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Abstract—The performance gap between processor and stor-
age device has continuously increased during the past few
decades. The gap is further exacerbated recently because appli-
cations are becoming more data-intensive in both industry and
academia. Traditional storage devices, such as hard disk drives
(HDD), fail to keep up with the paces of this growth. A known
solution is to use solid state drives (SSD) as fast storage. Due to
high cost of SSD, data and supercomputing centers usually adopt
a hybrid storage system, which consists of a combination of HDD
and SSD I/O servers. However, hybrid I/O and storage systems
have increased the complexity, making SSD often underutilized.
The configuration and utilization of HDD/SSD hybrid systems is a
lasting phenomenon. In this study, we propose a high performance
hybrid parallel I/O and storage simulator, HPIS3. As a co-design
tool, HPIS3 is capable of simulating a variety of parallel storage
systems, especially under hybrid scenarios. The experimental
results show that the lowest error rate is 2%, and the average is
11.98%.
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I. INTRODUCTION

High performance parallel I/O and storage systems are
designed to address the I/O requirements in HPC systems.
Parallel File Systems (PFSs), such as PVFS1 [1], Lustre [2],
GPFS [3], PanFS [4] and Ceph [5], are the primary solutions
in the HPC domain. In these file systems, a large file request
typically is divided into multiple small sub-requests with a
fixed stripe size. However, intensive small accesses on HDDs
can degrade the performance severely. This degradation can be
alleviated by using larger file stripe size, which, on the other
hand, loses I/O access parallelism and hence the aggregated
I/O bandwidth. Optimizing parallel file systems is an uneasy
task.

Solid state drives (SSD) provide excellent properties be-
yond that of HDDs, including well improved small random
requests performance [6] and low access latency. As SSDs are
becoming more reliable, they start to be deployed in enterprise
and high performance computing facilities [7]. However, their
deployment is still limited by capacity and cost constraint. It
is unlikely that traditional spinning hard drives will be fully
replaced by SSDs in the near future. An alternative is to
use a heterogeneous storage system consisting of both HDD
and SSD. Heterogeneity is useful in HPC because SSDs can
provide an opportunity to reduce I/O latency and increase
IOPS, and conventional HDDs can play an important role in
supporting a high degree of parallelism and providing sufficient
capacity within limited budget.

1Now this project is renamed to and maintained by OrangeFS.

The task of exploring complex heterogeneous system is
challenging in current system environment. Hybrid parallel I/O
and storage systems have a variety choices of hardware and
software configurations and an even richer set of optimization
algorithms. It is almost impossible to obtain an optimal system
configuration without the help of an efficient co-design tool.
For example, SSD and HDD have different I/O latencies, and
applications may have different access patterns and data layout
schemes, which makes the PFS tuning costly. In order to test
and boost parallel I/O and storage systems, this paper presents
a Hybrid Parallel I/O and Storage System Simulator (HPIS3),
a co-design tool targeting the optimization of hybrid parallel
I/O and storage systems. HPIS3 focuses on HDD/SSD hybrid
parallel systems, where a set of SSDs and HDDs are deployed
as storage nodes.

The major contribution of this paper is the design and im-
plementation of HPIS3. We demonstrate the validity of HPIS3
through performance comparison between the simulation and
real system. We further demonstrate the capability of HPIS3
through a use case design and experiment. In addition, HPIS3
features two distinct types of hybrid system design, namely
buffered-SSD and tiered-SSD storage systems. Experimental
results show that HPIS3 can scale up to 256 MPI processes.

II. RELATED WORK

A. Storage Device and Parallel I/O Simulators

DiskSim and its SSD extension are well accepted simula-
tors for single disk behaviors. However, they cannot simulate
the HPC environment directly. Substantial researches have
focused on the performance modeling under parallel I/O and
storage systems. For example, Liu et al. [8] built a simulation
system for the Blue Gene/P supercomputer in Argonne Lab,
but this work was done under homogeneous storage systems.
Narayanan et al. from Microsoft analyzed the tradeoffs of
migrating the storage from HDDs to SSDs [9]. PFSsim [10]
is another trace-driven simulator, which can simulate the
PFS design on distributed storage systems. It includes I/O
schedulers, network structures, and workloads. Researchers
from UCSC systems research lab and Los Alamos National
Lab built a parallel file system simulator, focusing on storage
cost and power [11].

B. SSD Usage in I/O and Storage Systems

Using SSDs as a cache for traditional HDDs is a widely
adopted strategy in I/O system design. FlashCache [12] uses
flash-based memory to achieve high performance as well as
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low energy consumption. SieveStore [13] traces the most pop-
ular blocks and places them onto SSD. iBridge [14] forwards
the unaligned sub-requests to SSD to achieve the most cost-
effective improvement. Many efforts have been made to en-
large SSDs advantages and avoid their disadvantages [6], [15].
For example, to improve the performance of data intensive
applications, San Diego Supercomputer Center has built a
large SSD-based high-performance computing cluster, called
Gordon [7].

C. PFS Performance Tuning

System-wide performance tuning is a prevalent topic in
computer science. A variety of works have focused in this
area. Anderson et al. [16] built a system, which automates
the design and configuration process for the storage system. It
is facilitated with the interactive design loop to optimize the
local disk array configuration. When the local storage array
becomes relatively large scale, Minerva [17] uses declarative
specifications of applications requirements, device capabilities,
and optimizes to explore the search space for possible solu-
tions. Behzad et al. [18] proposed a work of auto-tuning for
optimizing I/O performance by using HDF5 I/O middleware.
CALCiom [19] is a framework to mitigate the I/O interference
through dynamic selection of scheduling policies.

III. THE PARALLEL I/O AND STORAGE DEVICE
SIMULATION MODEL UNDER PVFS

HPIS3 is built on Rensselaer Optimistic Simulation System
(ROSS) [20], a parallel simulation platform. In this section,
we first introduce ROSS and then present the design and
implementation of the PVFS models and the storage device
models.

A. ROSS Platform

ROSS is developed in ANSI C, and features time-warp
optimistic algorithm and reverse computation for fast and
efficient parallel event processing. ROSS is based on logical
process (LP) models and provides a set of APIs for building
parallel discrete event models. LPs are abstractions of simu-
lated physical processes. They act like real processes in the
system and are synchronized by Time Warp protocol [20].
Many successful systems leverage the functionalities provided
by ROSS [21], [22], e.g CODES [23], BigSim [24] etc. In
this study, we implement HPIS3 on top of ROSS platform to
achieve best simulation efficiency and system scalability.

B. Simulation Architecture Overview

HPIS3 models the parallel I/O and storage system in HPC
environment. Figure 1 presents the overview of its architecture.
HPIS3 has 4 main components: 1) application workloads; 2)
PVFS clients; 3) PVFS servers and 4) storage devices. In
this design, SSDs are used both in the buffer layer and the
storage layer in terms of configurations. This flexibility brings
optimization space for PFS performance tuning. Applications
access patterns can vary at runtime, and the data layout on
PFS can also impact the overall performance. The central idea
in this design is that we only focus on simulating the small
sub-requests, which are the bottleneck along the data path and
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Fig. 1: Simulator Architecture
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Fig. 2: Write Event Flow Chart in Simulator

avoid modeling other details to keep the HPIS3 simple and
light-weight.

The application clients are driven by the actual application
trace. The traces are collected by using IOSIG [25]. IOSIG
is a fully functional MPI/POSIX based tracing tool, which
is capable of capturing the applications I/O logic order with
accurate timestamps. HPIS3 reads trace files and generates
events to trigger client behaviors. In Fig. 1 PVFS clients
and servers are modeled as different logical processes on
separated layers. We use two types of LPs to model HDD and
SSD, and they are connected onto the server node LPs. All
the communication latency is configurable by an input file.
By given different network latency parameters, the physical
network topology between PVFS clients and PVFS servers
can be simulated.

In HPIS3, all the communication between LPs are via sim-
ulated message passing on ROSS platform. Figure 2 illustrates
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the detailed event workflow of how a write request is handled
by both the PVFS clients and servers. First, HPIS3 generates
file request events, which triggers the simulated requests to be
dispatched from the appropriate clients. Then the requests are
divided into sub-requests, which are in turn sent to specific
servers. The server hands over all the sub-requests to the
hardware model, where the simulated requests are handled.
The following sections will specifically elaborate the modeling
of file requests, queues, PVFS clients, PVFS servers, and two
types of storage hardware: HDD and SSD.

C. File Requests and Request Queue Modeling

File requests in HPIS3 are simulated by wrapped messages.
Messages in HPIS3 are customized by requirements of each
LP model. To simulate file requests, we wrap three typical
properties: file id, length and file offset. These messages are
handled by Client LPs, Server LPs and Drive LPs. Message
types are predefined to identify the type of messages. All LPs
handle the request according to both the type of request and
their states. In order to retrieve the statistics, we also add some
properties to requests such as sender id, receiver id, start time
and end time. In HPIS3, we simplify the calculation of the
network latency for each request to a variable, which is a
configurable parameter in the startup configuration file.

Request queues in HPIS3 are simulated by some special
variables in the state of LPs. ROSS handles messages in a first-
come-first-serve manner. A later request could be processed
sooner. To keep the logical accuracy, for example, if the request
queue is defined as first-come-first-serve without preemption,
one variable will be added to the state of a LP. This variable
records the next available time of this LP to handle a request.
So the logical time of handling requests can be calculated and
also the logical request waiting time can be calculated in this
manner. If a multi-queue is required, an array of variables will
be added to the LP.

D. PVFS Client Modeling

In Figure 1, PVFS Clients are the clients inside the users’
applications. In this simulation, they are used to issue all the
requests from applications. The striping mechanism is also
implemented. There is a fixed stripe size defined. This mech-
anism simulates the real design of some parallel file systems.
HPIS3 triggers all the requests from the trace files to the
corresponding clients (ranks). For each PFS request, ranks can
monitor the status of each request and sub-request and stripe
the request into multiple sub-requests. A request is finished
when all its sub-requests are finished. The dependencies of
requests are maintained by a linked list, meaning that the
request on the top of the list has the highest priority. Once
the file server node receives a sub-request, the file node puts it
into the tail of the input pipeline and continues on executing
the head of the pipeline. When a sub-request is finished by
the file node, the feedback (or data) will be put into the output
pipeline, which will then be sent to the corresponding clients.
By giving a specific routing time penalty of all the messages,
the finish time of sub-requests, and the finish time of the whole
request can be counted. This is to simulate the total access time
for a request is determined by the slowest sub-request. This
mechanism is exactly the same as those in PFSs such as PVFS.
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Fig. 3: Concurrent Write Requests on SSD

Any request from the applications might be striped into
multiple sub-requests. For example, three cases occur in PVFS,
if there are four file server nodes. The sub-requests will be
dispatched in a round-robin fashion. The three cases where a
file request involves a different number of file servers are: (a)
The request is smaller than the stripe size (which is a fixed
size in PVFS), and hence only one file server is involved.
The request itself will be dispatched directly to the appropriate
server. (b) While the request spans across more than three
stripe sizes, three file servers are involved. The request will be
stripped into three sub-requests, the first two of which have
the same stripe size and the last one has the remaining size,
which could be less than a single stripe size. (c) When the
size of the request is larger than the sum of the stripe size
on the four servers, according to the round-robin algorithm,
all the four file servers are involved. The request will then be
divided into five sub-requests. The first four sub-requests will
be dispatched to each of the servers, and the last sub-request
will be sent to the first server in a round-robin fashion.

E. PVFS Server Modeling

Each PVFS Server works as a standalone server. PVFS is
derived from the state machine programming pattern [1]. Fig.
2 shows all the states are used from both the client side view
and the server side view in a write progress. In the simulation
model of PVFS server, multiple critical states are simulated,
such as start positive actions and open the response flow. PVFS
server LPs handle the events at their appropriate states. Server
LPs can handle events separately as they can work in parallel.
For example, if there are four server nodes, each responds to
the requests from any client in MPI-IO without intervening
others. There are two queues in each of the server nodes: 1)
the first queue is used to buffer all the requests from the client
side, which will then be sent to the hardware model; 2) the
second queue stores the response from the hardware, which
will be then sent to the clients. At the state of opening flow,
server LPs send messages to HDD/SDD LPs; at the state of
completion, they receive messages back from HDD/SSD LPs.

F. Storage Device Modeling

Storage devices are fundamentally different in hardware
structures, which affect I/O performance. We build the models
for two types of storage devices: HDDs and SSDs. HDDs, as
conventional storage devices, is simulated in a light-weight
model. Flash based SSDs have more channels to handle
current requests in simulation. We simulate this feature by
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providing more queues for the model to simultaneously handle
a fixed number of current requests. Figures 2 and 3 give some
examples on how file write requests are handled from the
clients to the servers and storage devices.

1) HDD: For hard disk drives, all data is recorded by
magnetizing a thin film of ferromagnetic material. There is one
head for each magnetic platter surface on the spindle, and an
arm moving the heads across the platters. To simulate these
properties of HDD, our model records disk states by some
variables such as number of open files, last request offset. We
trace the states of the simulated disks and each request access
onto the disk, and hence the disk model knows whether the
request is sequential or random. Thus, the overall performance
for HDD could be aggregately calculated.

2) SSD: SSDs have no mechanical moving parts, and are
less sensitive to random data accesses. Thus they can provide
lower latency compared to HDDs. A typical hardware structure
of SSDs has several critical components: Die, Package, Chan-
nel, and FTL. A single flash chip is called a “Die”. A package
represents a group of dies. Multiple dies within a package are
connected to the same Channel in the bus. Figure 3 shows an
example of requests from a PVFS server to SSD, in which
multiple channels are simulated. In HPIS3, we add latency
penalties for all the components and performance benefits from
multi-channels.

G. Hybrid PVFS I/O and Storage Modeling

We refer to the term ‘hybrid’ as the layout of two different
types of storage nodes. In our case, the storage nodes can con-
sist of either HDDs or SSDs. HPIS3 features two distinct types
of hybrid system design, namely buffered-SSD storage system
and tiered-SSD storage system. To simulate a Buffered-SSD
storage system, all SSD based server nodes are responsible for
all read/write requests in a LRU algorithm; while in Tiered-
SSD storage system, all requests are striped onto each server
node accordingly. We define a set of server nodes equipped
with HDD as Hservers and that with SSD as Sservers.

1) Buffered-SSD Storage System: In this configuration, a
set of Sservers is responsible for acting as a buffer layer in
front of Hservers. This configuration is featured from our
previous work, such as burst buffer from Liu et al. [8] and
S4D-Cache from He et al. [26]. However, the buffered-SSD is
slightly different from them. As illustrated in Fig. 4, all write
requests are routed to Sservers before Hservers if the following
conditions can be filled: a. write to Sservers if the capacity of
Sservers is allowed immediately; b. write to Hservers if the
capacity of Sservers is not allowed immediately; c. to evict old
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Fig. 5: Random Write Performance Comparison between Real System and HPIS3

requests, all data on Sservers will be forwarded to Hservers in
an asynchronous manner.

2) Tiered-SSD Storage System: This configuration com-
bines a set of Hservers with Sservers together to support
I/O requests accordingly. This style is also featured from
our previous work CARL [27]. In this configuration, a file
is logically divided into multiple regions. Some regions are
placed on Hservers and some regions on Sservers. All request
are routed to the predefined region placement. If the range of
a request involves more than one region, the request will be
further striped into smaller sub-requests according to the edges
of the regions.

IV. EXPERIMENTS

This section shows the experiments which serve as verifi-
cation for HPIS3 on multiple nodes in the hybrid file systems.
Then, the performance of the simulator is studied by increasing
MPI processes. Finally, a performance optimization case is
shown from tuning the simulation system.

A. Experimental Setup

Our test bed is a 65-node SUN Fire Linux cluster, namely
HEC. Each node has two AMD Opteron processors, 8GB
memory and a 250GB SEAGATE HDD. The SSD cards are
PCI-E X4 100GB SSD (OCZ-REVODRIVE X2). The MPI
version is MPICH 3.0.4 stable release and the parallel file
system is OrangeFS version 2.8.6. IOR [28] and its traces are
used to benchmark the whole system with varying configu-
rations. IOR is a benchmark with synthetic features that are
good at mimicking many kinds of application behaviors, such
as sequential read/write and random read/write. The traces are
from logging the I/O signatures of running IOR by IOSIG [25].
With MPI-IO built with the PVFS file system, the IOR can
vary behaviors in multiple ways, and hence mimic the HPC
applications. HPIS3 is driven by the trace.

B. Simulation Validity

HPIS3 is configured through a set of parameters upon
initialization. The simulation accuracy can be adjusted accord-
ing to the experimental results from real systems. We run
experiments of IOR random writes on real PVFS system and
on HPIS3 respectively. Figure 5 illustrates the performance
comparison. The experiments are carried out by using 8 clients,
4 HDD-servers and 4 SSD-servers respectively. H-ran and S-
ran are real results for HDD- and SSD-servers. H-sim-ran and
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S-sim-ran are simulated results for HDD- and SSD-servers.
Each client represents one IOR process, which intensively
issues random write requests to the servers. The lowest error
rate in these experiments is 2%. The absolute average error
rate is about 11.98%.

C. Simulation Performance Study

HPIS3 can scale up by increasing the number of processes.
Each node on HEC cluster has eight cores, and this study runs
eight processes on each node. In total, the experiments involve
32 nodes. Figure 6 illustrates the results of the performance
study of the simulator. In all the series of our experiments, all
clients issue the file open, read and close requests concurrently
and each node has one disk for storage. In addition, the
number of clients is set to 2048, the number of servers and
storage disks is set to 1024. Two major characteristics of the
simulator are recorded: event rate and running time. As the
number of processes scales up from 2 to 256, HPIS3 shows
good scalability. In the results, the minimal event rate between
these experiments is 10082.1 events/sec and the maximum is
65438.4 events/sec.

D. Hybrid PVFS Performance Tuning

To demonstrate HPIS3 as a co-design tool that is capable
of tuning hybrid parallel I/O and storage system, we designed
an example use case where an 8-server system needs to be
optimized for better performance. In Figure 7, the “Original”
bar represents the system performance before tuning on HPIS3.
Here we have 4 HDD-servers and 4 SSD-servers. The “4HDD”
bar shows the system performance with only 4 HDD-servers,
and “4SSD” bar shows the system performance with only
4 HDD-servers. By adding 4 additional SSD servers to a
4-HDD-server system, the overall throughput has increased

approximately by 15% before tuning. This performance is
much worse than using only SSDs as file server, however,
storage capacity is guaranteed with the HDD deployment. We
modify the default striping algorithm through issuing more
sub-requests to SSD nodes in order to get even response time
for each sub-request. In this experiment, 16 IOR clients issue
64K random write requests to servers. As shown in Figure 7,
the system throughput after tuning on HPIS3 has increased by
140%. This result is almost as high as using all SSD as file
servers.

We have conducted many more experiments targeting dif-
ferent parameters in the hybrid systems. The experiment results
show HPIS3 is effective and efficient in tuning overall system
performance. Due to limited space, these experiment details
are not presented in this study.

V. CONCLUSIONS AND FUTURE WORK

This study presents the HPIS3 simulator: a hybrid parallel
I/O and storage simulation system. HPIS3 consists of models
for PVFS clients, PVFS servers, HDDs and SSDs. We validate
HPIS3 through extensive real world experiments. The results
show that the minimum error rate is around 2% and the average
is about 11.98% in IOR tests. We demonstrate the scalability
of HPIS3 by varying the number of MPI processes from 2
to 256. HPIS3 is designed to find the best configuration in
a HDD, SSD, or a hybrid HDD/SSD environment, especially
the latter. Our preliminary result has shown its usefulness on
tuning the performance of tiered-SSD settings under PVFS.

Although HPIS3 currently focuses on HDD/SSD hybrid
configurations of server nodes, there are many interesting
future directions. First, more evaluation on buffered-SSD and
tiered-SSD configurations of PVFS can be conducted. Second,
the accuracy of HPIS3 can be improved by using more detailed
models of PVFS, HDD, and SSD. Third, to improve the
functionalities of HPIS3, we plan to simulate other PFSs.
Finally, it will be interesting to simulate clients with hybrid
configurations, power consumption and fault tolerance of stor-
age system.
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