IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 8, AUGUST 2025

2649

IMPACT: Importance-Informed Prefetching
and Caching for I/O-Bound DNN Training

Weijian Chen
Ping Chen

, Shuibing He
, Siling Yang

Abstract—Fetching large amounts of DNN training data from
storage systems causes high I/O latency and GPU stalls. Importance
sampling can reduce data processing on GPUs while maintaining
model accuracy, but current frameworks lack a prefetching and
caching layer to optimize data fetches and cache management based
on sample importance. This leads to unnecessary fetches, poor cache
hit ratios, and random I/Os. We present InPACT, an importance-
informed prefetching and caching system, to accelerate I/0-bound
DNN training. First, we propose an importance-informed
prefetching technique to reduce the prefetching of unimportant data.
Then, we introduce an importance-aware caching layer, partitioned
into two regions: H-cache and L-cache, which store samples of high
importance and low importance respectively. Rather than using
recency or frequency, we manage data items in H-cache according to
their corresponding sample importance. When there is a cache miss
in L-cache, we use sample substitutability and dynamic packaging to
improve the cache hit ratio and reduce the number of random 1/Os.
Our experimental results show that InPACT has a negligible impact
on training accuracy while speeding up DNN training by up to 3.5X
compared to state-of-the-art prefetching and caching systems.

Index Terms—Prefetching, caching, importance-sampling, DNN
training.

I. INTRODUCTION

EEP neural networks (DNNs) have been attracting atten-
tion in computer vision [1], natural language processing
[2] and many other fields [3], [4], [S]. DNN training needs to
fetch data from I/O systems and compute them for updating
parameters [6], [7], [8]. Recent research shows that I/O has

Received 29 October 2024; revised 21 March 2025; accepted 3 May 2025.
Date of publication 9 May 2025; date of current version 11 July 2025. This
work was supported in part by the National Science Foundation of China
under Grant 62172361, in part by the Major Projects of Zhejiang Province
under Grant LD24F020012, in part by the Open Project Program of Wuhan
National Laboratory for Optoelectronics under Grant 2023WNLOKF005, and
in part by the Pioneer and Leading Goose R&D Program of Zhejiang
Province under Grant 2024SSYS0002. Recommended for acceptance by
T. Adegbija. (Corresponding author: Shuibing He.)

Weijian Chen, Shuibing He, Ruidong Zhang, Ping Chen, Siling Yang,
Haoyang Qu, and Xuan Zhan are with the State Key Laboratory of Blockchain
and Data Security, Zhejiang University, Hangzhou 310027, China, also with
Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security,
Hangzhou 310027, China, and also with Zhejiang Key Laboratory of Big Data
Intelligent Computing, Hangzhou 310027, China (e-mail: weijianchen@zju.edu.
cn; heshuibing@zju.edu.cn; 22321348@zju.edu.cn; zjuchenping@zju.edu.cn;
slingzjunet@zju.edu.cn; haoyangqu@zju.edu.cn; zhanxuan@zju.edu.cn).

Xuechen Zhang is with the School of Engineering and Computer Science,
Washington State University Vancouver, Vancouver WA 98686, USA (e-mail:
xuechen.zhang @wsu.edu).

Digital Object Identifier 10.1109/TC.2025.3569126

, Member, IEEE, Ruidong Zhang
, Graduate Student Member, IEEE, Haoyang Qu

, Xuechen Zhang =, Member, IEEE,
, and Xuan Zhan

become the bottleneck in DNN training [9], [10]. This is
because Al accelerators, such as GPUs and ASICs, have
evolved at a faster pace than storage devices. Another reason is
that DNN model training needs to access ever-increasing data-
sets. For example, the Google OpenImages dataset used in the
Open Images Challenge is about 18 TB [11]. And training data
items (referred to as samples) are shuffled every epoch to ensure
that they are read in a random order, leading to poor I/O effi-
ciency of storage systems.

Importance sampling (IS) [12], [13], [14] is an approach to
accelerate DNN training by skipping the calculation of some
items while maintaining a similar accuracy. It assigns each data
item an importance value to reflect its influence on DNN model
accuracy. We refer to samples of high and low importance val-
ues as H-samples and L-samples respectively. When importance
sampling is used, H-samples are computed in a higher probabil-
ity while L-samples are computed in a lower probability. How-
ever, all existing sampling approaches are computing-oriented
IS (CIS) algorithms because they only focus on reducing com-
puting on GPUs instead of I/O. They still need to fetch all items
to memory and thus perform poorly for I/O-bound DNN Train-
ing. For example, when training ResNet18 with CIFAR10 on a
parallel file system, a history-based CIS algorithm [14] can only
accelerate the overall training by 1.02x though the computing
time is reduced by 1.3 (Section II-B).

Prefetching and caching are widely used methods to alleviate
I/O bottlenecks [9], [10], [15]. Specifically, prefetching conceals
I/O latency by proactively reading samples that will be used in
the future, integrating I/O time into computation time. Caching
reuses data in fast memory, reducing slow I/O accesses. How-
ever, current deep learning caching systems process the entire
dataset for each epoch, missing opportunities to optimize I/O by
serving fewer samples.

Moreover, they do not consider sample importance. For
example, CoorDL [10] never replaces samples in its MinlO
cache. Therefore, it is possible that the MinlO cache does not
have space for H-samples after it is full. Quiver [9] exploits sub-
stitutability to avoid memory thrashing. However, it is likely
H-samples are substituted by L-samples leading to poor accu-
racy of DNN models after training.

None of the existing approaches can reduce the amount of
data fetched and consider sample importance in the I/O of DNN
training. In this paper, we propose the idea of I/O-oriented
importance sampling (IIS) and apply it to data prefetching and
caching. IIS only fetches a subset of samples instead of all the

0018-9340 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on July 27,2025 at 14:42:05 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8296-2673
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0009-0008-7040-2917
https://orcid.org/0000-0002-3730-8901
https://orcid.org/0000-0001-6973-0755
https://orcid.org/0000-0002-2208-559X
https://orcid.org/0009-0008-7893-6163
https://orcid.org/0009-0007-2390-6680
mailto:weijianchen@zju.edu.cn
mailto:weijianchen@zju.edu.cn
mailto:heshuibing@zju.edu.cn
mailto:22321348@zju.edu.cn
mailto:zjuchenping@zju.edu.cn
mailto:slingzjunet@zju.edu.cn
mailto:haoyangqu@zju.edu.cn
mailto:zhanxuan@zju.edu.cn
mailto:xuechen.zhang@wsu.edu

2650

original samples from the cache or storage. Simply caching
H-samples for DNN training does not work well in the context
of importance sampling. The existing cache replacement
algorithms are designed to explore temporal locality based on
recency or frequency. However, importance sampling accesses
samples randomly and based on their impact on the model accu-
racy. Therefore, we need a new importance-sampling-informed
cache replacement algorithm to achieve a higher hit ratio in the
cache.

There are three challenges in the design of the new cache sys-
tem. First, a dilemma arises when trying to reduce the prefetch-
ing of unimportant samples, as the importance values of the
samples are unknown and can only be accurately calculated
after they have been loaded into the CPU for computation. Sec-
ond, the importance values of samples may change across
epochs, so statically caching the initially most important sam-
ples is inefficient. We need an efficient algorithm to keep a max-
imum number of H-samples in the cache when the importance
values of samples are changed. Third, caches have limited
space. If we only cache H-samples, data loaders still need to
access L-samples randomly with poor I/O efficiency.

To address these issues, we design and implement ImPACT,
new importance-informed prefetching and caching systems to
accelerate DNN training when I/O is its performance bottleneck.

To reduce the prefetching of unimportant samples while avoid-
ing large I/O overhead, we propose a hybrid importance evalua-
tion method based on the observation that the importance
rankings of most training samples are stable, while a small portion
of the samples exhibits significant fluctuations. Then, InPACT
generates a sequence of sample IDs that includes only a subset of
the entire dataset for the current epoch prefetching by reducing
the probability of selecting relatively less important samples.

The cache space is partitioned into two regions: H-cache and
L-cache which store H-samples and L-samples respectively. We
use a small-top heap (H-heap) for cache management. When
H-cache is full, the data item corresponding to the node at the
top of the heap will be evicted if its importance value is smaller
than that of the incoming one. To efficiently refill the cache
when importance values are changed, we manage a shadow
heap for H-heap. After the importance values are updated, the
H-heap becomes read-only and is used only for item eviction
from the cache. The changes (i.e., insertions/evictions and value
updates) to the H-heap are recorded in the shadow heap. To
reduce the amount of random I/Os for L-samples, InPACT uses
dynamic packaging to load L-samples to L-cache in batch.
When L-samples to be accessed are not in the L-cache, we apply
substitutability to replace the missing L-samples with those
already in the cache, thus reducing the number of small random
I/Os and keeping a high training accuracy.

In summary, this paper offers the following contributions:

e We are the first to propose the idea of I/O-oriented
importance sampling (IIS) and apply it into both the pre-
fetching and caching system ImPACT.

e To make importance-informed prefetching truly effec-
tive, we propose a hybrid importance evaluation method,
which accurately assesses sample importance while intro-
ducing minimal I/O overhead.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 8, AUGUST 2025

e We design a cache replacement algorithm based on sam-
ple importance, a dynamic packaging technique to further
boost the I/O system performance.

e We implement ImPACT in PyTorch [16] and evaluate it
with eight DNN models on two datasets. The evaluation
shows that INPACT outperforms the state-of-the-art DNN
prefetching and caching systems Quiver [9], CoorDL [10],
and iCACHE [17] by up to 3.9%, 3.5x and 2.5x on the
model training time and 5.6, 4.8, and 2.6 on the I/O
time while achieving an equivalent training accuracy.

II. BACKGROUND AND MOTIVATION
A. 1I/O-Bound DNN Model Training

DNN training is iterative, with model accuracy converging grad-
ually. One training epoch in a conventional training scheme
involves reading all training samples once, and each epoch consists
of multiple iterations that process mini batches of training data.
Specifically, DNN training involves three steps: (1) loading a mini
batch from remote storage to host memory, (2) pre-processing data
using CPUs, and (3) training the DNN with GPUs.

As dataset sizes grow [9], training data must be accessed
from remote high-capacity storage or parallel file systems, a
common setup in modern HPC-AI data centers [18], [19], [20].
By default, data loaders must randomly feed all samples exactly
once per epoch to maintain model accuracy, leading to frequent
random reads over slow network transfers and causing I/O-
bound data stalls during DNN training.

Although data prefetching, data caching, batch size adjust-
ment, and multi-GPU training are widely used to accelerate
DNN training, they are inefficient for I/O-bound tasks for the
following reasons. (1) Prefetching is effective only when com-
puting time is longer than I/O time. With powerful GPUs like
A100 and H100, the computing time can be less than I/O time
[10]. (2) Caching policies are usually based on traditional
temporal/spatial locality, thus they are insufficient for DNN
workloads with strong randomness [9]. (3) Batch size adjust-
ment and multi-GPU training are mainly used to boost comput-
ing performance instead of I/O time.

To verify this, we train four DNN models on a server with
four A100 GPUs with various batch sizes. The dataset is
CIFARI10 and placed in a remote OrangeFS file system. The
system configuration is described in section V-A. We enable the
built-in prefetching technique in PyTorch and implement an
LRU-based cache system. The cache size is 20% of the training
dataset, as Quiver [9] does. We measure the average I/O time,
which is the time the training process waits to acquire a batch of
training data. Specifically, this is the time on the critical path to
fetch each batch of data from remote OrangeFS to local CPU
memory, after excluding the time that can be hidden by asyn-
chronous computation. We decoupled the data preprocessing
operations (e.g., transformation) from the Dataloader and add
timestamps in the Dataloader of the PyTorch program to obtain
the I/O time. Fig. 1 shows that even with existing performance
optimizing techniques, I/O is still a bottleneck for multi-GPU
training cases. For example, the I/O bottleneck becomes more
prominent because the ratio of the I/O time to the total training

Authorized licensed use limited to: Zhejiang Lab. Downloaded on July 27,2025 at 14:42:05 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: IMPACT: IMPORTANCE-INFORMED PREFETCHING AND CACHING FOR I/O-BOUND DNN TRAINING

—_] Others 0 1/O time

$100]]

g 80r Hm Hm || — 1

S 60f -]

X

3 40 — i

= -

o 20F i

£

= 0 PPNLSHPT NI gBPNAGI qB0a SR
MobileNet ResNet18 ShuffleNet EfficientNet

Fig. 1. Training time with varying batch sizes on four A100 GPUs.

time increases from 44% to 89% on average while the batch size
increases from 256 to 2048.

B. Computing-Oriented IS Approaches are Inefficient
for I/O Bound Training

Importance sampling accelerates DNN model training by
feeding fewer samples on GPUs for updating parameters. When
it is applied in model training, the random order of sample com-
puted may be changed to reflect the principle that H-samples
should be computed more frequently than L-samples. A lot of
works have used importance sampling to effectively accelerate
deep learning applications [14], [21], [22], [23], [24], [25].

However, all existing importance sampling algorithms for
reducing training samples are designed for computing-bound
tasks (which we refer to as CIS), which reduce computation
time but still load all samples, rendering them inefficient for
I/0O-bound tasks. We validate this with four DNN models on
CIFARI10 using a CIS algorithm [14]. We use a single A100
GPU for training with a batch size of 256 and enable PyTorch’s
prefetching. Fig. 2(a) shows that with local DRAM storage (i.e.,
DRAM-based tmpfs without a cache), CIS reduced total training
time by 1.2x. However, with a LRU cache holding 20% of data
from a remote OrangeFS, CIS only reduced total training time
by 1.02x, as I/O became the bottleneck in Fig. 2(b). This bottle-
neck is due to factors like large datasets, low remote storage
IOPS, and significant CPU resources for data loading.

Inspired by the idea of CIS, it is feasible to apply I/O-oriented
importance sampling (IIS) to fetch fewer samples from the
cache or storage to accelerate I/O bound DNN model training
with acceptable accuracy degradation.

C. Importance-Informed Prefetching, Caching
and Challenges

None of the existing prefetching and caching systems are
designed for DNN model training based on importance sam-
pling. (1) While prefetching systems like PyTorch [16], Tensor-
Flow [26], and NoFS [27] parallelize the time spent prefetching
next batch data with the current batch’s computation time, they
always prefetch the entire dataset for each epoch of training.
This results in a significant prefetching time overhead, making it
difficult to completely hide this overhead. (2) OS page cache
explores temporal locality and uses recency or frequency for
managing the samples when it is full [28]. When samples are
randomly accessed and the time of revisiting the same samples
in the page cache is long, the page cache will have a high miss
ratio. CoorDL [10] keeps all data samples in the cache with no

2651

[Jother time []1/O time [Jother time []1/O time

2000

= 53000

31500 3

[} [0
2000

£1000 £

j=2} (=2

£ £

E 500 g 1000

= =

0

0 ORI CIS\ ORI CI%8 ORI CISB‘ORICIS ot
MOBIENC L peNet o ieN S ent™

(b) 1I/O-bound training.

ORICIS, ORICIS, ORICIS_ORICIS
MoBHeNC L eeNet & e ent™

(a) Computing-bound training.

Fig. 2. Training time with and without CIS algorithm in computing. “ORI”
means original training system without CIS.

eviction to avoid thrashing. The cache is used to store both
H-samples and L-samples. When it is full, H-samples will not
be stored in the cache, leading to a higher miss ratio of
H-samples, which are accessed more frequently than L-samples.
When Quiver [9] is used, an H-sample which is not in the
cache may be substituted by an L-sample, reducing the model
accuracy.

There are three challenges in the design of the importance-
informed prefetching and caching systems.
Importance values are unknown before prefetching. Most
existing methods [14], [21], [22] for determining the importance
of training data need to read training data first and then use a
lightweight method to calculate the current importance. To sim-
plify, we refer to these methods as reassessment-based methods.
However, although these methods can accurately measure data
importance, they are not suitable for I/O bottleneck scenarios.
This is because they introduce significant I/O overheads. Some
methods, such as iCache [17], SHADE [24], use historical
importance values to predict sample importance for the next
training epoch. To simplify, we refer to these methods as
history-based methods. Although they avoid I/O overheads by
not needing to read and recalculate importance values, they may
lead to inaccurate assessments of data importance due to the gap
between historical importance values and the current actual
importance values. This could potentially require more training
epochs and time to achieve the target model accuracy as shown
in section V-E.
Varying importance values. The importance value of one
sample changes across epochs during training [14], [21]. To
verify this, we record the importance values of three samples
(i.e., Sample 0 to Sample 2) with a model loss-based impor-
tance sampling algorithm [14] when training ResNetl8 on
CIFARI10. As Fig. 3 shows, the same sample is selected from
time to time with varying importance values. The importance
value of the same sample changes because it is determined by
the sample content and the model’s parameters (e.g., weights)
which are updated by the SGD algorithm iteratively [29].
Therefore, the H-samples in the previous epoch may become
L-samples. Since samples are selected according to their rela-
tive importance values, it is not practical to set an importance
threshold to decide whether to place a sample in the cache or
not. We need a judicious cache management algorithm to
keep a maximum number of H-samples in the cache without
significantly affecting model accuracy when the importance
values of samples are changed.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on July 27,2025 at 14:42:05 UTC from IEEE Xplore. Restrictions apply.

2652

e Sample0 ¢ Sample2
Sample 0 + Sampletl
——— Sample 1 e 00ee ® oosses o moeme eomes
—— Sample 2

Importance value
O=NWhrhUONO®

T T T T T T T
15 30 45 60 75 90 105
Time (min)

T
0 15 30 45 60 75 90 105 0
Time (min)

(a) Varying importance values. (b) Sample selection in training.

Fig. 3. Varying importance values and the selected samples by the importance
sampling algorithm during training. One dot in (b) means the sample is selected
once.

|| —#— Sample 7

N
o
N
o

y‘

0 16 32 48 64 80
Epoch

(a) ResNet18 on CIFAR10.

o

o

100 — 100
o g FM/ﬁf o g ,ffﬂf\
‘g’ —e— Sample 0 %:: —e— Sample 4
[60 Sample 1 o 60 Sample 5
8 40 —+— Sample 2 8_ 40 —+— Sample 6
3 —=— Sample 3 2
c c
o] 5]
s s
a a
E E

.-
0 16 32 48 64 80
Epoch

(b) ResNet50 on Tiny-ImageNet.

Fig.4. Importance rankings of eight training samples.

Random I/Os after cache misses. A cache has limited capacity.
It cannot always store all H-samples. When cache misses hap-
pen, it is required to read H-samples randomly. Furthermore,
although H-samples are accessed more frequently than
L-samples, training frameworks still need to access L-samples
to improve sample diversity for high training accuracy. The per-
formance of loading L-samples from storage systems may
become the I/O bottleneck causing data stalls. A widely used
method of mitigating this problem is packaging the training
dataset into many large files, each of which contains a certain
number of L-samples [26]. However, it is not practical in this
case because importance sampling specifies the order of samples
to be trained. They are probably distributed in different data
packages and will cause a serious read amplification problem if
we directly use the existing packaging algorithms.

D. Observation

Although the absolute importance values of training samples
fluctuate irregularly, we have found that the importance rank-
ings of most samples are stable, while only a few samples exhibit
significant fluctuations. Specifically, a large number of samples
are consistently more or less important compared to others
throughout the entire training process, while a smaller subset of
training samples is sometimes more important than the majority
of others, and other times the opposite is true.

To verify the observation, we train two popular DNN models,
ResNet18 and ResNet50, on the CIFARIO [30] and Tiny-
ImageNet [31] datasets for 90 epochs. We evaluate the impor-
tance of each data item and sort them in ascending order at the
end of each epoch. The importance percentiles are used to
measure the importance rankings of each training sample, with a
higher percentile indicating greater importance. We randomly

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 8, AUGUST 2025

10000{ Pl | LT R A e p— .
~ Mean: 515 _ 20000 Mean: 470
5 7500 E
o © 15000
£ £
g 000 - 10000
© ©
0O 2500 ’ O 5000

olL& [oLt ‘ I

0 400 800 1200 1600 2000 0 400 800 1200 1600 2000

Varience

(a) ResNet18 on CIFAR10.

Varience
(b) ResNet50 on Tiny-ImageNet.

Fig. 5. Density distribution of the importance ranking variance.

Deep learning applications]

Cache client

H-cache]

Importance-informed
Prefetching ($3.2

framework [

Importance-mforme
replacement ($3 3)

Cache
Manager
Dynamic packagmg 0 h
($3 4) Cache server weache
Storage [Training dataset
system
{—> Control flow =) Data flow

Fig. 6. Single-node architecture overview of InPACT.

selected eight samples, and the results are shown in Fig. 4. We
observe that the importance ranking of samples 0, 1, 4, and 5
remain consistently stable, while the others exhibit large fluctua-
tions. To further quantitatively measure the degree of variation
in importance rankings, we calculate the ranking variance of
each sample throughout the entire training process. We plot a
data amount distribution curve, as shown in Fig. 5. We find that
62% and 59% of the samples have variances below the mean
value on CIFAR10 and Tiny-ImageNet, respectively.

III. DESIGN OoF IMPACT

In this section, we present the design of ImPACT. We first
introduce the system overview of InPACT and then elaborate
on its three key components.

A. System Overview

ImPACT is an intelligent prefetching and caching system for
accelerating DNN model training. It supports both single-node
with multiple GPUs training and multi-node distributed training,
both of which are popular deep learning training configurations
[9], [10], [32], [33]. To illustrate the details, we first show the
single-node architecture in Fig. 6. Overall, it consists of an
importance-informed prefetching module and an importance-
informed cache system. The cache component consists of client
modules, cache managers, and servers.

Importance-informed prefetching. To prefetch important
samples, we devise a two-phase prefetching technique. In the
first phase, the prefetcher evaluates the importance values of all

Authorized licensed use limited to: Zhejiang Lab. Downloaded on July 27,2025 at 14:42:05 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: IMPACT: IMPORTANCE-INFORMED PREFETCHING AND CACHING FOR I/O-BOUND DNN TRAINING

training data using a hybrid importance evaluation method at
the beginning of each epoch. The core idea is to re-evaluate the
actual importance of only a small number of samples that
exhibit the greatest fluctuations in importance rankings, while
directly using historical importance for the remaining samples;
it can be seen as a combination of two existing methods (i.e., the
historical-based methods [17], [24] and the reassessment-based
methods [14], [21], [22]) to improve evaluation precision while
reducing I/O overhead (section III-B). In the second phase, the
prefetcher invokes an importance sampling algorithm to select
samples that will be trained in the current epoch and initiates
prefetch requests for these selected training data. Although
many algorithms exist, we choose a recent loss-based impor-
tance sampling algorithm [22] in our current design for its sim-
plicity and efficiency. We plan to study other algorithms in
future work. Consequently, samples that are not selected do not
need to be loaded. This approach reduces both I/O and computa-
tion time.

Cache client and server. The client modules are integrated into
the deep learning frameworks (e.g., PyTorch and TensorFlow).
It mainly plays the role of request forwarding. When data
loaders of DNN applications start to randomly select samples to
read, the clients will forward the request to INPACT servers by
calling the RPC interface. One client belongs to a unique DNN
training job and is transparent to the users.

A client module maintains an H-list to record H-samples for
the training job. H-list is generated by the importance sampling
algorithm. It is a list of vectors < ID,IV >, where ID corresponds
to a sample’s identity and IV is its importance value. Both the ID
and IV are 64 bits (8B), thus the space overhead of H-list is triv-
ial. We take a cache for ImageNet-1K (with 1281167 samples in
140GB) as an example. Assume the cache holds 20% samples,
then the cached data size is 140GB*20%=28GB, and the impor-
tance mapping overhead is 1281167%20%%16B=3.9MB, which
is just 0.014% (3.9MB/(28GB + 3.9MB)) of the whole cache
space. The IVs are computed according to the importance
sampling algorithm. Since the importance value of one sample
changes across epochs during training, we periodically update
importance values (section III-C).

The functionality of the ImPACT server is to provide a user-
level cache, which stores training datasets in memory to acceler-
ate the I[/O-bound DNN training.

Cache manager. It is designed to manage the cache based on
the importance values of samples. Since the importance values
referenced by the sampling process are periodically updated by
the hybrid importance evaluation, the cache manager periodi-
cally pulls the H-list from clients to achieve a decent trade-off
between cache performance and its management overhead.
Additionally, the manager needs to dynamically pack samples
which are later loaded to L-Cache (section III-D). The minimum
I/O unit is a package of samples.

H-cache. It stores H-samples recorded in H-list. Its capacity
determines how many samples can be stored in H-cache. When
its capacity is not large enough to cache all H-samples, an
importance-informed cache replacement algorithm is applied to
manage it. The general idea is that the samples of higher impor-
tance value have a lower chance of being evicted from the

2653

cache. And the importance value is provided by H-list. If the
importance values of H-samples are changed leading to a lower
hit ratio of H-cache, it needs to refill the cache with new
H-samples. When importance sampling is used for training, the
importance-informed cache replacement achieves a higher
cache hit ratio than the commonly used LRU-based cache
replacement algorithm and its variants.

The size of H-cache is determined based on the following

equation: Sizepcache = Siz€cache * (Frequencey; | Frequencey;+
Frequencep;). Frequencey; and Frequencey; are the frequency
of accesses to H-samples and L-samples respectively. Size qche
is the cache size. A higher Frequencep;/Frequencer; automati-
cally increases the cache space allocated for H-samples and
reduces the space for L-samples. The InPACT manager tracks
the number of accesses to H-samples and L-samples. The mini-
mum size of L-cache is equal to the number of samples in one
package.
L-cache. The purpose of L-cache is to further reduce the num-
ber of small random I/Os for accessing L-samples. It is designed
to cache only the L-samples, which are not in the H-list. Another
benefit of L-cache is to maintain a high model accuracy. Basi-
cally, we manage L-cache with substitutability, a unique charac-
teristic of the DNN I/O process [9]; it means when a read
request is missed in the cache, it can be served by another ran-
domly picked sample in the cache. While the missed samples
from L-cache can be substituted with the one in H-cache, serv-
ing them with another one in L-cache can keep a high degree of
sample diversity and yields better training accuracy (See
section V-F). The L-samples are packaged in advance by an
asynchronous thread. In addition, because the importance values
of samples are constantly changing across epochs, it also needs
to re-packing the L-samples accordingly. The size of L-cache is
equal to Sizecache — Siz€ncache-

B. Importance-Informed Prefetching

As stated in section III-A, the goal of this module is to reduce
the number of unimportant samples prefetched during training.

Once a DNN training task begins, it first enters a warm-up
phase to identify training samples that exhibit high variance in
importance rankings. Specifically, all samples undergoes train-
ing in each epoch during the initial k epochs, and their impor-
tance values are sorted. Once k epochs have been completed, the
variance of importance rankings for each training sample can be
calculated and samples with significant fluctuations in impor-
tance rankings are identified. For clarity, we denote the set of
IDs of samples with high importance ranking variances as S.
During the warm-up phase, all prefetched data are managed by a
simple and efficient static caching strategy proposed by CoorDL
[10], which means no replacement occurs.

Before the start of each subsequent training epoch,
ImPACT uses a hybrid importance evaluation method to
assess the importance values of all training data. It combines
existing reaccessment-based method and history-based
method to get an accurate evaluation of importance values
with minimal additional I/O overhead, thereby reducing the
amount of training data and time required to achieve the

Authorized licensed use limited to: Zhejiang Lab. Downloaded on July 27,2025 at 14:42:05 UTC from IEEE Xplore. Restrictions apply.

2654

sequence

Prefetcher
DNN
Training

Hybrid
importance
evaluation

Partial training
sequence

Cache Server —

(b) Prefetching with I/O-oriented importance sampling.

Prefetcher
DNN
Training

Fig. 7. Comparison of prefetching systems for one epoch training.

target model training accuracy. It unfolds in two steps. (1)
Re-evaluation of set S. InPACT re-evaluates the importance
values of all data that belongs to the set S using an importance
evaluator. This is a critical step because the importance val-
ues of data in S are known to be highly variable. To avoid
repeatedly fetching training samples belonging to S from
underlying storage, we use an additional static buffer to retain
them in memory after their initial read. This ensures
that these samples are preserved without undergoing cache
replacement, thereby expediting the subsequent re-evaluation
process. (2) Estimation for remaining data. InPACT utilizes
the most recent historical importance values of the remaining
samples as their estimated importance for the current epoch.
The rationale of this step is that since the importance rankings
of these samples exhibit less variability compared to those in
set S, re-evaluating them every epoch would be redundant
and unnecessary. After the above two steps, an established
importance sampling algorithm [22] is applied to select a sub-
set of the training data for the current epoch’s training.
Besides, these data are placed into either the H-cache or
the L-cache depending on whether they are H-samples or
L-samples. The admission and eviction decisions are made by
the method in section III-C for H-samples and section III-D
for L-sample.

We use an example to illustrate the benefits of the
importance-informed prefetching. Suppose we have six training
samples, numbered 0-5. Assume the warm-up phase identifies
the set S = {2,4}, indicating that samples 2 and 4 have the most
unstable importance rankings. Fig. 7(a) shows the existing pre-
fetching for one epoch training [16]. First, a random permutation
of the six training samples is generated. Then, the prefetcher
loads the data in batches from the cache or storage and sends
them to the GPU for training. In contrast, with our prefetching
method enabled, as shown in Fig. 7(b), samples {2,4} are first
loaded for importance re-evaluation (@). The remaining four
samples (i.e., {0,1,3,5}) use their historical importance values
as estimates for the current epoch (@). Then a loss-based sam-
pling algorithm [22] is applied based on the estimated impor-
tance values of each sample, resulting in the selection of three

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 8, AUGUST 2025

100w 100
8 SOEE = 80
2 2
e 60 —— ResNet18 e 60 — VGG11
& 40 —— ResNet50 & 40 —— DenseNet121
g 20 — ShuffleNet o 20 —— MnasNet
o —— MobileNet o —— SqueezeNet
036 10 14 18 22 26 0,6 10 14 18 22 26
Epoch Epoch
(a) CIFARI10. (b) Tiny-ImageNet.
Fig. 8. Warmup phases on two training datasets with various models.

samples {4, 1,3} (®). The prefetcher will only prefetch three
samples for the current epoch training, thereby reducing the
amount of data that needs to be prefetched. During training, the
loss values of samples not in S (i.e., {1,3}) are updated in CPU
memory for the next epoch’s training (@).

To make importance-informed prefetching truly effective, we
need to carefully adjust two hyperparameters: the length of the
warm-up stage (k) and the size of the sample set (S), to balance
benefits with additional time and space overhead. Adjusting
these parameters is not trivial. A larger k allows for more accu-
rate identification of samples with high variability in importance
rankings, while a larger S enables more samples’ importance to
be accurately reevaluated, reducing the training of unimportant
samples. However, increasing both k and S leads to greater addi-
tional time overhead due to the longer warm-up and reevalua-
tion times. Similarly, smaller values of k and sizes of S will
result in opposite benefits and drawbacks. Therefore, a trade-off
needs to be made between the accuracy of importance evalua-
tion and the additional time and space overhead.

We first determine the size of the set S, and then set the k
value based on S. Considering that the samples in set S need to
be statically cached, we empirically establish the size of S based
on 0% to 100% of the cache space and observe the end-to-end
time. Based on our observation, we empirically set the size of
set S to be 25% of the total memory space to achieve a good
tradeoff in our experiments (section V-I). Once the samples in S
are stored in the buffer, they are excluded from the cache server
to avoid redundant storage. With this S size and a static buffer-
ing strategy, the average re-evaluation time overhead is less than
6% of the total training time in our experiments.

To determine k, we generate a temporary set S’ which con-
tains samples IDs with the highest variability in importance
rankings at the end of each epoch during the warm-up stage,
matching the size of S. If two successive S’ sets share over 80%
of their sample IDs, we consider the last S” stable and end the
warm-up phase. Additionally, users can set an upper limit on the
number of epochs to avoid excessive duration. Fig. 8 shows the
overlap ratios of adjacent S’ sets during 30 epochs on CIFAR-10
and Tiny-ImageNet with eight popular DNN models. The
X-axis begins at epoch 2, as overlap ratio is available only from
this point. On average, the warm-up stage lasts 6.4 epochs, about
7% of the typical 90 total epochs for training [9]. The additional
space needed to record importance values and variances during
this stage is negligible; for large datasets like ImageNet, it
requires only around 100MB, less than 0.4% of the cache space
in our experiments (section V-A).

Authorized licensed use limited to: Zhejiang Lab. Downloaded on July 27,2025 at 14:42:05 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: IMPACT: IMPORTANCE-INFORMED PREFETCHING AND CACHING FOR I/O-BOUND DNN TRAINING

LRU-cache IMPACT
IGEE (A GEE
T
= T
[storage] [storage]
(@) (b)
Fig. 9. Comparison of LRU and ImPACT. The squares in darker color denote

samples with higher importance values.

C. Importance-Informed Cache Algorithm

We use a key-value store to manage data items in H-cache.
The key denotes sample ID and the value stores the data item of a
sample. INPACT also manages a small-top-heap (H-heap) for
cache management. The heap objects are also key-value pairs,
whose key is the importance value of a data item and value is a
reference to the item in the key-value store. The objects in
H-heap are sorted based on their importance values. The object at
the top of the heap is called fop-node. The size of a heap object is
16 B. The space usage of H-heap is correlated to the number of
H-samples and is generally less than 0.5% of H-cache capacity.

When the requested data items are H-samples but do not exist
in H-cache, the server needs to read them from storage systems
and return them to clients. It also needs to decide whether to
cache the sample when H-cache is full. One challenge is that
LRU-based cache replacement algorithms do not work effec-
tively in training with importance sampling because they do not
consider sample importance. Our observation shows that
H-samples are accessed more frequently than L-samples in each
epoch and across multiple epochs. Therefore, we need a new
importance-informed cache replacement to improve the cache
hit ratio in training.

Specifically, when H-cache is not full, the H-sample read
from storage systems will be inserted into H-cache directly.
ImPACT then creates a heap object corresponding to the
H-sample and inserts it into the heap. When it is full, the impor-
tance value of an incoming H-sample is compared to that of top-
node. The top-node will be evicted if its importance value is
smaller than that of the incoming sample. Otherwise, the incom-
ing sample will not be admitted. If the top-node is evicted,
ImPACT will create a new heap object corresponding to the
incoming H-sample and insert it into the heap.

Importance-informed cache replacement algorithm performs
better than traditional LRU-like algorithms exploiting temporal
and spatial locality. Let’s take Fig. 9 as an example. We assume
that the capacity of H-cache is three and three data items (#1,
#2, #3) have been cached consecutively. When item #4 is
accessed, the LRU-like replacement algorithm will evict item
#1 because it is least recently used (shown in Fig. 9(a)). If we
further assume item #2 has the least importance value thus is the
top-node in the heap, we will have a higher probability of
accessing #1 than accessing #2 in future references. Hence, a
higher cache hit ratio will be achieved by evicting sample #2
(shown in Fig. 9(b)). We will experimentally demonstrate the
effectiveness of importance-informed cache over LRU-based
cache in section V-C.

2655

The second challenge in the design of ImPACT is the impor-
tance values of data items change as the model is trained, lead-
ing to variation of a cache hit ratio. To solve this issue, INPACT
periodically updates H-list by pulling it from cache clients.
Because of the overhead of building a small-top-heap, we do not
update H-heap in place. Instead, InPACT manages a shadow
heap, which has the same structure as H-heap. After H-list is
updated, the current H-heap becomes read-only and we continue
using it for eviction purposes. But new heap objects are inserted
into the shadow heap with their updated importance value. After
the shadow heap is rebuilt completely against the updated
H-list, it can be directly used as a new H-heap. Then the original
H-heap is released. In this way, the update of importance values
in the heap can be performed asynchronously and does not
affect the critical I/O path of the training process.

D. Dynamic Packaging

Because ImPACT only stores H-samples in H-cache,
L-samples that are not in H-list may still incur small random
I/Os. We design a new approach, named dynamic packaging, to
reduce data stall time caused by accessing L-samples. The idea
is to maintain a small L-cache for storing L-samples. The
L-samples are loaded in the memory in the unit of a package to
improve I/O efficiency. The package size is at least 1 MB
exploiting the spatial locality of storage systems. When an
L-sample is requested, IMPACT returns the data item from
L-cache if it is a hit. Otherwise, instead of reading the requested
L-sample from the storage system, we apply substitutability and
return a cached L-sample that has not been accessed at the cur-
rent epoch. The IDs of L-samples that are missed in the cache
will be recorded and later loaded from storage systems by the
loading thread. Because we replace any missed L-samples with
other L-samples in L-cache, we can achieve a hit ratio of 100%
in L-cache. Consequently, L-heap is not needed for L-samples.

Although the previous work [9] has shown that replacing the
cache missed requests with any samples in the cache will not
affect the model accuracy, in our importance sampling scenario,
it is different. We can only use the L-samples in the cache to
replace the cache missed L-sample requests to avoid a signifi-
cant drop in accuracy. This is because if we use the cached
H-samples to replace the cache missed L-samples, it will lead
to the H-samples being trained too many times while some
L-samples are never trained. This disrupts the balance of the
importance sampling algorithm when selecting samples, result-
ing in reduced training data diversity and model accuracy. Our
results show that our method has a very minor impact on the
model accuracy while significantly reducing data stall time (sec-
tion V-B and section V-F).

Specifically, InPACT uses two concurrent threads (i.e., pack-
aging thread and loading thread) working together to achieve
dynamic packaging, as shown in Fig. 10. At the beginning of
epoch 1, there are no packages in the storage system. Once
H-list is generated, the packaging thread randomly selects
L-samples. It then packs them into large file packages and stores
them in the storage system. Then the loading thread chooses one
package and caches all data items in the package in L-cache.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on July 27,2025 at 14:42:05 UTC from IEEE Xplore. Restrictions apply.

2656

e

Loading
H-cache
Memory
Storage
= I =
Packaging

Existing packages

Fig. 10. Illustration of packing thread and loading thread. The white area in the
package represents samples with low importance values and the dark area
denotes samples with high importance values.

Next, when a requested sample is not in H-list and missed
in L-cache, ImPACT directly randomly chooses a cached
L-sample which has not been accessed to replace the requested
one. When all data items in L-cache have been accessed once,
new packages will be read into L-cache by the loading thread.

After H-list is updated, the ratio of L-samples in the existing
packages is changed in the following training epochs. We need
to periodically repack the samples to make sure that a package
consists of a large number of L-samples to fill L-cache quickly
in fewer 1/Os. To achieve this goal, the samples that are previ-
ously missed in L-cache will be re-packed in the packages to
increase sample diversity. Then the rest of space will be filled
with L-samples that are randomly selected from the existing
packages. At the same time, the loading thread will load the
reorganized packages into memory. Then it stores L-samples in
L-cache.

Both the loading thread and packaging thread run asynchro-
nously. The package reorganization introduces three benefits.
First, L-samples can be read in the form of large packages,
which alleviates random small I/Os. Second, because of the
dynamic repackaging, we can guarantee that a large number of
L-samples are stored into L-cache for every I/O, thus improving
the effective storage bandwidth. Third, compared to the existing
fixed packaging strategy [26], package reorganization may
improve model accuracy because it can increase the randomness
of samples being trained.

E. Distributed InPACT

We extend ImPACT to a distributed cache for multi-node
training using data parallelism. Each node has an importance-
informed prefetching module, a local cache client, a cache server,
and a cache manager (detailed in section III-A). For distributed
prefetching, each node statically caches non-overlapping samples
with high variability in importance rankings. Nodes receive
unique sample ID subsets via PyTorch’s distributed sampler and
prefetch using the process in section III-B. For distributed cache
management, a key-value store tracks sample IDs and their
cached node locations. The cache server prevents sample duplica-
tion across nodes to maximize data caching. When a cache client
requests data, the cache manager checks the local cache first; if
unavailable, it queries the key-value store. If found, data is
retrieved from the respective node; otherwise, the request goes to
the shared storage system.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 8, AUGUST 2025

IV. IMPLEMENTATION

We implement the client of InPACT in Python based on
PyTorch 1.8.0 [16]. We develop ImpactRandomSampler, a sam-
pler for implementing importance-informed prefetching. We
add a new iCachelmageFolder interface in the original forch.
utils.Dataset class, which uses the gRPC framework to commu-
nicate with the InPACT server. The client gets samples from
the server through the rpc_loader interface and sends the H-list
of samples to the server through the update_ivpersample inter-
face. For the server, we implement it in Go language. We use
the key-value structure to organize the samples in H-cache and
L-cache. In addition to providing the usual functions of lookup/
access/insert, the server also provides an interface to receive
importance values and modules to handle dynamic packaging in
cache management. The client consists of approximately 2,500
lines of code, while the server has about 3,500 lines. IMPACT is
easy to deploy.

V. EVALUATION
A. Experimental Setup

System configurations. We conduct the experiments on a train-
ing server with 2x AMD EPYC 7742 CPUs (64 cores), 512 GB
DRAM, 10Gbps Ethernet, 8x NVIDIA A100 GPUs, one Intel
SSD of 1 TB. The operating system is 64-bit Ubuntu 18.04.5.
We train the DNN models using PyTorch 1.8.0 on the server
and place the training datasets in an OrangeFS parallel file sys-
tem [34], [35] in the same data center.

Workloads and datasets. We use a small dataset CIFAR10 [30]
and a large dataset ImageNet [36]. With CIFAR10, we train Shuf-
fleNet, ResNet18, MobileNet, and ResNet50. With ImageNet, we
train VGG11, MnasNet, SqueezeNet, and DenseNetl121. These
eight models are widely used in the prior work [9], [10]. We do
not consider natural language processing models (e.g., BERT)
because they are typically computation-bound [10].

Compared systems. We compare InPACT with Default, Base,
Quiver [9], CoorDL [10], iLFU, and iCache [17]. Default is the
PyTorch framework with an LRU cache and a built-in prefetch-
ing. Base adds computing-oriented importance sampling (CIS)
to Default to only reduce computation. Quiver enhances cache
management through sample substitutability, while CoorDL
uses a static policy that does not evict cached data. We imple-
ment iLFU which uses the same prefetching as ImPACT but
with an LFU cache replacement strategy. iCache uses the same
cache management as ImPACT but relies on a history-based
importance evaluation during prefetching. We also include Ora-
cle, which assumes all cache accesses are hits, to show the lower
bound of training time. We re-implement Quiver based on the
paper descriptions, as it is not open-source. For CoorDL, we
evaluate it by referring to its open-source. By default, the cache
space is set at 20% of the dataset for all comparisons, consistent
with previous work [9]. The memory used by ImPACT to buffer
samples with unstable importance rankings is included in the
total cache space for fairness. The initial ratio of Sizepcache tO
Sizejcache 18 9:1. We use 6 workers to fetch data, a batch size of

Authorized licensed use limited to: Zhejiang Lab. Downloaded on July 27,2025 at 14:42:05 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: IMPACT: IMPORTANCE-INFORMED PREFETCHING AND CACHING FOR I/O-BOUND DNN TRAINING

TABLE 1
MODEL ACCURACY ON CIFAR10
Top-1 Acc. (%) Top-5 Acc. (%)
Models
Default Base ImPACT | Default Base ImPACT
ShuffleNet 87.76 87.10 86.96 99.59 99.57 99.57
ResNet18 92.70 92.17 92.14 99.81 99.83 99.80
MobileNet 92.37 92.06 92.01 99.87 99.81 99.77
ResNet50 89.91 89.40 89.36 99.68 99.68 99.69
TABLE 11
MODEL ACCURACY ON IMAGENET
Top-1 Acc. (%) Top-5 Acc. (%)
Models
Default Base ImPACT | Default Base ImPACT
VGGl1 67.06 65.74 65.67 87.46 86.18 86.13
MnasNet 58.59 57.27 57.25 81.78 80.20 80.16
SqueezeNet 54.69 53.88 53.83 77.72 77.75 7791
DenseNet121 75.35 74.78 74.79 92.57 92.42 92.39

256, and stripe the training datasets over four servers with a 64
KB stripe size in OrangeFS.

B. Accuracy Results

We first present the accuracy comparison for the four models
on CIFARIO with different cache schemes. Table I shows
ImPACT achieves the comparable Top-1 and Top-5 accuracy
compared to Default for all models. More specifically, InPACT
has 0.80%, 0.56%, 0.36%, and 0.55% accuracy losses on Top-1
accuracy and 0.02%, 0.01%, 0.10%, and -0.01% accuracy losses
on Top-5 accuracy for ShuffleNet, ResNet18, MobileNet, and
ResNet50, respectively. The accuracy loss is constrained within
1%. Table II shows the model accuracy on ImageNet. The accu-
racy loss of INPACT yields satisfactory accuracy with less than
2% losses compared to Default.

We also observe that the average accuracy of ImPACT
decreases by 0.03% compared with Base; the average accuracy
of Base decreases by 0.56% compared with Default. This indi-
cates that the accuracy drop caused by caching management in
ImPACT (i.e., substitutability on cache missed L-samples) is
less than the accuracy drop caused by the importance sampling
algorithm. Additionally, sometimes the accuracy of ImPACT or
Base is higher than that of Default, which indicates that focusing
more on important samples can sometimes improve model accu-
racy [24].

Fig. 11(a) and 11(b) plot the Top-5 accuracy convergence
curves for ResNet18 on CIFAR10 and SqueezeNet on ImageNet
in 90 epochs, respectively. We can see that the curves of
ImPACT are closely matched with the curves of Default, which
provides the highest accuracy.

C. Performance Results

Training time. Fig. 12 shows the average training time per
epoch for the DNN models. The average training time is defined
as the total training time divided by the number of epochs. We
have four observations.

2657

— Default -- IMPACT — Default -- IMPACT

100
80|
6o/’

100

40
20

Accuracy (%)

Accuracy (%)

(0]
0 10 20 30 40 50 60 70 80
Epoch

0
0 10 20 30 40 50 60 70 80
Epoch

(a) ResNet18 on CIFAR10 (b) SqueezeNet on ImageNet

Fig. 11. Top-5 accuracy comparison.
[] Default [IBase Quiver B CoorDL
— BiLFU [iCache H IMPACT Oracle
©» 80
@
£60r 7L
£ o
40 | %
§= ’
£20 7
s /
|: 0 / N
ResNet18 ResNet50 ShuffleNet MobileNet
(a) Training time of one epoch on CIFAR10
[Default [3Base Quiver H CoorDL
— BiLFu [l iCache Il IMPACT Oracle
©6000
@ 5000
£ 4000
3000
£ 2000 <
5 1000 g $
|: 0 : : N
VGG11 MnasNet SqueezeNet DenseNet121
(b) Training time of one epoch on ImageNet
Fig. 12. Training time per epoch with various systems.

First, InPACT outperforms all other six cache systems. On
CIFARI10, it achieves maximum speedups of 4.6x, 4.6x, 3.9x,
3.5x%, 3.1x, 2.5x over Default, Base, Quiver, CoorDL, iLFU, and
iCACHE for the four models, respectively. On ImageNet, the maxi-
mum speedups are 1.3x-2.7x for the other four models. We also
observe that on VGGI1 and DenseNetl21, ImPACT performs
almost the same as Oracle. This demonstrates the effectiveness
of the importance-informed prefetching and cache management
methods in ImMPACT. Second, different DNN models yield varied
performance improvements. For example, ImPACT accelerates
ResNet18 on CIFAR10 by 4.6, but achieves a smaller acceleration
(i.e., 2.2x) for ResNet50. This is because ResNetl8 requires less
GPU computation than ResNet50, leading to a larger I/O bottleneck
and thus more space for performance improvement with ImnPACT.
Third, ImPACT reduces up to 59% training time compared to
iCache. This is because ImPACT statically buffers samples with
unstable importance rankings, which accelerates access to this data.
I/0 time. Fig. 13 presents the I/O time per epoch in DNN train-
ing. Similar trends can be observed on ImageNet. InPACT
reduces I/O time by an average of 4.3x compared to Default,
while other systems achieve speedups of 1.2x-2.4x. This
explains why ImPACT has the shortest training time.

D. Impact of Individual Techniques

Fig. 14 shows the impact of each optimization in ImPACT
on the total training time. Base is the system with the
computing-oriented importance sampling (CIS) and an LRU

Authorized licensed use limited to: Zhejiang Lab. Downloaded on July 27,2025 at 14:42:05 UTC from IEEE Xplore. Restrictions apply.

2658

[] Default
EIiLFU

[3IBase
[l iCache

Quiver
Il IMPACT

H CoorDL
Oracle

NNNNSNNNY

ResNet18 ResNet50 ShuffleNet MobileNet

Fig. 13. Average I/O time of one epoch training on CIFAR10.

—~80 e Hit rati

3 5 /1110 Time ©- Hit ratio 00
Zeot 1 4l —
3 a g
a0t 1 33r >
© 3, 502
[} | i (% ;
820 IZI m 1t T
Lo} 0 0

Base +lIP +HC ALL

(a) Total training time.

Base +IIP +HC ALL
(b) I/0O time and hit ratio.

Fig. 14. Performance impact of individual techniques.

cache (CIS+LRU). +/IP denotes the version where impor-
tance-informed prefetching module is enable to reduce the num-
ber of prefetching requests for training data. +HC denotes the
variant where H-cache is managed according to sample impor-
tance. All denotes the version with all optimizations including
L-cache is enabled.

Fig. 14 shows the end-to-end training time, I/O time, and cache
hit ratio after enabling each technique. +IIP achieves a 1.9x
training time speedup and a 2.2x I/O time speedup over the Base
for ResNet18. The primary reason is that while the Base method
only reduces computation time, /P further reduces I/O time.
When H-cache is enabled, the importance-informed algorithm
caches more H-samples, significantly increasing the hit ratio to
37% in ImPACT. This results in a 3.9x training time speedup
compared to the Base. With L-cache further enabled, A/l achieves
a 4.6x training time speedup and increases the hit ratio to 43%.
This is because missed L-samples are substituted by others in the
L-cache, further reducing data loading time.

E. The Advantage of Hybrid Importance Evaluation

ImPACT utilizes the hybrid importance evaluation method as
described in §III-B (denoted as hybrid) to effectively evaluate
the importance of all training data. We compare it with two
other methods: the history-based method [17], [24] (denoted as
history) and the reaccessment-based method [22] (denoted as
realtime). The history method chooses training samples based
on historical importance values before each epoch starts, while
the realtime method recalculates the precise and realtime impor-
tance values of all training samples by fetching the entire dataset
for each epoch. We compare these three methods across three
aspects: (1) their ability to identify important samples, (2) the
additional time required for importance evaluation, and (3) the
total training time needed to achieve the same target model
accuracy.

Fig. 15 shows the ability and time overhead for identifying
the top 1% most important samples for each epoch. We have the
following two observations. First, Hybrid outperforms history in

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 8, AUGUST 2025

_5 -@- history - hybrid —%— realtime 30 Y
5100
[}
- 20¢
c @
()
-S 50; E
g et PRV SIS PR O F10f
£ v
c
L% 20) 60 80 =
- Epoch realtime hybrid history
(a) Identification precision. (b) Time overhead.
Fig. 15. Comparison of identification ability and time overhead across various
methods.
-- realtime - history - hybrid -- realtime - history - hybrid
100 100
target target
o 3 80
2 60 % 60 ;
© © ;
3 40 5 40f 4.
< 20 < 20
0 0
0 1000 2000 3000 0 1000 2000 3000 4000
Traing time (s) Traing time (s)
(a) ShuffleNet (b) ResNet50
Fig. 16. Comparison of training time to achieve target model accuracy using

various methods.

the ability of identifying the most important samples, with iden-
tification precision improved by 9% to 28%. Second, although
realtime has the highest identification precision, its significant
time overhead restricts training efficiency. Specifically, realtime
completes the identification process 25x slower than hybrid.
This is because the hybrid method only needs to fetch samples
with unstable importance rankings to re-evaluate their impor-
tance for each epoch, whereas the realtime method requires
fetching all the samples from memory or storage to re-evaluate
all their importance values.

Fig. 16 shows the time taken to reach the same target model
accuracy using the three methods. We observe that the hybrid
method achieved the target accuracy the fastest. Compared to
the history method, the hybrid method accelerates the time to
reach the same accuracy by an average of 1.3x. This is because
the hybrid method can evaluate the importance of training data
more accurately than the history method, thereby reducing the
time spent loading unimportant data. Compared to the realtime
method, the hybrid method is up to 3.7 x faster than the realtime
method. This is because, although the realtime method can
more accurately assess the importance of all samples in each
epoch, its significant I/O time overhead leads to a considerable
increase in training time.

F. Impact of Sample Substitution on Model Accuracy

To accelerate model training without significant accuracy
degradation, INPACT does not substitute H-samples with other
samples when they are missed in the cache. However, when
L-samples are missed, we can substitute them with samples in
either H-cache or L-cache. Since either case shows the same /O
performance, we study its impact on model accuracy.

Table III shows the model accuracy with different sample
substitution policies. Def denotes the policy without sample

Authorized licensed use limited to: Zhejiang Lab. Downloaded on July 27,2025 at 14:42:05 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: IMPACT: IMPORTANCE-INFORMED PREFETCHING AND CACHING FOR I/O-BOUND DNN TRAINING

TABLE III
MODEL ACCURACY ON CIFAR10

Top-1 Acc. (%) Top-5 Acc. (%)
Model
oden Def | STuc | STuc | Def | STue | STic
ResNet18 92.70 91.89 92.14 99.81 99.77 99.80
ShuffleNet | 87.76 86.73 86.96 99.59 99.52 99.57
80 O Default IMPACT
=
@ 60
£
&40
£
£20
=
0 1 2 3 4
of GPUs
Fig. 17. Performance of InPACT on a single machine using one to four GPUs.

O Default IMPACT

w700
o 600
_g 500
2400
£ 300
'§ 200
= 100

0

pe-Res Vg R g Res'g res®

Fig. 18. Distributed training on CIFAR10. The label “nS” means the system

with “n” servers.

substitution. STyc and ST ¢ represent the policy to substitute
the missed sample with H-sample and L-sample respectively.
For ResNetl8, the Top-1 model accuracy drops 0.81% and
0.56% with STyc and STy compared to Def. For ShuffleNet,
STye and STy yield a 1.03% and 0.80% Top-1 accuracy drop.
These results show ST;¢ has less impact on model accuracy.
Similar trends can be observed in Top-5 accuracy for other
models on CIFARIO and ImageNet. We believe this is
because STyc prevents L-samples from being trained. Although
L-samples have a smaller impact on model gradient updates,
completely excluding them from training still reduces the diver-
sity of the training data, which consequently leads to a decrease
in the model’s generalization ability. In contrast, ST, ¢ only
changes the order in which L-samples are trained, while main-
taining the diversity of the training data, thus achieving higher
accuracy. Thus, ImPACT takes this substituting method.

G. Single-Job Multi-GPU Training

Fig. 18 shows the per-epoch training time of ResNet50 on
multi-GPUs with CIFAR10. We can find ImPACT always takes
less training time than Default for all GPU configurations. Com-
pared to Default, INPACT achieves an average speedup of 2.3 x
with different numbers of GPUs. This shows ImPACT is effec-
tive in multi-GPU training. Another observation is that the total
training time of Default remains similar as the number of GPUs
increases. This is because increasing GPUs reduces a small
amount of computing time but also incurs the communication
overhead among multiple GPUs. In contrast, InPACT has a

2659

300 [] Default 4 IMPACT
©
€ 200
>
[
‘€100
s
= 0 I:b b=
2 4 8 16

of fetching workers

Fig. 19. Performance impact of number of workers.

slight performance improvement because it can reduce a lot of
I/O time with the IIS and importance-aware cache management
techniques, making the training process less I/O bound.

H. Multi-Server Distributed Training

Fig. 18 shows the system performance of ImPACT in a dis-
tributed cloud platform with two and four nodes. Each server is
equipped with one GPU and a cache space of 20% of the whole
training data. As we do not have the permission to install the
kernel module of OrangeFS on the cloud platform, we store the
training data in an NFS server, similar to the approach in other
cloud deep learning systems [37], [38]. The maximum read
bandwidth of the NFS is about 10Gb/s. Although our scale is
small, we argue that it is sufficient to demonstrate the efficiency
of our system. Due to space limitations, we only show the
results on CIFAR10 for ResNet18 and ResNet50. The results of
other models lead to similar observations as described below.

ImPACT outperforms Default in distributed training, achiev-
ing at least 8.6x and 7.6x speedups on 2-server and 4-server
configurations, respectively. The reasons are similar to those in
single-server training (section V-C). Additionally, 4-server
training time is about 1.5x lower than 2-server time. However,
ImPACT’s speedup is lower on 4-server than on 2-server con-
figurations. For example, the speedup for ResNet18 drops from
9.3% to 8.5%. This is due to diminishing returns in cache hit
ratio improvement with larger joint cache spaces: the cache hit
ratio increases by 42% on 2-server and 23% on 4-server setups.

1. Parameter Sensitivity Analysis

Number of prefetching workers. PyTorch employs multiple
workers to prefetch training data from storage systems. Fig. 19
shows the training time per epoch with various number of work-
ers. We train ResNetl8 on CIFAR10. As shown, ImPACT
achieves a speedup over Default from 3.9x to 1.2x while the
number of workers is increased from 2 to 16. This is because the
proportion of data stall time decreases from 96.7% to 28.9%
when the number of workers increases. Thus, the I/O benefits
brought by ImPACT diminishes. However, since NVIDIA’s
Al-optimized servers (i.e., DGX-2) or general commercial cloud
servers typically provide users with 3-4 CPU cores (6-8 vCPUs)
per GPU [10], the number of workers set by users are usually
limited to eight. Therefore, the prefetching effect is limited and
iCache is still useful.

Cache size. Fig. 20 shows the training performance with various
cache sizes for ShuffleNet on CIFAR10. First, we observe that
with ImPACT, the speedup of training throughput ranges from

Authorized licensed use limited to: Zhejiang Lab. Downloaded on July 27,2025 at 14:42:05 UTC from IEEE Xplore. Restrictions apply.

2660

Hit ratio
Cache Speedup Ours|Default
20% | 29x [43%]| 2%
40% | 31Ix [61%| 9%
60% | 33x |74%]| 23%
80% | 3.6x [88%| 48%

Fig. 20. Performance impact of cache size.

[Tl Epoch /] Evaluation -© Hit ratio [T Epoch [/] Evaluation -© Hit ratio
20 100 45 100

151 M < 9

@ M < @30 18
S o i)

QEJ 10F k 50@ 'ﬂé E 50§
F ol 2 F15¢ 6 1 =

0 0, 0, 0, 0 0/ 0 o 0
0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
Size of set S Size of set S
(a) ResNet18 (b) ResNet50
Fig. 21. Performance impact of various sizes of set S.

2.9x to 3.6 as the cache size increases from 20% to 80% com-
pared to the Default. Second, the cache hit ratio increases with
cache size for both INPACT and Default. Notably, even when
the cache size is 80% of the dataset size, IMPACT still achieves
a cache hit ratio 1.8x higher than of Default, explaining its
superior performance.

The size of set S. The size of set S represents the number of sam-
ples whose importance values need to be re-evaluated before each
epoch as described in §1II-B. It affects the importance evaluation
time (denoted as ‘Evaluation’), cache hit ratios, and training time
per epoch (denoted as ‘Epoch’). We adjust the size of set S from
0% to 100% of the total cache space. As shown in Fig. 21, select-
ing a size of 25% for set S results in the highest cache hit rate and
the shortest training time. Hence, we emparically chose 25% as
the default value. Furthermore, it shows that regardless of the size
of S, the epoch time outperforms the best counterparts (55s for
ResNet18 and 59s for ResNet50). This demonstrates the robust-
ness of the IMPACT system. Similar observations were made
with other datasets and models.

Underlying storage. We evaluate ImPACT using two local
storage media: SSD and HDD. Fig. 22 shows that InPACT
speeds up the training by 3.4 x to 6x on the ResNet18 and Shuf-
fleNet models compared to Default. We also observe that the
average speedup on SSD (i.e., 5.8%) is greater than that on
HDD (i.e., 3.6x), as InPACT can completely eliminate the I/O
time on the critical path when using SSDs.

Model size. To evaluate the efficiency of InPACT on models
with different scales, we create variants of the ResNet model by
stacking different numbers of convolutional layers, ranging
from 18 to 144 layers. Fig. 23 shows that INPACT consistently
outperforms the Default by 4.2x to 5.3x due to the reduced
computation and I/O time. Although the I/O time ratio of the
Default model decreases as the model size increases, INPACT
consistently achieves a lower I/O time ratio, even completely
eliminating the I/O bottleneck on the 144-layer large model.
This demonstrates that ImPACT is still efficient on large mod-
els. Additionally, due to the I/O-bound training of the system,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 8, AUGUST 2025

[] Default-others 4 IMPACT-others
 IMPACT-I/O

| _ShuffleNet

8 Default-1/O
—_ ResNet18

Zh]
HDD SSD HDD SSD
Storage settings

Fig. 22. Performance impact of underlying storage.
] Default /] IMPACT - 1/O ratio
80 00
=
-g 60 B 75§
>40H 1502
2 e
c [©]
©20 J25=
'_
08 36 72 a8 °
of model layers
Fig. 23. Performance impact of model size.

the total time does not change significantly as the model size
increases.

VI. RELATED WORK

Prefetching Optimization. Popular deep learning frameworks
(such as PyTorch [16] and TensorFlow [26]), along with numer-
ous studies [27], [39], [40], [41], use multithreading to parallel-
ize prefetching and computation, placing pre-fetched training
data into a buffer to reduce prefetching time stalls. However,
because prefetching can be time-consuming and the number of
prefetching threads is limited [10], prefetching time cannot be
fully covered by computation in scenarios where I/O is a bottle-
neck. Unlike these approaches, INnPACT reduces the prefetch-
ing of unimportant data.

Cache Management for DNN Training. Existing cache opti-
mizations for DNN include aggregate the cache capacity from
multiple nodes [42], using static cache or substitutability to
improve the cache hit ratio [9], [10], [15], [20], and sharing the
data in the cache between training jobs [10]. In contrast,
ImPACT retains important samples in the H-cache and only
substitutes cache missed unimportant samples (i.e., L-samples)
because replacing important samples changes the distribution of
H-samples decided by importance sampling algorithms, which
may impact the final model accuracy.

Storage Optimizations for DNN Training. Existing methods
use static packing (e.g., TFRecord [26], Webdataset [32], DIE-
SEL [33], DLFS [43]) to address random reads. In contrast,
ImPACT dynamically packages unimportant samples at runtime
to enhance data access randomness during training. Google alle-
viates storage I/O bottleneck via data reusing [44], [45] which is
orthogonal to our work and can be integrated.

VII. CONCLUSION

In this paper, we present INPACT, a novel prefetching and
caching system that reduces data stall time for I/O-bound DNN

Authorized licensed use limited to: Zhejiang Lab. Downloaded on July 27,2025 at 14:42:05 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: IMPACT: IMPORTANCE-INFORMED PREFETCHING AND CACHING FOR I/O-BOUND DNN TRAINING

training jobs. We introduce I/O-oriented importance sampling,
applied to both prefetching and caching layers. Our importance-
informed prefetching minimizes access to unimportant data,
while importance-informed cache server further enhances cache
hit ratios. Experimental results demonstrate that InPACT has a
negligible impact on training accuracy and accelerates DNN
training time by up to 3.5x compared to state-of-the-art sys-
tems. As deep learning applications grow, we hope ImPACT
will inspire future memory and storage systems for artificial
intelligence.

ACKNOWLEDGMENT

We sincerely thank the anonymous reviewers for their con-
structive suggestions.

(1

[2]
[3]

[4]

[3]

[6]

[7]

[8]

[9]

(10]

(11]
[12]

[13]
[14]

[15]

[16]

(17]

(18]

REFERENCES

C. Seifert et al., “Visualizations of deep neural networks in computer
vision: A survey,” in Proc. Transparent Data Mining Big Small Data,
2017, pp. 123-144.

X. Liu, P. He, W. Chen, and J. Gao, “Multi-task deep neural networks
for natural language understanding,” 2019, arXiv:1901.11504.

W. Chen, S. He, H. Qu, and X. Zhang, “LeapGNN: Accelerating
distributed GNN training leveraging feature-centric model migration,”
in Proc. 23rd USENIX Conf. File Storage Technol., 2025, pp. 255-270.
S. Yang et al., “GOPIM: GCN-oriented pipeline optimization for PIM
accelerators,” in Proc. IEEE Int. Symp. High-Perform. Comput. Archit.,
2025.

T. Wu et al.,, “AUTOHET: An automated heterogeneous reram-based
accelerator for DNN Inference,” in Proc. 53rd Int. Conf. Parallel
Process., 2024, pp. 1052-1061.

P. Chen et al., “CSWAP: A self-tuning compression framework for
accelerating tensor swapping in GPUs,” in Proc. IEEE Int. Conf.
Cluster Comput. Piscataway, NJ, USA: IEEE Press, 2021, pp. 271-282.
P. Chen et al., “Accelerating tensor swapping in GPUs with self-tuning
compression,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 12, pp.
44844498, Dec. 2022.

S. He et al., “HOME: A holistic GPU memory management framework
for deep learning,” IEEE Trans. Comput., vol. 72, no. 3, pp. 826-838,
Mar. 2022.

A. V. Kumar and M. Sivathanu, “Quiver: An informed storage cache
for deep learning,” in Proc. 18th USENIX Conf. on File and Storage
Technologies, 2020, pp. 283-296.

J. Mohan, A. Phanishayee, A. Raniwala, and V. Chidambaram,
“Analyzing and mitigating data stalls in DNN training,” in Proc. VLDB
Endowment.

Google, “Open images dataset,” 2018. [Online]. Available: https://
github.com/cvdfoundation/open-images-dataset

A. Katharopoulos and F. Fleuret, “Not all samples are created equal:
Deep learning with importance sampling,” in Proc. Int. Conf. Mach.
Learn., 2018, pp. 2525-2534.

T. B. Johnson and C. Guestrin, “Training deep models faster with robust,
approximate importance sampling,” Adv. Neural Inf. Process. Syst., 2018.

A. H. Jiang et al., “Accelerating deep learning by focusing on the
biggest losers,” 2019, arXiv:1910.00762.

Y. Zhu et al., “Entropy-aware I/O pipelining for large-scale deep
learning on HPC systems,” in Proc. 26th Int. Symp. Model., Anal.,
Simul. Comput. Telecommunication Syst., 2018, pp. 145-156.

PyTorch, “PyTorch/Vision,” 2021. [Online]. Available: https:/github.
com/pytorch/vision/tree/master/torchvision

W. Chen et al., “iCache: An importance-sampling-informed cache for
accelerating I/0O-bound DNN model training,” in Proc. IEEE Int. Symp.
High-Perform. Comput. Archit., 2023, pp. 220-232.

S. Pumma, M. Si, W. C. Feng, and P. Balaji, “Scalable deep learning
via I/O analysis and optimization,” ACM Trans. Parallel Comput.,
vol. 6, no. 2, pp. 1-34, 2019.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]
[31]
(32]

(33]

[34]
[35]

[36]

[37]
(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

2661

T. Kurth et al., “Exascale deep learning for climate analytics,” in Proc. Int.
Conf. High Perform. Comput., Netw., Storage, Anal., 2018, pp. 649—660.
M. Dantas, D. Leitao, C. Correia, R. Macedo, W. Xu, and J. Paulo,
“MONARCH: Hierarchical storage management for deep learning
frameworks,” in Proc. IEEE Int. Conf. Cluster Comput. Piscataway, NJ,
USA: IEEE Press, 2021, pp. 657-663.

I. Loshchilov and F. Hutter, “Online batch selection for faster training
of neural networks,” 2015, arXiv:1511.06343.

S. Mindermann et al., “Prioritized training on points that are learnable,
worth learning, and not yet learnt,” in Proc. Int. Conf. Mach. Learn.,
2022, pp. 15630-15649.

S. Hu, W. Chen, Y. Yin, and S. He, “IOWA: An I/O-aware adaptive
sampling framework for deep learning,” in Proc. 17th Int. Conf. Netw.,
Archit., Storage, 2024.

R. I. S. Khan et al., “SHADE: Enable fundamental cacheability for
distributed deep learning training,” in Proc. 21st USENIX Conf. File
Storage Technol., 2023, pp. 135-152.

W. Chen et al., “IMPRESS: An importance-informed multi-tier prefix
KV storage system for large language model inference,” in Proc. 23rd
USENIX Conf. File Storage Technol., 2025, pp. 187-201.

M. Abadi et al., “Tensorflow: A system for large-scale machine
learning,” in Proc. 12th USENIX Symp. Operating Syst. Des.
Implement., 2016, pp. 265-283.

N. Dryden, R. Bohringer, T. Ben-Nun, and T. Hoefler, “Clairvoyant
prefetching for distributed machine learning 1/0,” in Proc. Int. Conf.
High Perform. Comput., Netw., Storage Anal., 2021, pp. 1-15.

S. Jiang and X. Zhang, “LIRS: An efficient low inter-reference recency
set replacement policy to improve buffer cache performance,”
SIGMETRICS Perform. Eval. Rev., vol. 30, no. 1, pp. 31-42, 2002.

J. Chung, K. Lee, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Ubershuffle: Communication-efficient data shuffling for SGD via
coding theory,” Adv. Neur. Inf. Process. Syst., vol. 7, pp. 131-145, 2017.
A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” CS
231n, vol. 7, no. 7, 2015, Art. no. 3.

A. Aizman, G. Maltby, and T. Breuel, “High performance I/O for large
scale deep learning,” in Proc. Int. Conf. Big Data, 2019, pp. 5965-5967.
L. Wang et al., “DIESEL: A dataset-based distributed storage and
caching system for large-scale deep learning training,” in Proc. 49th Int.
Conf. Parallel Process., 2020, pp. 1-11.

Orange, “Orange File System,” http://www.orangefs.org/, 2021.

S. He, X.-H. Sun, and B. Feng, “S4D-cache: Smart selective SSD cache
for parallel I/O systems,” in Proc. 34th Int. Conf. Distrib. Comput. Syst.
Piscataway, NJ, USA: IEEE Press, 2014, pp. 514-523.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248-255.

S. Shi et al., “Towards scalable distributed training of deep learning on
public cloud clusters,” Proc. Mach. Learn. Syst., vol. 3, pp. 401-412, 2021.
K. R. Jayaram et al., “FfDL: A flexible multi-tenant deep learning
platform,” in Proc. 20th Int. Middleware Conf., 2019, pp. 82-95.

X. Ruan and H. Chen, “Informed prefetching in I/O bounded distributed
deep learning,” in Proc. IEEE Int. Parallel Distrib. Process. Symp.
Workshops. Piscataway, NJ, USA: IEEE Press, 2021, pp. 850-857.

S. Lee et al., “Asynchronous I/O strategy for large-scale deep learning
applications,” in Proc. 28th Int. Conf. High Perform. Comput., Data,
Anal. Piscataway, NJ, USA: IEEE Press, 2021, pp. 322-331.

R. Macedo et al., “The case for storage optimization decoupling in deep
learning frameworks,” in Proc. IEEE Int. Conf. Cluster Comput., 2021,
pp. 649-656.

Z. Zhang, L. Huang, J. G. Pauloski, and I. T. Foster, “Efficient I/O for
neural network training with compressed data,” in Proc. IEEE Int.
Parallel Distrib. Process. Symp., 2020, pp. 409-418.

Y. Zhu, W. Yu, B. Jiao, K. Mohror, A. Moody, and F. Chowdhury,
“Efficient user-level storage disaggregation for deep learning,” in Proc.
IEEE Int. Conf. Cluster Comput., 2019, pp. 1-12.

D. Choi, A. Passos, C. J. Shallue, and G. E. Dahl, “Faster neural
network training with data echoing,” 2019, arXiv:1907.05550.

C. Xu, S. Bhattacharya, M. Foltin, S. Byna, and P. Faraboschi, “Data-
aware storage tiering for deep learning,” in Proc. IEEE/ACM Sixth Int.
Parallel Data Syst. Workshop, 2021, pp. 23-28.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on July 27,2025 at 14:42:05 UTC from IEEE Xplore. Restrictions apply.

https://github.com/cvdfoundation/open-images-dataset
https://github.com/cvdfoundation/open-images-dataset
https://github.com/pytorch/vision/tree/master/torchvision
https://github.com/pytorch/vision/tree/master/torchvision
http://dx.doi.org/3
https://http://www.orangefs.org/,

Weijian Chen is currently working toward the
Ph.D. degree with the College of Computer Science
and Technology, Zhejiang University, China. His
research interests include memory and storage
systems for Al

Shuibing He (Member, IEEE) received the Ph.D.
degree in computer science and technology from
Huazhong University of Science and Technology, in
2009. Currently, he is a ZJUI00 Young Professor
with the College of Computer Science and Technol-
ogy, Zhejiang University, China. His research
interests include intelligent computing, memory and
storage systems, and processing-in-memory. He is a
member of ACM.

Ruidong Zhang is currently working toward the
master’s degree with the College of Computer
Science and Technology, Zhejiang University. His
research interests include system for AI and storage
systems.

Xuechen Zhang (Member, IEEE) received the M.S.
and Ph.D. degrees in computer engineering from
Wayne State University. Currently, he is an Associ-
ate Professor with the School of Engineering and
Computer Science, Washington State University
Vancouver. His research interests include the areas
of storage systems and high-performance computing.
He is a member of ACM.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 8, AUGUST 2025

Ping Chen is currently working toward the Ph.D.
degree with the College of Computer Science
and Technology, Zhejiang University, China. His
research interests include intelligent computing and
memory management for Al systems.

Siling Yang (Graduate Student Member, IEEE) is
currently working toward the Ph.D. degree with the
College of Computer Science and Technology,
Zhejiang University, China. Her research interests
include intelligent computing and processing-in-
memory.

Haoyang Qu is currently working toward the mas-
ter’s degree with the College of Computer Science
and Technology, Zhejiang University. His research
interests include system for Al and storage systems.

Xuan Zhan is currently working toward the Ph.D.
degree with the College of Computer Science
and Technology, Zhejiang University, China. Her
research interests include systems for Al and cluster
resource scheduling.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on July 27,2025 at 14:42:05 UTC from IEEE Xplore. Restrictions apply.

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

