.60603048.

References

[1] M.Mesnier,G.R.Ganger,E.Riedel. Object-based

Storage .IEEE Communications
Magazine,2003，Vol.41, Issue 8:84-90

[2] J.Satran. Object-based Storage Device Com-
mands.http://www.t10.org/draft/osd. Oct.2004

[3] PANASAS WHITE PAPER: Object Storage
Architecture: Defining a new generation of stor-
age systems built on distributed, intelligent stor-
age devices. 2003

[4] Peter J Braam. The Lustre Storage Architecture.
Cluster File Systems, Inc. Whiter Paper.
http://www.clusterfs.com. 2004

[5] Yu Weikuan, R. Noronha, Liang Shuang, et al.
Benefits of high speed interconnects to cluster file
systems: a case study with Lustre. In: The 20th In-
ternational Parallel and Distributed Processing
Symposium(IPDPS 2006). 2006. 8~15

[6] Tang Hong, A.Gulbeden, Zhou Jingyu, et al. The
Panasas ActiveScale Storage Cluster - Delivering
Scalable High Bandwidth Storage. In: Proceed-
ings of the ACM/IEEE SC2004 Conference on
Supercomputing. 2004. 53~62

[7] Panasas Inc. Object Storage Architecture. White
Paper. http://www.panasas.com/ ob-
jectbased_mgnt.html

[8] Wang Feng, Brandt Scott A., Miller Ethan L., et
al. OBFS: A File System for Object-based Storage
Devices. In: Proceedings of the 21st IEEE / 12th
NASA Goddard Conference on Mass Storage
Systems and Technologies (MSST2004). 2004.
101~118

[9] Andy Hospodor, Ethan L. Miller, Interconnection
Architectures for Petabyte-Scale high-performane
storage system, Proceedings of the 21st IEEE
/12th NASA Goddard Conference on Mass Stor-
age Systems and Technologies(MSST2004).
2004 .

[10] Intel Corp: Intel 80200 Processor based on Intel
XScale Microarchitecture Datasheet,2003

[11] Intel Corp: Intel GW80314 I/O companion Chip
Datasheet,2004

[12] Intel Corp: Intel 31244 PCI-X to Serial ATA
Controller Datasheet ,2004

[13] R. Intel Corporation. Intel iSCSI Reference Im-
plementation. Details available at
http://www.intel.com/
technology/computing/storage/iscsi/index.htm.

[14] Iozone filesystem benchmark.
http://www.iozone.org.

[15] David Du, Dingshan He, Changjin Hong, et al.
Experiences Building an Object-Based Storage
System based on the OSD T-10 Standard. In: Pro-
ceedings of the 23st IEEE /14th NASA Goddard
Conference on Mass Storage Systems and Tech-
nologies (MSST2006). 2006.

[16] M. M. Factor, K. Meth, D. Naor, et al. Object Stor-
age: The Future Building Block for Storage Sys-
tems. In: Proceedings of the 2nd International
IEEE Symposium on Mass Storage Systems and
Technologies. 2005. 119~123

135135

Authorized licensed use limited to: Zhejiang University. Downloaded on May 11,2023 at 11:36:19 UTC from IEEE Xplore. Restrictions apply.

