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Abstract—Wepropose HOlistic MEmorymanagement (HOME), a new framework for performing tensor placements in large DNN

training whenGPUmemory space is not enough. HOME combines tensor swapping with tensor recomputation to reduceGPUmemory

footprint. Different fromexisting work that only considers partial DNNmodel information, HOME takes the holistic DNNmodel information

into account in tensor placement decisions. More specifically, HOME uses a custom-designed particle swarm optimization algorithm

to achieve the globally optimized placement for each tensor of the DNNmodel with a greatly reduced searching space. This holistic

awareness of the wholemodel information enables HOME to obtain high performance under the givenGPUmemory constraint. We

implement HOME in PyTorch and conduct our experiments using six popular DNNmodels. Experimental results show that HOME can

outperform vDNN andCapuchin by up to 5.7� and 1.3� in throughput. Furthermore, HOME can improve themaximum batch size by up

to 2.8� than the original PyTorch and up to 1.3� than Capuchin.

Index Terms—DNN, GPU, recomputation, swapping, tensor
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1 INTRODUCTION

DEEP learning has gained great success in various
domains, such as computer vision [1], natural language

processing [2], recommendation systems [3], and speech rec-
ognition [4]. Larger deep neural networks (DNNs) are
designed to deal with more complex tasks, such as Incep-
tionV3 [5] and BERT [6]. GPU is a popular hardware acceler-
ator for DNN training. However, due to the limited memory
space, training large DNN models on GPUs may happen to
out-of-memory errors [7]. For example, the latest BERT [6]
with 768 hidden layers consumes 73 GB memory with a
batch size of 64, which exceeds the maximal memory size of
a powerful NVIDIAV100 GPU, i.e., 32 GBmemory [8].

During the DNN training process, deep learning frame-
works, such as TensorFlow [9], PyTorch [10], and Caffe [11],
usually generate a large number of feature maps in the for-
ward propagation. These feature maps retain in the GPU
memory until they are reused in the back propagation.

Consequently, the training process of large DNN models
usually renders a high GPU memory demand.

There are three kinds of techniques commonly used to
mitigate the GPU memory capacity issue. Data compression
consists of lossy and lossless compression, both use fewer
bits for data representation to save memory footprints [12].
However, lossy compression may affect the accuracy of
DNNs and lossless compression may incur significant time
overhead [13]. Data swapping treats the CPU DRAM as the
temporary and external memory and transfers the data
between the GPU memory and CPU [14], [15], [16]. Data
recomputation regenerates the required intermediate feature
maps by replaying the forward computation [17]. Swapping
and recomputation will not affect the accuracy of the
DNNs [18]. Therefore, both of them are widely used to miti-
gate the GPU out-of-memory issue.

To further reduce memory usage, recent studies also
explored the idea of jointly utilizing swapping and recom-
putation techniques [18], [19]. Their strategies are to swap
or recompute each feature map for back-propagation based
on tensor characteristics and training dataflow. However,
these approaches result in sub-optimal performance and
could be improved because they only consider partial DNN
model information (i.e., several layers instead all of the
layers of the DNN model) when making the swapping or
recomputation decision for each tensor. In this paper, we
propose HOlistic MEmory management (HOME), a new
framework for performing tensor placements in large DNN
training when GPU memory space is not enough. HOME
allows tensor swapping and tensor recomputation to reduce
GPU memory footprint. It fully considers the holistic DNN
model information in making tensor placement decisions.
This holistic awareness of the whole model information ena-
bles HOME to obtain high performance under the given
GPU memory constraint. To this end, HOME first profiles
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the whole DNN model to grab the desired memory usage
statistics. It then makes one of the following management
strategies: swapping, recomputation, and retaining, for each
tensor based on this information.

However, there are two challenges for HOME to make
the tensor placement policies for the globally optimized per-
formance. First, there may be a large number of tensors in
the DNN and each tensor can be swapped or recomputed.
Therefore, the search space is huge and a brute force search
to find the optimal solution is time-unaffordable. To address
this issue, HOME uses a custom-designed particle swarm
optimization (PSO) algorithm to achieve the globally opti-
mized tensor placement policy for the DNN model with a
greatly reduced searching space.

Second, during the policy searching process, HOME
needs to evaluate the efficiency of the potential policy in the
PSO algorithm, i.e., the DNN training time with each possi-
ble policy. A naive method is to evaluate the DNN training
time on a real hardware platform. However, as the whole
search process space may involve a large number of poli-
cies, evaluating the training times with all policies on the
real hardware platform is costly and unfeasible. To address
this issue, HOME proposes a time-cost model to accurately
predict the DNN training time instead of doing real tests.

In summary, this paper offers the following contributions:

� We propose HOME, a holistic GPUmemorymanage-
ment framework, which fully considers the DNN
model information to find the globally optimized ten-
sor placement policy in GPUswith reduced searching
space by leveraging the particle swarm optimization
algorithm.

� To evaluate the efficiency of a given tensor place-
ment policy, we propose a time cost model, which
can accurately predict the DNN training time with
tensor swapping and recomputation.

� We implement HOME in the deep learning frame-
work PyTorch [10] and evaluate it using six popular
DNN models. The experimental results show that
HOME can outperform vDNN and Capuchin by up
to 5.7� and 1.3� in throughput.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the background and motivation of HOME.
Section 3 describes the design and implementation. Section 4
presents the evaluation results. Section 5 introduces the
related work. Finally, we conclude the paper in section 6.

2 BACKGROUND AND MOTIVATION

2.1 DNN Training

DNNmodels consist of many layers, and each layer contains
many parameters to be trained. The training process usually
consists of a large number of iterations in order to update a
large number of model parameters iteratively until the accu-
racy converges. The dataflow of each iteration is the same
and composed of two phases, i.e., forward propagation and
backward propagation. In the forward propagation, feature
maps produced by each layer will be used as the input of the
next layer and retained in GPU memory. They are repre-
sented as tensors and usually dominate the memory foot-
print. The backward propagation can be treated as a reversed

process of forward propagation in which the generated fea-
ture maps will be used to calculate gradients and then
released fromGPUmemory.

2.2 Swapping and Recomputation

Swapping refers to the exchange of data between GPU
memory and CPU memory. In particular, in the forward
propagation of DNN training, tensors generated in GPU
memory can be offloaded to CPU memory to save space. In
the backward propagation, tensors offloaded to CPU mem-
ory should be prefetched back to GPU memory before the
tensor is accessed. The swapping and computation process
can be executed simultaneously using different streams.
The overall DNN training time is determined by the longer
time of swapping and recomputation stream.

As shown in Figs. 1a and 1b, swapping can be conducted
synchronously and asynchronously. Synchronous swapping
is to ensure the offloaded data is safely released before the
starting of the next forward or backward propagation tomaxi-
mize the memory saving [14], [19]. However, as shown in
Fig. 1a, the computation stream is not fully utilized when the
swapping takes longer than the layer’s computation. To elimi-
nate the idle time of computation stream, Capuchin [18] pro-
poses an asynchronous swapping policy as shown in Fig. 1b.
In this paper, we are also to utilize asynchronous swapping
technique to improve theDNNmodel training throughput.

Although swapping can reduce GPU memory footprint,
the time cost of swapping the produced tensors between
GPU and CPU is usually more 2� than the computation
time for most layers, which may slow down the training
process [20]. Rather than swapping, recomputation is
another effective method for reducing memory usage. Con-
cretely, in the forward propagation, the feature maps will
not be retained in the GPU memory and will be re-gener-
ated in the backward propagation before being accessed
again [21]. For example, as shown in Fig. 2, the output of the
first layer is released after the forward propagation of the
second layer, and the computation stream replays the for-
ward propagation of the first layer to guarantee the execu-
tion of the backward propagation of the second layer.

Fig. 1. Examples of layer-wise synchronous and asynchronous data
swapping. FWD1 represents the forward propagation of the first layer in
the DNN model, BWD1 represents the backward propagation of the first
layer in the DNN model.
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Feature maps (FMs) produced in the latter layer will be
regenerated earlier in the backward propagation due to the
reverse execution order compared to the forward propaga-
tion. The recomputation of a feature map may trigger the
feature maps in the precedent layers to be recomputed as
well. For instance, we use FM1 -> FM2 -> FM3 to repre-
sent a data dependency between feature maps generated in
layer 1, 2, and 3, and we decide FM2 and FM3 to be recom-
puted during backward propagation. When FM3 is to be
regenerated, it will trigger the regeneration of FM2 because
FM3 is dependent on FM2.

2.3 Motivation

Limitations of Existing Approaches.Our proposed research is to
maximize DNN training throughput while satisfying the
memory capacity constraint. To achieve this goal, we intend
to manage all the feature maps generated in the forward
propagation which usually dominate the memory foot-
print [22]. Some existingworks like vDNN [14],moDNN [15],
AutoTM [23], SwapAdvisor [16], and Checkmate [17] shown
in Table 1 use either swapping (Swp) or recomputation
(Recmp) solely to reduce GPU memory footprint, which can
be further improved by jointly utilizing these two strategies.
Therefore, we take both swapping and recomputation meth-
ods into consideration to manage feature maps for memory
saving.

Although the state-of-the-art SuperNeurons [19] and
Capuchin [18] combine swapping and recomputation techni-
ques into their frameworks, there is still potential to improve
DNN training throughput because they only consider partial
DNN model information. Specifically, SuperNeurons only
optimizes the tensor placements for a certain type of DNN
layers and Capuchin determines the policy according to the
DNN dataflow from the first DNN layer to the current layer.
Unlike the existing works, we profile the swapping and
recomputation overhead duringmodel training, and dynam-
ically decide each feature map’s placement strategy, i.e.,
swapping, recomputation or retaining, in a global optimum
manner to maximize DNN training throughput under the
memory capacity constraint.

Analysis of Different Searching Algorithms. By numbering
the placement strategies swapping, recomputation, and
retaining as 0, 1, and 2, respectively, our problem can be for-
mulated as an assignment problem that assigns 0, 1, and 2 to
each tensor in the DNN with the memory constraint.
Instead of using sub-optimal algorithms to find the tensor
placement policy, as in SuperNeurons and Capuchin, we
adopt effective searching algorithms to solve the assign-
ment problem in an optimized manner.

There are several popular optimization algorithms that
can be used to solve the problem, such as integer linear

programming (ILP) [23], mountain climbing algorithm
(MC) [24], simulated annealing algorithm (SA) [25], Bayes-
ian optimization (BO) [26], and reinforcement learning
(RL) [27]. However, ILP is suitable for solving small-scale
problems because of its high algorithm complexity [17]. The
assignment problem of DNN memory management is a
high-dimensional problem. Thus, it is difficult for ILP to
converge quickly when training large DNN models [23].
Furthermore, the MC, SA, BO, and RL algorithms rely on
the initial point and search the optimized strategy serially,
incurring two drawbacks. First, they are likely to fall into
the local optimization because of the random initial point.
Second, they cannot search for the solution in parallel [16].
Thus, these algorithms are neither an ideal choice to solve
our problem.

To avoid the above-mentioned issues, inspired by the
effectiveness of particle swarm optimization (PSO) algo-
rithm [28] in solving assignment problems, we use a cus-
tom-designed PSO algorithm to determine the tensor
placement policies for improved system performance.

PSO is a random search algorithm based on group cooper-
ation developed by simulating the foraging behavior of
birds. It aims to optimize a problem by iteratively improving
the candidate solution and returning the best-known solu-
tion. It is metaheuristic because it makes few or no assump-
tions or prerequisites about the problem. Rather than
initializing a single candidate solution, it solves the problem
by initializing a specified number of candidate solutions and
gradually improving these solutions. The improving process
for one particular solution is not only based on its local best-
known solution but also the best solution tried in the search-
ing space, which makes it more holistic and effective. Hence,
PSO is more likely to make the search jump out of the local
optimization. Besides, PSO can reduce the algorithm execu-
tion time because the searching operations can be executed
on multicore CPUs in parallel. Therefore, PSO is fast and has
been used for scheduling in parallel systems to accelerate the
searching process.

3 DESIGN

The design objective of HOME is to maximize DNN model
training performance when the model’s memory demand is
larger than the GPU memory capacity. HOME allows tensor
swapping and recomputing to reduce GPU memory foot-
print. Since existing approaches are biased because they
only use partial DNNmodel information to make decisions,
HOME leverages the PSO algorithm to holistically consider

Fig. 2. An example of data recomputation. The shaded rounded rectan-
gle represents the recomputation of a DNN model’s first layer.

TABLE 1
Comparison With Existing GPU Memory Management Works

Recmp Swp Global
Optimization

Decision Method

vDNN [14] ✓ Expert Knowledge
moDNN [15] ✓ Expert Knowledge
AutoTM [23] ✓ ✓ ILP
SwapAdvisor [16] ✓ ✓ Genetic Algorithm
Checkmate [17] ✓ ✓ ILP
SuperNeurons [19] ✓ ✓ Expert Knowledge
Capuchin [18] ✓ ✓ Greedy Algorithm
HOME ✓ ✓ ✓ PSO
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the model information in tensor placement. However,
applying the PSO algorithm to the tensor placement prob-
lem is nontrivial because (1) the algorithm needs to guaran-
tee a near-optimal solution in a limited searching space, and
(2) evaluating a solution is difficult as the policy evaluation
on a real hardware platform is time-consuming. In this sec-
tion, we illustrate the system architecture of HOME and
elaborate its key components.

3.1 Overview of Architecture

We model the tensor placement problem as a n assignment
problem and intend to solve it using a custom-designed par-
ticle swarm optimization algorithm. The goal of the PSO
search is to decide placement sequence, i.e., 0 (retaining), 1
(swapping), and 2 (recomputation), according to the feature
maps of all DNN layers, to minimize the time overhead of
the whole DNN training process with the given GPU mem-
ory constraint.

Fig. 3 shows the architecture of our system, which con-
sists of the following four components. The Profiler is used to
extract the required network and execution information. The
Policy Maker iteratively decides the placement policy for all
tensors with the information collected by the Profiler and the
resource limitation of GPU memory. The Policy Evaluator
estimates the overall DNN training time with the policy
given by the Policy Maker. After multiple search iterations,
the best tensor placement policy is fed into the Executor.
Finally, the Executor conducts the actual tensor placement
actions, i.e., swapping, recomputation, or retaining, accord-
ing to the best policy in the subsequent iterations of the DNN
training process.

3.2 Profiler

The Profiler is responsible for capturing the network infor-
mation and the execution information for both the Policy
Maker and the Policy Evaluator. Observing that DNN train-
ing consists of a large number of iterations and the tensor
accesses have repeated access patterns across iterations [11],
the Profiler is only executed online in the first iteration. The
obtained information can be used to guide the tensor place-
ments in the subsequent iterations.

The collected information includes the size of feature
maps, the execution time of each kernel, the dependencies of
feature maps, and the data transfer bandwidth between
GPU and CPU. The size of each feature map is calculated
according to the dimension of the feature map. The depen-
dencies of feature maps are obtained according to the net-
work structure. We add the timestamps in the original DNN

framework to collect the execution time of each kernel. The
data transfer bandwidth betweenGPU andCPU is evaluated
with the performance test in the real system.

The profiling process incurs additional time overhead.
However, it is executed only once in the first iteration. Such
time overhead is acceptable since it can be amortized by the
whole training process, which may be composed of millions
of iterations. We will discuss this in Section 4.7 .

3.3 Policy Search With PSO

We leverage the PSO algorithm to determine tensor place-
ment policy. In order to utilize the PSO algorithm, the first
step is to formulate our tensor management problem as a
mathematical assignment problem. As mentioned above, we
use 0, 1, and 2 to denote three different tensor placement
actions, i.e., retaining, swapping, and recomputation, respec-
tively. In typical DNN frameworks, each layer of the DNN
model has one feature map and the feature map is repre-
sented by one tensor. Then, placement assigned to all feature
maps composes a vector, which we called the tensor place-
ment policy of the DNN. As shown in Fig. 3, the tensor place-
ment policy [1, 1, 2, 0] represents swapping on the first two
feature maps, recomputation on the third feature map, and
retaining on the fourth feature map. Such a vector can be
seen as a particle in a high-dimension searching space,
whose dimension is equal to the number of total feature
maps. Therefore, finding a tensor placement policy can be
treated as finding the position of the particle, and PSO can be
applied to get a near-optimal policy in the large search space.

Algorithm 1 shows the detailed process of solving the
tensor management problem using PSO. First, we specify
the number of search iterations (denoted as iters) for PSO
and the number of particles (denoted as m) in one iteration.
One particle represents one possible placement policy of all
feature map tensors (shown as Fig. 3) as defined before. The
PSO algorithm will randomly initialize a specified number
of particles (line #1-3) at the beginning. Then, PSO runs
iters iterations for searching for a better policy. In each iter-
ation, the Policy Evaluator predicts each particle’s time
overhead (Section 4.6) and records the ever best particle
which occurs the lowest overhead (line #6-12). After that,
each particle will be updated by integrating the current and
historical information of all the particles (line #13-15), which
is a crucial step and will be discussed in detail in Section 3.5.
Finally, the PSO algorithm returns the best-ever solution.

The complexity of Algorithm 1 is O(iters � m � n2),
where iters is the number of iterations, m is the number of
particles, and n is the number of DNN layers. While the n is

Fig. 3. The system overview of the HOME framework.
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a fixed number depending on the given DNN model, the
iters and m can be specified by users. Both the iters and m
can impact the algorithm convergence and searching time.
Specifically, a smaller value for both iters and m reduce the
searching time but may not guarantee the algorithm conver-
gence, which may degrade the DNN training performance;
a larger value results in more searching time but brings bet-
ter algorithm convergence, which can improve the overall
DNN training throughput. The setting of the two values
makes a trade-off between algorithm execution time and
the DNNmodel training time.

To obtain the optimized training throughput with a lim-
ited algorithm searching time, we empirically set both the
number of iterations (i.e., iters) and the number of par-
ticles (i.e., m) to 500 in our current design. Our evaluation
shows that these settings are sufficient to serve our pur-
pose ( Section 4). Note that these empirical values can
change with different DNN models and training parame-
ters. However, these values have ensured that the near-
optimal results can be achieved for all DNN models in our
experiments within an acceptable searching time. For con-
venience and efficiency, we set both of them as 500 in our
current design. However, using more refined parameters
could be more beneficial for different DNN models. There-
fore, one can adjust the hyperparameters to run Algo-
rithm 1 based on the current settings. For example, if the
training time of the DNN model with the current output
policy of Algorithm 1 shows a declining trend, one can
increase the number of the particles and the number of the
iterations, until the DNN training time converges and the
algorithm execution time is acceptable. We leave such
exploration for future work.

Algorithm 1. PSO Search Algorithm

Require: iters: the number of iterations for searching; m: the
number of particles in one iteration;

Ensure: best particle: the best tensor placement policy;
1: for i=1, 2,...,m do
2: randomly initialize particlei
3: end for
4: best particle ½ �, lowest overhead MAX
5: for i=1, 2,..., iters do
6: for j=1, 2,...,m do
7: overhead evaluateðparticlejÞ ⊳ call Algorithm 2
8: if overhead < lowest overhead then
9: best particle particlej
10: lowest overhead overhead
11: end if
12: end for
13: particles updateðÞ ⊳ call Algorithm 3
14: end for
15: return best particle

3.4 Policy Cost Evaluation

All the tensor placement policies are fed into the Policy
Evaluator to evaluate the time cost. To save time for a large
number of real evaluations, the Policy Evaluator estimates
the execution time of a policy using a time cost model
instead of doing the real execution. Because the training
iterations are repeatable, the Policy Evaluator uses the

execution time of kernels to compute the overall execution
time and evaluates the memory consumption by consider-
ing the size of the feature maps. However, the evaluation is
difficult since the tensor placement policy is executed asyn-
chronously in the DNNmodel.

To address this issue, we propose a cost model fully con-
sidering the complex data computing and memory access
process to accurately predict the training time with a given
tensor policy. Fig. 4 represents the time overhead of recom-
putation and swapping in our cost model. To ease the follow-
ing presentation, we define the following abbreviations:
FWDi: the forward propagation of i-th layer; BWDi: the back-
ward propagation of i-th layer; OFFLOADi: swap the tensor
of i-th layer from GPU memory to CPU memory; PREi: pre-
fetch the tensor of i-th layer from CPU memory to GPU
memory; t(ACTi): the time cost of executing the action for
tensor i. As shown in Fig. 4, OFFLOAD1 is overlapped
with FWD1 and FWD2. In addition, tðOFFLOAD1Þ <
tðFWD1Þ þ tðFWD2Þ. OFFLOAD1will not result in any extra
time cost as the memory swapping and the regular forward
computing are executed in parallel. However, the time of
swapping out tensor2 (OFFLOAD2) is longer than the for-
warding computation of the third layer (FWD3), thus the
time overhead of swapping out tensor2 is OFFLOAD2�
FWD3. The backward propagation is counted from the last
layer to the first layer and BWDi needs to access the tensor of
the i-1 layer. As a result, the tensor2 is swapped in before exe-
cuting BWD3 and the time overhead is PRE2�BWD4.
Therefore, the total time overhead of swapping tensor2
equals ðOFFLOAD2� FWD3Þ þ ðPRE2�BWD4Þ.

Algorithm 2 shows the calculation of the time cost for a
given tensor placement policy in our model. For a neural
network composed of n layers, n placements will be deter-
mined. The policy (e.g., a list of actions of each feature map,
denoted as policy½n�) determined by the policy Maker, and
the data dependency info in the forward and the backward
process (denoted as Inputsforward½n�; Inputsbackward½n�
respectively) collected by the Profiler, are inputs to the Pol-
icy Evaluator for Algorithm 2. Specifically, HOME conducts
the estimation in forward propagations and backward prop-
agations (line #2-21). First, when the memory demand
exceeds the capacity, HOME swaps the tensors from GPU
memory to the CPU memory (line #3-9). Then, HOME exe-
cutes the computation propagation and conduct actions
based on input policy (policy½n�) and the data dependencies
(Inputsforward½n�) (line #11-18). After that, the Policy
Evaluator updates the profiled execution time and the mem-
ory consumption (line #19). As the result in Section 4 shows,
the Policy Evaluator can accurately predict the real training
time of a DNNmodel.

Fig. 4. The time overhead of recomputation and swapping.
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Algorithm 2. Evaluate the Overhead of One Iteration

Require: n: the numbers of layers; policy½n�: a list of actions
given to each tensor; Inputs½2n�: the data dependencies for
each stages;M: total GPU memory capacity;

Ensure: executime: overall training time under such policy;
overhead½n�: overhead of each training stage;

1: executime 0, overhead½n�  0,mem 0
2: for i = 1, 2,..., 2n do ⊳ 2n stages in forward propagations

and backward propagations
3: whilemem > M do
4: if swapout lists:emptyðÞ then
5: return error
6: end if
7: x ¼ swapout lists:frontðÞ
8: overhead½x� þ¼ syncoverheadðxÞ
9: updatememðmemÞ
10: end while
11: inputs ¼ InputsðiÞ
12: for input in inputs do
13: if policy½input� ¼ swap then
14: overhead½input�þ ¼ swapðinputÞ
15: end if
16: if policy½input� ¼ recompute then
17: overhead½input�þ ¼ recomputeðinputÞ
18: end if
19: end for
20: updatetimeðexecutimeÞ, updatememðmemÞ
21: end for
22: return executime; overhead½n�

Algorithm 2 has the polynomial time complexity O(n),
where n is the number of layers in the DNN model. As cur-
rent DNN models only have a limited number of layers, the
time overhead of Algorithm 2 is acceptable. We will discuss
this with experiments in Section 4.6.

3.5 Policy Upadate With PSO

PSO is initialized as a group of random particles (random
solution), and then iteratively finds the optimal solution.
In each iteration, the particle updates itself by tracking
two extremums. In the PSO algorithm, each particle repre-
sents a tensor management policy. Algorithm 3 shows the
update process of the PSO algorithm. The goal of PSO is
to use the historical placement information to guide the
current placement policy for each tensor in all particles in
the current iteration. To this end, the algorithm maintains
a global last iteration policy, which records the best place-
ment policy among all particles in the last iteration, and
multiple best historical placement policies, which record
the best placement policy for each particle in the past iter-
ations. For a given particle, the algorithm first gets the
best last iteration policy and the best historical policy (i.e.,
P1 in line #1, and P2 in line #3), respectively. Then, for
each tensor in the current particle, the algorithm tries to
replace the tensor’s placement action with the historical
action in P1 and P2 respectively, and evaluates their corre-
sponding training overhead (O1 and O2 in Line #5-8).
Finally, the algorithm updates the tensor’s action with
the historical action that causes the smaller overhead
(Line #9-12). Multiple new actions for all the tensors make
a new placement policy for the current particle. The

algorithm will repeat this process until the policies for all
particles are found.

Algorithm 3. Particles Update

Require:m: the number of particles in one iteration; n: the num-
bers of layers; policy½m�½n�: a list of actions given to each
tensor;

1: P1½n� = getLastIterBestðÞ ⊳ get the best policy in the last
interation

2: for i = 1, 2,...,m do ⊳m particles
3: P2½n� = getHistoricalBestðiÞ ⊳ get the best historical

policy of particle i
4: for j = 1, 2,..., n do ⊳ n layers (tensors)
5: policy½i�½j� = P1½j� ⊳ set the action for tensor j
6: O1 evaluate(particlei) ⊳ call Algorithm 2
7: policy½i�½j� = P2½j�
8: O2 evaluate(particlei)
9: if O1 < O2 then
10: policy½i�½j� = P1½j� ⊳ update policy
11: else
12: policy½i�½j� = P2½j�
13: end if
14: end for
15: end for

Fig. 5 shows an example of updating the placement pol-
icy of the first particle in the third iteration. In this example,
three particles are assumed and the best placement policy
in the last iteration among all particles is found in the sec-
ond iteration of particle 2, i.e., [2, 2, 2, 0, ...]. For particle 1,
we assume its best historical policy is in the first iteration,
i.e., [1, 1, 2, 0, ...]. When updating the placement policy for
the particle 1 in iteration 3, we first use the policy in the last
iteration for particle 1, i.e., [0, 1, 2, 0, ...] as the initial policy.
Then, we try to update this policy by replacing each tensor’s
action. For the first tensor, since the action in the best last
iteration policy and the historical policy are 2 and 1 (the
underlined number in the policy) respectively, we will
update this tensor’s action (i.e., cur) with the historical
actions accordingly and generate two candidate policies: [2,
1, 2, 0, ...] and [0, 1, 2, 0, ...]. Next, we evaluate the corre-
sponding overheads with these two policies and choose the
policy with the lower cost. For simplicity we only illustrate
the action update of the first tensor and the procedures for
other tensors are similar.

The time complexity of Algorithm 3 is O(m � n2), where
m is the number of particles in one iteration and n is the

Fig. 5. An example of tensor placement policy update. The historical pol-
icy set: the best historical policies for all particles (each particle has its
corresponding policy). The last iteration policy: the best placement policy
among all particle policies in the last iteration (only one).
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number of layers. m is a specified parameter and n depends
on the DNN model. As these two parameters are a limited
integer, the time overhead is acceptable (Section 4.7). Algo-
rithm 3 also incurs extra space overhead to store the historical
placement policies. Each tensor has three actions, which can
be encodedwith two bits. In our current design, there are 500
particles. Hence, for a DNN model with even 10,000 layers,
the space overhead is about 1.25MB,which is negligible.

3.6 Policy Executor

The Executor performs the actual tensor management
according to the final tensor placement policy in the real
DNN training. The final tensor placement policy generated
by the Policy Maker is stored as a policy table (PT) in a
given location and records the action of each tensor. During
the DNN training, the Executor will look up the PT from the
given location and find the corresponding action for the cur-
rent tensor. Then the Executor manages the memory of the
current tensor (i.e., swapping, recomputation, or retaining)
according to the guide of the action. Specifically, if the
action is swapping, the Executor will transfer the tensor to
CPU DRAM when the tensor is no longer needed in the for-
ward propagation. The tensor will be prefetched into the
GPU memory when its corresponding backward propaga-
tion begins. If the action is recomputation, the Executor will
release the tensor immediately when the tensor is no longer
needed in the forward propagation. The tensor will be
recomputed in GPU when its corresponding backward
propagation begins. Otherwise, the Executor will keep the
tensor in the GPU memory.

3.7 Implementation

To demonstrate the performance of HOME, we implement
its prototype in PyTorch 1.5.1. Overall, HOME is composed
of four main components: Profiler, Policy Maker, Policy
Evaluator, and Executor.

We develop the Profiler, named begin_profile(), to profile
the DNN execution information, including the size of each
tensor and the execution time of each layer during the first
iteration. In the profiling period, we swap all tensors except
the one in the tested layer from GPU memory to CPU mem-
ory, so that the GPU memory is large enough to hold the
tensor for DNN training. This method can minimize the
memory footprint because only one tensor resides in GPU
memory.

For the Policy Maker, we use 16 threads to perform paral-
lel searching to accelerate the policy-making process.

For the Policy Evaluator, to reduce the swapping over-
head, we create a new asynchronous cuda stream using
cudaStreamCreateWithFlags() and use cudaMemcpyAsync() to
hide swapping into normal DNN training. To ensure the
correct order of tensor access during backward, we use a
flag queen, back_flag, to store the status of each tensor indi-
cating whether it has been swapped or not. If the tensor has
not yet swapped, we must use CudaDeviceSynchronize() to
wait for the finish of swapping. As for recomputation, we
create recompute() to generate the needed tensors. However,
swapping and recomputation need frequent GPU/CPU
memory allocations/frees which decrease the performance
severely because of the inefficient default cuda cudaMalloc()

and cudaMallocHost() functions. To mitigate such overhead,
we use PyTorch self memory pool functions, getCUDADevi-
ceAllocator() and getPinnedMemoryAllocator() to reduce the
overhead of memory allocation and free.

After that, we develop the swapping and recomputation
in the Executor according to the final optimized tensor
placement policy.

4 EVALUATION

In our evaluation we aim to answer the following questions:

� How does HOME perform across several DNNmod-
els? ( Section 4.2)

� Why does HOME achieve the improved throughput
with the limited GPU memory space? ( Section 4.3)

� What is the maximum batch size of HOME?
( Section 4.4)

� How about the convergence of the PSO algorithm?
( Section 4.5)

� Howabout the accuracy of the evaluator? ( Section 4.6)
� How about the overhead incurred by HOME?

( Section 4.7)

4.1 Experimental Setup

Experimental Platforms.We set up our experimental platform
using a CPU-GPU hybrid server equipped with two
2.10 GHz Intel(R) Xeon(R) Gold 5218R CPUs, 128 GB main
memory, and an RTX 2080Ti GPUwith 11 GB GPUmemory.
The CPU and GPU are connected via the PCIe 3.0�16 bus. In
addition, Ubuntu-18.04, CUDA 10.0.13 [29], CuDNN 7 [30],
and PyTorch 1.5.1 [31] software packages are installed on the
server.

Workloads and Datasets. To validate the effectiveness of
our approach, we evaluate HOME with three linear DNN
models (i.e., VGG16 [32], Plain20 [33], and MobileNet [34])
and three non-linear models (i.e., ResNet [35], Squeeze-
Net [36], and InceptionV3 [5]). We set up our experimental
platform using tuned model parameters (e.g., learning rate
and optimizer) as [31]. In addition, we use CIFAR10 [37] as
the dataset for evaluation. The CIFAR10 dataset is a collec-
tion of 60, 000 labeled color images (32 � 32 pixels each).
The size of CIFAR10 is around 162 MB.

Compared Baselines. We compare HOME with the follow-
ing four baselines for tensor management in GPUs.

� PyTorch: This is the original PyTorch framework
without any memory management optimization,
such as swapping and recomputation. We choose
PyTorch to verify the efficiency of other state-of-the-
art tensor management methods with data swapping
or recomputation.

� vDNN: This is one of the state-of-the-art tensor
management approaches only using data swap-
ping [14]. It offloads the convolution input tensors
from GPUmemory to CPU memory during forward-
ing training and prefetches them back in backward
propagation through overlapping data swapping
with computation.

� SuperNeurons: SuperNeurons utilizes both swapping
and recomputation for tensor management [19].
However, it applies a specific policy to a specific
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layer. Specifically, it only swaps the tensors of convo-
lution layers and only recomputes the tensors in pool,
activation, local response normalization, and batch
normalization layers. We reimplement SuperNeur-
ons as the description in the paper. Before DNN train-
ing, SuperNeurons will scan the architecture of the
model and record the types of all layers in the DNN
model. During training, SuperNeurons triggers dif-
ferent policies for tensors based on the pre-defined
rules. For convolution layers, it recalls CUDA asyn-
chronous memory copy API (i.e., cudaMemcpyA-
sync) to swap tensors. For pool, activation, local
response normalization, and batch normalization
layers, SuperNeurons releases the tensor immedi-
ately once the forward propagation in the given layer
is finished and recomputes them back when needed
in the backward propagation.

� Capuchin: It also applies tensor swapping and recom-
putation to reduce memory footprint [18]. However,
it finds the tensor placement policy in a local opti-
mumway as only part of the tensor information is uti-
lized in the decisionmaking. Specifically, it iteratively
searches the candidate policy to achieve the best per-
formance only for the tensor(s) from the first layer to
the current layer while ignoring the tensors in the lat-
ter layers. Hence, it can’t achieve globally optimized
performance for all layers. We reimplement the
Capuchin as the description in the original paper.
Capuchin assigns a group of action pairs for each
DNN layer, such as {tensor id : action id}, where
tensor id denotes the tensor number and action id
represents this tensor’s policy. For each DNN layer,
Capuchin scans the actions and performs the related
functions to swap (i.e., cudaMemcpyAsync), release
(i.e., cudaFree), or recompute tensors.

4.2 Experimental Results

We first evaluate the training throughputs of different ten-
sor management frameworks with varying batch sizes.
Fig. 6 shows the results for different DNN models and we
have the following observations.

First, compared to the original PyTorch, HOME allows a
larger batch size and maintains a comparable or even higher
training throughput. Taking MobileNet as an example,
Fig. 6a shows that PyTorch can only run a maximum batch
size of 2100 while HOME can increase the batch size to 3500
and achieves the throughput by up to 2�, compared to
PyTorch. HOME supports a larger batch size training
because it can release some memory space occupied by ten-
sors at runtime via data swapping or recomputation. Simi-
larly, vDNN, SuperNeurons, and Capuchin also allow larger
batch sizes than PyTorch. HOME achieves higher through-
put than PyTorch because when more GPUmemory is freed
by swapping or recomputation, HOME can accommodate a
larger batch size. A larger batch size means that more sam-
ples are fed into GPU to train. Since GPUs usually assign one
core to train one sample, more samples will require more
GPU cores to run, which will improve the utilization of the
GPU and accelerate the DNN training process.

Second, among all the other state-of-the-art methods,
HOME achieves the highest throughput under the limited
memory space in GPU.More specially, under the same batch
size, HOME achieves up to 5.7�, 2�, and 1.3� training
throughput compared to vDNN, SuperNeurons, and Capu-
chin, respectively. HOME outperforms vDNNdue to the fol-
lowing two facts. First, HOME adopts an asynchronous
swapping policy while vDNN uses a synchronous policy,
leading to more swapping time overhead. Second, HOME
uses both data swapping and recomputation method while
vDNN only considers the data swapping, losing the poten-
tial of data recomputation. Although SuperNeurons also

Fig. 6. Throughputs of different tensor management frameworks with varying batch sizes for different DNN models on CIFAR10.
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applies both swapping and recomputation to reduce mem-
ory footprint, it specifies only one policy for a specific type of
layer rather than all of them, which makes the decision sim-
ple but may hurt the training throughput. HOME also has a
higher throughput than Capuchin because Capuchin finds
the tensor placement policy in a local optimum fashion (it
makes decisions only considering the tensors from the first
tensor to the current onewithout considering the subsequent
layers) while HOME searches for a policy from a global
perspective.

Third, HOME brings different performance improve-
ments for various DNN models. For example, HOME
improves throughput by up to 2� over PyTorch for Mobile-
Net (Fig. 6a) and 2.46� for VGG16 (Fig. 6d) while the
improvement is averaged 1.11� for SqueezeNet (Fig. 6b),
Plain20 (Fig. 6c), ResNet(Fig. 6e), and InceptionV3 (Fig. 6f).
The improvements change because the performance benefits
and time overheads from HOME differ for various models.
For MobleNet and VGG16, the performance benefit brought
by HOME owing to larger batch size obviously outweighs
the time overhead introduced by swapping and recomputa-
tion. However, for the other four models, the benefit is com-
parable to the time overhead.

Finally, we also notice that vDNN fails to improve the
batch size larger than 160, as shown in Fig. 6f. This is
because vDNN only swaps CONV layers that occupy a
small portion of GPU memory in Model InceptionV3. When
the batch size is larger than 160, vDNN will also face the
out-of-memory issue. For other methods, the batch size can
be further increased.

4.3 Performance Breakdown Analysis

To further understand the impact of swapping and recom-
puting techniques in HOME and the three baselines
(vDNN, SuperNeurons, and Capuchin), we collect the exe-
cution time details in different frameworks. We break down
the whole training time into four parts according to Fig. 4.
The Recomputation time means the overhead for recomputa-
tion, the Swapping time denotes the time cost caused by
swapping synchronization, the Overlap time means the
overlapped time between swapping and normal DNN com-
putation, and the Computation time represents the original
DNN training time without overlapping.

Fig. 7a shows the time breakdown for VGG16 with a
batch size of 3950. We can observe that HOME achieves the
lowest overall time mainly because of its relatively high
overlap time, low swapping time, and small recomputation
time. For example, the overlap time of HOME accounts for
57% and the swapping time of HOME is nearly zero in the
whole training process, which means all the swapping oper-
ations are overlapped with the model computation and the
swapping overhead is very low. While Capuchin has a close
breakdown time distribution to HOME, it achieves worse
overall performance than HOME because HOME has more
optimized scheduling of tensor swapping and recomputa-
tion. Compared to HOME and Capuchin, SuperNeurons
performs worse because it has relatively high recomputa-
tion overhead (20.5%) and swapping overhead (9%). For
vDNN, the swapping overhead is high (i.e., 75%), which
means vDNN spends a lot of time waiting for data synchro-
nization, thus it has the lowest performance.

We also experiment on a larger DNN model, Incep-
tionV3, with a batch size of 170. The result is shown in
Fig. 7b. The results are similar to that of VGG16 except for
the two new findings. First, different from the zero swap-
ping time for VGG16 in Fig. 7a, HOME and Capuchin have
1% and 5% swapping time respectively for InceptionV3.
This is because that InceptionV3 has a larger model size,
thus it is difficult to overlap all swapping operations with
the normal computation. Second, the swapping overhead of
vDNN decreases from 75% (i.e., in VGG16) to 34%. This is
because InceptionV3 has relatively smaller convolution
layer inputs than VGG16. Thus, InceptionV3 needs less
swapping time.

4.4 Maximum Batch Size of HOME

To analyze the effectiveness of HOME in reducing memory
footprint, we evaluate the maximum training batch sizes
allowed by different tensor management frameworks across
the six DNNmodels. As Capuchin has shown its superiority
over vDNN and SuperNeurons in previous experiments, we
only compare HOME to the original PyTorch and Capuchin
in this section. Table 2 shows the allowed maximum batch
size and corresponding training throughput of different
frameworks under the same GPU memory capacity (i.e.,
11 GB in NVIDIA 2080Ti). We observe that both HOME and
Capuchin can support larger batch size training than the
original PyTorch framework. Specifically, HOME and
Capuchin achieves averaged 2.2� and 1.97� batch size
increments than the original PyTorch. This is because both
HOME and Capuchin apply tensor swapping and recompu-
tation, which can free GPU memory and allow larger batch
size training. We also find that HOME always achieves the
largest maximum batch size while maintaining the highest
training throughput. In particular, HOME achieves a 1.12�

Fig. 7. Performance breakdown analysis of different frameworks for
VGG16 and InceptionV3.
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larger batch size and 1.2� higher throughput than Capu-
chin on average for all the six models with the largest batch
size. The throughput improvement comes from the efficient
policy and higher resource utilization because the large
batch size saturates the GPU.

4.5 Convergence of the PSO Algorithm

The PSO algorithm is an iterative process. In this section, we
conduct experiments to evaluate its convergence for differ-
ent models. We set the maximal search iteration as 500 and
the number of particles to 500 in the PSO algorithm. This
parameter setting is good enough for PSO to find an opti-
mized tensor placement policy within several minutes (the
overhead details of PSO are shown in Section 4.7).

Fig. 8 shows the convergence results for the six popular
DNN models as mentioned in Section 4.1. We conduct
the experiments multiple times and show the average
training time. From the figure, we have the following
three observations.

First, it only takes dozens of iterations for HOME to find
a modest policy. For example, 16 iterations (i.e., 16 � 20 ms
= 320 ms) and 30 iterations (i.e., 30 � 18 ms = 540 ms)
are enough for HOME to be close to the final optimization
solution for ResNet and SqueezeNet. This is because the

algorithm converges quickly with many initiated particles.
Second, although the efficient policy can be found within
the beginning dozens of iterations, HOME still optimizes
the policy in the subsequent iterations. For example, in
Fig. 8b, the training time difference between the average
line and the best line is decreased from 30% at the beginning
to 13% at the end of the training. This shows the PSO algo-
rithm has good convergence. Third, the large DNN models
need more searching iterations to converge. For example,
InceptionV3 needs 89 iterations to find the optimized policy,
as shown in Fig. 8f, while other models only need 42 itera-
tions on average. This is because InceptionV3 has a larger
searching space since it has more layers than other models,
thus it needs more trials to find the near-optimal policy.

4.6 Evaluator Accuracy

The Policy Evaluator estimates the overall training time of a
given tensor policy generated by the Policy Maker. In this
section, we evaluate the prediction accuracy of the policy
evaluator. We use the predicted error between the mea-
sured training time and predicted training time as the met-
ric to indicate the prediction accuracy. We train each model
50 times on CIFAR10 with different batch size and calculate

the average predicted error by using

PN

i¼1
jŷi�yi j

yi
N , where N is

the number of evaluations, ŷi and yi are the predicted and
measured values, respectively.

Fig. 9 shows the accuracy results for all the six DNN
models. We can find the prediction errors for all the models
are less than 1% (0.5% on average). For example, the predic-
tion time on VGG16 is 546 ms and the actual training time is
543 ms, meaning only a 3 ms deviation. For Inception, the
prediction error is 0.9%, which is the maximum among all
the six models.

4.7 Overhead Discussion

While boosting the DNN training throughput, HOME also
introduces the following overheads. Profiling Overhead. In

TABLE 2
Comparison of the Maximum Batch Size (samples) and Training

Throughput (samples/second) Among PyTorch (PyT.),
Capuchin(Cap.) and HOME

Models Maximum Batch Size Training Throughput

PyT. Cap. HOME PyT. Cap. HOME

MobileNet 2012 3954 4200 1706 2999 3426
Plain20 1040 2843 2926 2368 2012 2554
SqueezeNet 1667 4056 4347 6273 5719 6613
VGG16 2759 4250 5125 2786 5120 6211
ResNet 1255 2014 2576 2285 2179 2519
InceptionV3 125 345 365 257 240 280

Fig. 8. The legend “Worst,” “Average,” and “Best” denote the training time with the worst policy, the average training time with all candidate policies,
and the training time with the best policy selected by PSO.
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the first iteration of the DNN training, the profiler needs to
profile some required information, including the size of
each tensor, the execution time of each layer, and the depen-
dencies of feature maps, which causes time overhead. How-
ever, the overhead is negligible as the profiling is only
conducted once, which can be amortized over the long
training process. For example, the profiling for the Incep-
tionV3 model takes about 10 ms and the whole training pro-
cess takes several hours.

Search Overhead. The PSO algorithm iteratively finds the
optimal tensor placement solution in an offline way. This
search process incurs time overhead. In our current design,
we set the number of iterations to 500. The second column
of Table 3 lists the time overhead of the entire search process
for the six DNN models. We find that all models finish the
whole search process within 6 minutes. Compared to the
whole DNN training which takes several hours or even
days, the search overhead is acceptable and can be amor-
tized over the training.

Evaluation Overhead. The third column of Table 3 lists the
execution time of the Policy Evaluator for different DNN
models. We find that all models only need 4.7 ms on aver-
age to estimate the DNN training time in one iteration while
spending nearly a hundred milliseconds for one iteration
training on real systems (e.g., 1.4 ms versus 700 ms on
VGG16). Therefore, such overhead is acceptable.

5 RELATED WORK

5.1 Data Parallelism and Model Parallelism

Due to the limited GPU memory capacity, extensive studies
have been conducted to utilize parallelism techniques for
training large-scale neural networks. Typical techniques
include data parallelism, model parallelism, and both. With
data parallelism, deep learning systems distribute a large
batch to multiple GPUs to reduce memory footprint on one
GPU [9], [31], [38]. Different fromdata parallelism,model par-
allelism spreads out the total neural network and parameters
to multiple GPUs. [39], [40] choose to leverage both data and
model parallelism to resolve the GPUmemory shortage issue.
However, both data parallelism and model parallelism
require additional devices to reduce the memory footprint.
Therefore,HOME is orthogonal to these approaches.

5.2 DNN Model Compression

Because DNN models are over-parameterized [41], several
works utilize precision reduction to remove the redundancy

of parameters in neural networks [26]. For example, [42]
assesses the impact of low-precision of three distinct data
formats and finds that very low precision is sufficient for
DNN training. Gist [12] exploits existing value redundancy
and proposes a lossy encoding scheme to reduce memory
footprint. To reduce network redundancy, quantization and
pruning techniques are also widely used in the existing lit-
erature. [43] apply network quantization by reducing the
number of bits required to represent model parameters. [27]
leverage filter pruning and weight pruning to remove
redundant network connections. These approaches save
memory footprint but may lead to lower model accuracy.

5.3 Swapping and Recomputation

Existing work has also exploited memory optimization via
data swapping and recomputation. vDNN [14] analyzes the
features of different layers and chooses to swap convolution
tensors for saving GPU memory. moDNN [15] introduces
heuristics to schedule data transfers and uses profiling infor-
mation to overlap computation and communication. These
works ignore the potential of recomputation in reducing
memory footprint. SuperNeurons [19] and Layup [44] com-
bine data swapping with data recomputation to reduce GPU
memory footprint. However, they only apply a fixed place-
ment policy to a specific layer. This fixed rule may ignore
other possible solutions for the specific layer, which may
degrade system performance. Capuchin [18] also utilizes ten-
sor swapping and recomputation but decides the tensor
placement policy only according to the tensors from the first
layer to the current layer, without considering the subsequent
tensors, leading to sub-optimal performance. AutoTM [23]
uses Integer Linear Programming (ILP) to make data transfer
schedules to reduce CPU memory footprint during DNN
training. However, as a brute-force approach, the time cost is
unaffordable when the models become complex. In addition,
AutoTM only considers swapping without taking the advan-
tage of recomputation.

6 CONCLUSION

With the increasing sizes ofDNNmodels, deep learning train-
ing usually faces the memory-capacity-wall issue on GPUs.
This problem is exacerbated by emerging DNN applications
with large inputs. There are numerous memory management
approaches to address this issue through data swapping
and/or recomputation. However, these approaches mainly
focus on reducing memory footprint but may suffer sub-opti-
mal training performance because they only consider partial
model information in making tensor placement decisions. In

Fig. 9. Prediction accuracy of the evaluator for different DNN models.

TABLE 3
The Time Overhead That HOME Incurs During DNN Training

Models Search
Time (s)

Execution Time of
Policy Evaluator (ms)

MobileNet 28 1.7
Plain20 41 2.2
SqueezeNet 9 0.5
VGG16 25 1.4
ResNet 10 0.6
InceptionV3 350 21.8
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this paper, we propose a novel GPU memory management
framework, HOME, which holistically considers the DNN
model information to optimize the tensor placements. HOME
explores the vast search space through the particle swarm
optimization algorithm and chooses the best policy for DNN
training. HOME intelligently selects swapping or recomputa-
tion, to maximize the training throughput within the memory
capacity budget. Our experiments show that HOME can out-
perform vDNN and Capuchin by up to 5.7� and 1.3� in
throughput. Furthermore, HOME can promote themaximum
batch size by up to 2.8� than the original PyTorch and up to
1.3� than Capuchin. As deep learning applications become
more and more popular, HOME will facilitate the successful
running of some large DNN models on memory-constrained
devices. Thiswill inspire the next generation ofmemoryman-
agement in deep learning frameworks and accelerate the
development of deep learning in various fields.

As HOME relies on the profiler and heuristic accuracy, it
is difficult for HOME to work well in multi-tenancy execu-
tion, transfer learning, and continuous learning. In the
future, we will devise more efficient approaches to improve
the performance of deep learning with memory constraints
in such environments.
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