
HAS: Heterogeneity-Aware Selective Layout
Scheme for Parallel File Systems on Hybrid Servers

Shuibing He+∗, Xian-He Sun∗, Adnan Haider∗
+School of Computer, Wuhan University, Wuhan, Hubei, China

∗Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
{she11, sun}@iit.edu, ahaider3@hawk.iit.edu

Abstract—Hybrid parallel file systems (PFS), consisting of
multiple HDD and SSD I/O servers, provide a promising design
for data intensive applications. The efficiency of a hybrid PFS
relies on the file’s data layout. However, most current layout
strategies are designed and optimized for homogeneous servers.
Using them directly in a hybrid PFS neither addresses the
heterogeneity of servers nor the varying access patterns of
applications, making hybrid PFSs disappointingly inefficient.
In this paper, we propose HAS, a novel heterogeneity-aware

selective data layout scheme for hybrid PFSs. HAS alleviates the
inter-server load imbalance through skewing data distribution
on heterogeneous servers based on their storage performance. To
largely improve the entire system’s I/O efficiency, HAS adaptively
selects the optimal data layout from three typical candidates
according to the application’s data access patterns, based on
a newly developed selection and distribution algorithm. We
have implemented HAS within OrangeFS to provide efficient
data distribution for data-intensive applications. Our extensive
experiments validate that HAS significantly increases the I/O
throughput of hybrid PFSs, compared to existing data layout
optimization methods.

Keywords-Parallel I/O System; Parallel File system; Data
Layout; Solid State Drive

I. INTRODUCTION

Parallel file systems (PFS) have been widely used in high

performance computing (HPC) systems during the past few

decades. A PFS, such as OrangeFS [1], Lustre [2] and

GPFS [3], can achieve superior I/O bandwidth and large

storage capacity by accessing multiple I/O servers simulta-

neously. However because of the existing performance gap

between I/O servers and CPU, the so called I/O wall, current

PFSs cannot fully meet the enormous data requirements of

many HPC applications [4], especially for data intensive HPC

applications.

Solid state disks (SSD) are attracting attention in HPC

domains [5] due to their low access latency and high data

bandwidth. However, building a sole SSD file system for a

large computing cluster often is not a feasible choice, due to

the cost of SSDs and the merits of HDDs, such as high capac-

ity and decent peak bandwidth for large sequential requests. A

hybrid parallel I/O system, which is comprised of both HDD

servers (HServer) and SSD servers (SServer), is more practical

for cost-constraint systems [6]. In practice, SServers can be

used as a cache [7] or in a multi-tiered system [8]. These

two approaches have their merits but cannot fully utilize the

I/O parallelism of the servers. Detailed comparison of these

architectures is out of the scope of this paper. In this work, we

focus on high-capacity SServers and use them as flat storage.

To make full use of high-performance SServers, a PFS must

rely on an efficient file data layout, which is an algorithm

defining a file’s data distribution across available servers.

Traditional layout methods utilize fixed-size stripe to dispatch

files across multiple servers. Generally, data layout depends

on application behaviors. To further improve the storage

performance, numerous works are devoted to the file data

layout optimizations, such as data reorganization [9], data

partition [10], [11], data replication [12], [13], and data stripe

resizing [14]. However, most current schemes are designed

and optimized for homogeneous servers. When applied to

hybrid PFSs, the homogeneity assumptions do not hold, thus

providing two limitations.

First, the heterogeneity of storage servers can significantly

decrease the overall system performance if the distribution

scheme is not conscious of server performance. Due to their

intrinsic properties, SServers always outperform HServers. In

PFSs, a large file request is commonly divided into multiple

sub-requests, which will be concurrently served by multiple

HServers and SServers. In this case, SServers are left idling

while HServers continue to process their requests. This inter-

server load imbalance leads to under-utilization of system

hardware resources. Our experimental results show that load-

imbalance significantly slows down a request (Section II).

Second, most previous works are only designed for a

particular or limited set of access patterns. For example, the

commonly used simple stripe policy in OrangeFS [1] is only
suitable for large parallel file requests, but performs poorly for

other access patterns. As applications become data-intensive

and complicated, access patterns can vary considerably be-

tween applications, in terms of request size, access type (read

or write), and access concurrency. A data layout optimized

for only a specific access pattern is not efficient for all

applications. An efficient, comprehensive data layout scheme

should depend on application’s access patterns.

In this paper, we propose a heterogeneity-aware selective

(HAS) data layout scheme for hybrid PFSs to address the

above challenges. HAS eliminates load-imbalance by assign-

ing varied-size file stripes or distributing different number of

files to heterogeneous servers based on their performance.

In addition, to obtain the global optimal performance, HAS

selects, based on application characteristics, the data layout

2015 IEEE 29th International Parallel and Distributed Processing Symposium

1530-2075/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPS.2015.23

613

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:56 UTC from IEEE Xplore. Restrictions apply.

����

������� ������� ������� ������� ��������������

��	�
��

������� ������� ��������

��	�
���

���

�	���������������

�	����������������

�	���������������

�	���������������

�	���������������

�	���������������

�	���������������

�	���������������

��	�
�� ��	�
��� ��	�
�� ��	�
���

����

���� �����������	 ���	 ���	

�������������� �������

Fig. 1. The three typical data layout policies in PFSs. For 1-DH and 2-D, HServer and SServer are assigned with fixed-size file stripes. For 1-DV, HServer
and SServer are distributed with identical number of files.

policy with the minimal access cost from three typical layout

candidates existing in PFSs as the final data layout method. To

be specific, HAS applies an analytical model which considers

both an application’s access patterns and a server’s storage

characteristics to achieve the optimal data layout.

One might expect to determine the proper layout mechanism

for a given application pattern to be simple. In reality, it is a

complex issue for several reasons. First, the performance of

each server can be significantly impacted by application access

patterns, such as request size, access type (read or write),

access concurrency (number of processes), etc. Second, the

server performance is also related with the storage device.

Even under the same pattern, HServer and SServer exhibit

different performance behaviors. Finally, besides the storage

cost, the network cost, affected by application access patterns,

is also an integral part of the overall data access cost. HAS

fully considers these critical factors when determining the

appropriate data layout to achieve optimal performance in

hybrid PFSs.

Specifically, we make the following contributions.

• We introduce a cost model, which is a function of system

configurations and application I/O patterns, to evaluate

the I/O completion time of each file request for each of

the three different layout policies in hybrid PFSs.

• We propose a selective data layout scheme, which dis-

tributes data using the least expensive layout policy

determined by the cost analysis. The distribution is im-

plemented either by varying the file stripe sizes or the

number of files on different servers.

• We implement the prototype of the HAS scheme under

OrangeFS, and have conducted extensive tests to verify

the benefits of the HAS scheme. Experiment results

illustrate that HAS can significantly improves I/O per-

formance.

The rest of this paper is organized as follows. The back-

ground and motivation are given in Section II. We describe the

design and implementation of HAS in Section III. Performance

evaluations of HAS are presented in Section IV. We introduce

the related work in Section V, and conclude the paper in

Section VI.

II. BACKGROUND AND MOTIVATION

A. Typical Data Layout Policies in PFSs

PFSs, such as OrangeFS [1], Lustre [2] and GPFS [3],

support three typical data layout policies — one-dimensional

horizontal (1-DH), one-dimensional vertical (1-DV), and two-
dimensional (2-D) layout. As shown in Figure 1, 1-DH is the

simple striping method that distributes a process’s file across

all available servers in a round-robin fashion. 1-DV performs

no striping at all, and instead places the file data on one server.

2-D is a hybrid method, it distributes the file on a subset of

servers. All three layout policies utilize fixed-size file stripes to

distribute file data, and each of them work well for a particular

kind of I/O access patterns [12]. However, these schemes are

designed for homogeneous PFSs on identical storage servers,

and they will perform poorly for hybrid PFSs.

B. Motivation Example

To illustrate the impact of server heterogeneity on the

overall system performance, we ran IOR [15] to access parallel

OrangeFS files in a hybrid environment (denoted by Hybrid)

with four HServers and four SServers. IOR ran with 16 pro-

cesses, each of which accessed an individual file. We limited

the request size to 512KB, and the access pattern to sequential

and random read and write. For the purpose of performance

comparison, we also ran IOR with the same parameters on

two homogeneous sub-clusters: four HServers (denoted by

HDD) and four SServers (denoted by SSD). Figure 2 shows

the throughputs of IOR with the three typical layout policies.

We can observe that for all policies, the hybrid cluster with

eight servers slightly outperforms the homogeneous cluster

614

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:56 UTC from IEEE Xplore. Restrictions apply.

�

�

�

�

�
��
�
��
�
��

!
�
�

��
"#

$
��
%

�&& ��& �'(�)

(a) 1-DH layout

�

�

�

�

�

��
�
��
�
��

!
�
�

��
"#

$
��
%

�&& ��& �'(�)

(b) 1-DV layout

�

�

�

�

�

��
�
��
�
��

!
�
�

��
"#

$
��
%

�&& ��& �'(�)

(c) 2-D layout

Fig. 2. Throughputs of IOR with three typical data layout schemes. The system is tested with homogeneous and heterogeneous server configurations, the
file stripe is 64KB, and the group size is two in 2-D layout.

with four low-speed HServers, and performs worse than the

homogeneous system with four SServers. In other words,

more heterogeneous hardware resources actually degrade I/O

performance. This illustrates that traditional layout schemes

are highly inefficient for hybrid PFSs.

C. Reasons for Poor Performance of Hybrid PFSs

1) Inter-Server Load Imbalance: Traditional layout policies
will lead to severe load imbalance among heterogeneous

servers. Generally, a large file request will be divided into

multiple sub-requests, concurrently served by the underlying

servers. With fixed-size file stripe, HServers and SServers

possibly handle same-size sub-requests. As a result, SServers

will waste much time on waiting for the low-speed HServers.

To show this, we analyze the I/O time of each server in the

sequential read test in Figure 2(a). We find that HServers take

roughly 3.5X time to complete I/O operations compared with

SServers (Other layouts have the similar results).
2) Single Server I/O Inefficiency: Existing layout polices

may also incur severe I/O inefficiency on a single server.

Similar to the cases in homogeneous systems, each layout

scheme in hybrid PFSs leads to distinct sub-requests and ac-

cess concurrency on each server. For example, 1-DH produces

much higher I/O concurrency than 1-DV when a large number
of processes exist. The server performance can be largely

degraded due to sever I/O contention. In other words, although

the inter-server load balance is maintained, a layout policy not

considering application access patterns can offset the overall

system performance.

III. DESIGN AND IMPLEMENTATION

In this section, we first introduce the basic idea of our

proposed heterogeneity-aware selective (HAS) data layout

scheme. Then we describe the cost model and algorithm used

to determine the optimal data layout for hybrid PFSs. Finally,

we present the implementation of HAS.

A. The Basic Idea of HAS Overview

Since traditional layout schemes lead to severe performance

degradation, the proposed data layout scheme, HAS, aims to

optimize the performance of hybrid PFSs through skewing data

distribution on heterogeneous servers.

Figure 3 shows the idea of HAS. Compared with tradi-

tional layout policies which assign each server with fixed-

size file stripes or fixed-number of files, HAS distributes file

data on heterogeneous servers with varied-size file stripes or

various number of files based on the server performance. This

can alleviate inter-server load imbalance. Further more, HAS

chooses the layout scheme with minimal access cost from the

three layout candidates as the final layout for an application

to improve the overall system I/O efficiency.

However, determining the proper layout policy and its

corresponding stripe sizes or number of files on each server

is not easy for several reasons. First, the server performance

is a complex function of multiple factors, such as application

access patterns and storage media. Second, in addition to the

storage cost, the network cost also plays an important role in

the overall data access cost. To identify the optimal data layout,

we built an analytical cost model accounting for application,

network, and storage characteristics to evaluate the data access

time in a heterogeneous I/O environment.

B. Data Access Model in Hybrid PFSs

1) Assumptions and Definitions: The overall I/O time is a

function of various parameters, which are listed in table I. The

system and application pattern parameters are used as known
inputs, and data layout parameters are optimized depending
on the inputs.

Note that the storage related parameters show distinct char-

acteristics on heterogeneous servers. First, the start up time of

SServer is much smaller than HServer’s. Second, data transfer

time of SServer is several times smaller than that of HServer’s.

Finally, while HServer may have identical read and write

performance, SServer usually has a faster read performance

than writes because write operations lead to many background

activities due to garbage collection and wear leveling [16].

We only consider 1-DH, 1-DV, and 2-D layout policies due

to their popularity. In each policy, the files are distributed on

the underlying servers as in Figure 3. We assume each process

accesses one file and only that file. For 1-DH and 2-D, stripe
sizes are varied depending on the type of server. For 1-DV,
since all file data is distributed on one server, varying the stripe

size will not affect the request cost so we vary the number of

files on heterogeneous servers instead. Due to symmetry, we

assume perfect load balance of data access within HServers

and SServers but not between different types of servers. In

addition, we have following assumptions for each policy:

• For 1-DH, we assume each file request is served by all the
m+n servers, so that each storage node can contribute to

615

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:56 UTC from IEEE Xplore. Restrictions apply.

����

������� �������������� ������� ������� ������� ��������������

����

��	�
��

������� ������� ������� ��������

��	�
���

���

��	�
�� ��	�
��� ��	�
�� ��	�
���

���� �����������	 ���	 ���	

�	���������������

�	����������������

�	���������������

�	���������������

�	���������������

�	���������������

�	���������������

�	���������������

Fig. 3. The three data layout policies in hybrid PFSs after optimization. For 1-DH and 2-D, HServer and SServer are assigned with varied-size file stripes.
For 1-DV, HServer and SServer are distributed different number of files.

TABLE I
PARAMETERS IN COST ANALYSIS MODEL

System Parameters
m Number of HServers

n Number of SServers

c Number of process on one client node

e Average network establishing time per connection

t Unit data network transmission time

αh Average startup time of one operation on HServer

βh Unit data transfer time on HServer

αsr Average startup time for read on SServer

βsr Unit data transfer time for read on SServer

αsw Average startup time for write on SServer

βsw Unit data transfer time for write on SServer

Application Pattern Parameters
p Number of client processes

r Size of file request

o Type of file request (read or write)

Data Layout Parameters
sh Stripe size on HServer in 1-DH and 2-D layout

ss Stripe size on SServer in 1-DH and 2-D layout

ph Number of process on HServer in 1-DV layout

ps Number of process on SServer in 1-DV layout

g Number of storage groups in 2-D layout

the aggregate I/O performance. Each sub-request on the

server has the same size with the stripe on that server.

Thus we have the following constraint.

m× sh + n× ss = r (1)

Usually ss is larger than sh to achieve load balance. In
an extreme case, sh can be zero (which means file data
are only distributed on SServers) if there is a possibility

to improve the performance.

• For 1-DV, the number of processes on each server equals
the number of files. We assume all files are distributed

on the m+ n servers, thus

m× ph + n× ps = p (2)

Similarly, ps is larger than ph, and ph can be zero.
• For 2-D, we assume each group includes m/g HServers
and n/g SServers, and a file request is distributed on all
the (m + n)/g servers in that group as in 1-DH policy,

thus

m× sh + n× ss = g × r (3)

2) Access Cost Analysis: Our cost model divides the overall
I/O time of a parallel data access into four parts. TE is the

network establishing time, TX is the network transferring time,

TS is the storage startup time, and TT is the storage transfer

time. The former two parts are network related access costs

(TNET), and the latter two are storage related access costs

(TSTOR). Taking their sum gives the overall I/O time (T):

T = TE + TX + TS + TT (4)

Establishing cost: TE depends on the number of establish-
ing operations for the parallel data accesses. Since a network

establishing operation is related with both the client and the

server, TE is determined by the higher cost of the two.

Take the 1-DH layout as an example, each client needs to

establish network connections with all servers serially, thus

TE = c(m+n)e. From a server’s point of view, it is accessed
by p processes, thus TE = pe. Then, the final establishing
time TE = max{c(m+ n)e, pe}.
Transfer cost: TX is related with the network data transfer

size and the network data transfer rate. Similarly, it is deter-

mined by the maximal cost of a client and a server. We still

use the 1-DH layout as an example. For a client, TX = crt;
for HServer, TX = psht; for SServer, TX = psst. Since sh
will always be at most ss, TX = max{crt, psst}.

616

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:56 UTC from IEEE Xplore. Restrictions apply.

�	
�� �	����	�
����	����	
��TNET� ��	������	
��TSTOR�

*��+(�	���TE� ��+
�����TX� Max,��+������-��������.���+������-�������/�

T1-DH

 � �� � ��� �� � ���� ���������
����� � � ����� ! � �!"!�� �# � ��"�#���

 $ �� � ���
�� ���������
����� � � ����� ! � �!"!�� �# � ��"�#���

T1-DV
% � ���
��� �
���� �����
! ! � �"!��
� �# � �"�#���
% $ ��� ��� %��� �����
! ! � �"!��
� �# � �"�#���

T2-D

 � &� � '
&(�� ���� '
&(� �����)* � +*,*�� �# � ��"�#���

 $ &�
'
&(� % '�&(� % '�&(�� ��������� '
&(����� '
&(� �����)* � +*,*�� �# � ��"�#���
'
&($ % '�&(� '
&(�� ��������� '
&(����� '
&(� �����)* � +*,*�� �# � ��"�#���

Fig. 4. Data access cost for read requests on hybrid Hservers and SServers

Startup cost: TS is relatively straightforward and deter-

mined by the number of I/O operations on one server, namely

the number of client processes assigned on that server. For a

parallel request, TS is determined by the maximal cost among
all involved I/O servers.

Read/write cost: TT is the time spent on actual data

read/write operations. It can be calculated by the ratio of the

request size over the data transfer rate of storage devices.

Similarly, TT is determined by the maximal value of all I/O

servers for a parallel request.

We refer to the data access cost in the three layout polices

as T1−DH , T1−DV and T2−D respectively, which is calculated

as in Figure 4. T1−DH is derived from our previous work [17],

which expresses the cost as a function of sh and ss. For
the new proposed formulas, T1−DV describes the cost as

a function of ph and ps, and T2−D utilizes sh, ss and g
for the same goal. Figure 4 only displays the access cost

for read requests; writes will be similar except startup and

unit data transfer time for SServers will change. These three

policies imply more application-aware and effective layout

optimization methods for hybrid PFSs.

By examining the formulas, we can capture the following

implications for data layout optimizations.

• For 1-DH and 2-D, the storage read/write cost TTH and

TTS on the two types of servers can be balanced by

increasing the stripe size of SServer (ss) and decreasing
that of HServer (sh), but doing so may increase the
network transfer time TX on SServer, possibly delaying

the overall completion time (T).
• For 1-DV, the storage read/write cost TTH and TTS can

be balanced by increasing the number of files on SServer

(ps) and decreasing that on HServer (ph). Similarly, this
may increase the network transfer time TX , offsetting the
reduction of T .

C. Optimized Data Layout Determination

We note that the model consists of linear equalities and

inequalities of unknown variables (max can be expressed as

multiple linear inequalities). Therefore, the model can be

solved exactly to minimize the total I/O cost under three

layout policies, subject to the above constraints. Since we have

described the stripe size determination for the 1-DH layout

policy [17], we show the methods to determine the optimal

data layout for the other two policies.

1) 1-DV Layout Optimization: The system and pattern

related parameters can be regarded as constants, and T1−DV

is a function of two unknowns—ph and ps. The final problem
is to choose the values of ph and ps to minimize T1−DV .

For condition c ≤ ps, according to the member values in
the corresponding maximum expressions in the formulas in

Figure 4, we translate this optimization problem into two linear

programming (LP) problems shown below.

Case 1: Minimize T 11−DV = ps(e+ rt) + ph(αh + rβh)
(5)

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mph + nps = p

ps(αsr + rβsr) ≤ ph(αh + rβh)
0 ≤ ph ≤ p/m
c ≤ ps ≤ p/n

(6)

Case 2: Minimize T 21−DV = ps(e+rt)+ps(αsr+rβsr) (7)

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mph + nps = p

ph(αh + rβh) ≤ ps(αsr + rβsr)
0 ≤ ph ≤ p/m
c ≤ ps ≤ p/n

(8)

617

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:56 UTC from IEEE Xplore. Restrictions apply.

Then

T1−DV = min{T 11−DV , T
2
1−DV } (9)

The first constraint of Equation 6 and 8 is Equation 2. The

second constraint is the only difference between case 1 and

case 2; they account for the two possible values of TSTOR

in Figure 4. The third and fourth constraints for 1-DV are

directly derived from Equation 2. For example, the max of

ph is achieved by letting ps = 0 in Equation 2, as goes for
calculating the max of ps. The final cost for 1-DV determined
by Equation 9 is the minimum of the two cases.

The cases for the alternate condition will be similar to the

two above, except some values will be interchanged according

to the formulas in Figure 4.

2) 2-D Layout Optimization: T2−D is a function of three

unknown parameters sh, ss, and g. Similarly, based on the
member values in the maximum expressions in Figure 4, we

translate the optimization problem into two linear program-

ming (LP) problems for the condition p ≤ g.

Case 1: Minimize T 12−D = c((p/g)e+rt)+(p/g)(αsr+ssβsr)
(10)

subject to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

msh + nss = gr

1 < g < (m+ n)

αh + shβh ≤ αsr + ssβsr
0 ≤ sh
0 ≤ ss

(11)

Case 2: Minimize T 22−D = c((p/g)e+rt)+(p/g)(αh+shβh)
(12)

subject to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

msh + nss = gr

1 < g < (m+ n)

αsr + ssβsr ≤ αh + shβh
0 ≤ sh
0 ≤ ss

(13)

Then

T2−D = min{T 12−D, T
2
2−D} (14)

The first constraint is Equation 3. The second constraint

ensures the achieved layout remains 2-D. Similar to the second
constraint of Equation 6, the third constraint accounts for

the possible values of TSTOR. The last two constraints for

Equation 10 and 12 simply ensure the stripe sizes remain

positive. The cases for other conditions will be similar to the

two above. Note the above optimizations use the storage values

for read, the optimizations for write can be done similarly.

3) Gobal Data Layout Optimization: After the linear opti-
mizations, there will be three potential layout methods, each

with their own cost T1−DH , T1−DV , and T2−D. Then,

HAS will select the minimum of three candidates as the

most optimal data distribution, which accounts for application,

storage, and network characteristics.

Note that the linear program is expressed with two or three

unknown variables, the search space is very small and solving

the program requires acceptable time cost.

D. Implementation
We implemented HAS in OrangeFS [1], which is a popu-

lar parallel file system and directly provides the varied-size

striping method for each file server. The procedure of the

HAS scheme includes the following three phases, as shown

in Figure 5.

0���	�+�	�
�

��+�	
!

&+�+�&	���	(�	�
�

�����#�)��

����	
!

�'��1

�'���1�2+�+1����� 2+����
�2+�+1�����

3+�	�)����	���

&	���	(�	�

3+�	�)��	���

&	���	(�	�

4+'� ��

���	1	5+�	�

4+'� ��

���	1	5+�	�

4+'� ��

���	1	5+�	�

�6&3�6&� �6&

�6&�.��6& �6&3

�
������	����
�

����������	����
�

��
��� !��	����
�

Fig. 5. HAS data layout optimization procedure.

The estimation phase consists of two parts, system testing

and application tracing. For system testing, the network param-

eters, e and t, the storage parameters, αh,βh,αsr/w,βsr/w, and
the system parameters, such as m and n can be regarded as
constants. We use all file servers in the parallel file system

to test the storage parameters for HServers and SServers

with sequential/random and read/write patterns and then we

calculate the average for HServers and SServers. We use

many pairs of clients and file servers to estimate the network

parameters. Again the tests are conducted thousands of times

for the purpose of accuracy, and we use the average value

for the network parameters. For application tracing, we use a

trace collector, IOSIG [18], to obtain the run-time statistics of

data accesses during the application’s first execution. Many

HPC applications access their files with predictable access

patterns and they often run multiple times [19]. This provides

an opportunity to achieve the proposed data layout scheme.

Based on the I/O trace, we obtain the application’s I/O pattern

related parameters, such as p, r, and o.
In the optimization phase, using the parameters obtained

in the estimation phase, we apply the cost model and linear
programming optimization methods in III-C to determine the

optimal file data distribution on HServers and SServers for

each of the three layout policies. Since each policy may only

give sub-optimal performance because of unique character-

istics of applications, HAS compares their performance and

618

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:56 UTC from IEEE Xplore. Restrictions apply.

chooses the one with minimal cost as the final data layout

policy.

In the distribution phase, we distribute the file data with the
optimal layout policy and the corresponding layout parameters

for later runs of the applications. For 1-DH and 2-D, we
utilize the APIs supported by OrangeFS to implement the

specific variable stripe distribution and group distribution. In

OrangeFS, parallel files can either be accessed by the PVFS2

or the POSIX interface. For PVFS2 interface, we utilize the

“pvfs2-xattr” command to set the data distribution policy

and the related layout parameters for directories where the

application files are located. For POSIX interface, we use the

“setfattr” command to reach the similar data layout optimiza-

tion goal. For 1-DV policy, we create different numbers of

process files on HServers and SServers.

E. Discussion

HAS can potentially lead to more storage space consump-

tion for SServers, which might be an unwanted feature by

users. Fortunately, most file systems do not make full use

of the storage space in the underlying devices. On the other

hand, HAS focuses on high-capacity SServers thus the issue

of lack space is not frequently encountered. In the worst case,

with the possibility of an SServer running out of its space,

we design a data migration method to balance the storage

space by moving data from SServers to HServers, so that the

available remaining space on SServers can be guaranteed for

new incoming requests. This problem can also be addressed

by using the hybrid PFS to store performance-critical data and

the PFS only on HServers to store the rest of the data.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

We conducted the experiments on a 65-node SUN Fire

Linux cluster, where each node has two AMD Opteron(tm)

processors, 8GB memory and a 250GB HDD. 16 nodes are

equipped with additional OCZ-REVODRIVE 100GB SSD. All

nodes are equipped with Gigabit Ethernet interconnection. The

operating system is Ubuntu 9.04, and the parallel file system is

OrangeFS 2.8.6. Among the available nodes, we select eight

as client computing nodes, eight as HServers, and eight as

SServers. By default, the hybrid OrangeFS file system is built

on four HServers and four SServers.

We compare the proposed layout scheme HAS with two

other data layout schemes: the application-aware scheme

(ADL) [12] and the storage-aware scheme(SDL) [17]. In ADL,

file data is placed across the hybrid file servers with one of the

three policies according to the application’s access pattern, but

each server is assigned a fixed-size file stripe. In SDL, the file

stripe sizes for the hybrid servers are determined by the server

performance but only 1-DH policy is chosen, without fully

considering application access patterns. We use the popular

benchmark IOR [15] and BTIO [20] to test the performance.

7

�7

�7

�7

�7

�7

�7

��8 �
�	+� 9+
)�1

��
�
��
�
��

!
�
�

��
"#

$
��
��
%

0&4 �&4 �0�

(a) Read throughput

�

�

�

�

�

�

��8 �
�	+� 9+
)�1

��
�
��
�
��

!
�
�

��
"#

$
��
��
%

0&4 �&4 �0�

(b) Write throughput

Fig. 6. Throughputs of IOR under different layout schemes with different
I/O modes

B. IOR Benchmarks

IOR provides three APIs, MPI-IO, POSIX, and HDF5. We

only use the MPI-IO interface. Unless otherwise specified,

IOR runs with 32 processes, each of which performs I/O

operations on an individual 256MB parallel file with request

size of 512KB. We provide two sets of experiments, varying

application characteristics and varying storage characteristics.

We illustrate the importance of considering both application

and storage characteristics, by comparing to schemes which

only consider one type of characteristics.

1) Varying Application Characteristics: We vary the fol-
lowing application related traits: I/O operation type, number of

processes, and request size. First we run IOR with sequential

and random read and write I/O operations. Figure 6 shows the

throughput of IOR. We observe that HAS outperforms ADL

and SDL. By using the optimal data distribution for HServers

and SServers, HAS improves read performance up to 189.7%

over ADL with all I/O access patterns, and write performance

up to 242.7%. Compared with SDL, HAS improves the

performance up to 23.8% for reads and 21.1% for writes.

Although ADL accounts for I/O operation type variation,

HAS has superior performance than ADL because it considers

storage server performance differences. HAS provides optimal

performance for read and write operations, but SDL degrades

in performance because its lack of application awareness.

Then we evaluated the layout schemes with different num-

ber of processes. The IOR benchmark is executed under the

random access mode with 16, 64 and 128 processes. As

displayed in Figure 7, the result is similar to the previous

test. HAS has the best performance among the three schemes.

Compared with ADL, HAS improves the read performance

by 140.3%, 179.7%, and 200.2% respectively with 16, 64 and

619

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:56 UTC from IEEE Xplore. Restrictions apply.

�

�

�

�

�

�� �� ��:

��
�
��
�
��

!
�
�

��
"#

$
��
��
%

; 1(�������2��������

0&4 �&4 �0�

(a) Read throughput

�

�

�

�

�

�� �� ��:

��
�
��
�
��

!
�
�

��
"#

$
��
��
%

; 1(�������2��������

0&4 �&4 �0�

(b) Write throughput

Fig. 7. Throughputs of IOR with varied number of processes

128 processes, and write performance by 174.3%, 200.7%,

and 292.7%. Compared with SDL, HAS achieves similar

performance for 16 processes. For 64 and 128, HAS improves

read performance by 16.1% and 27.3% respectively, and write

performance by 14.2% and 21.3%. When the number of

processes is large, the 1-DV policy, implemented in HAS,

provides better performance than the 1-DH layout used by

SDL. As the number of processes increase, the performance

of the hybrid PFS decreases because more processes lead to

server I/O contention in HServers and SServers. These results

show that HAS scales excellently with the number of I/O

processes.

Finally, the I/O performance is examined with different

request sizes. We set the request size to 128KB and 4096KB,

and the number of processes to 32. From Figure 8(a), we

can observe that HAS can improve the read performance

up to 110.3%, and write up to 151.6% in comparison with

ADL. Compared with SDL, HAS also has better performance:

the read performance is increased up to 13.4%, and write

performance is increased up to 37.7%. As the request size

increases, 1-DH tends to be the best layout policy. For example

when the request size is 4096KB, HAS selects the same data

layout policy as SDL, 1-DH. These results validate that HAS
can choose appropriate data distribution for HServers and

SServers when the request size varies.

Our results validate that it is essential for a data layout

scheme to account for application traits in order for a system

to provide peak storage performance.

2) Varying System Characteristics: We examined the I/O
performance with different server configurations. We varied

the numbers of HServers and SServers with the ratios of 5:3

and 6:2. Figure 9 shows the bandwidth of IOR with different

file server configurations. Based on the results, HAS can

�

�

�

�

�

��8 �
�	+����+) 9+
)�1���+) ��8 �
�	+��<�	�� 9+
)�1�<�	��

��
�
��
�
��

!
�
�

��
"#

$
��
��
%

0&4 �&4 �0�

(a) Request size is 128K

�

�

�

�

�

�

�

��8 �
�	+����+) 9+
)�1���+) ��8 �
�	+��<�	�� 9+
)�1�<�	��

��
�
��
�
��

!
�
�

��
"#

$
��
��
%

0&4 �&4 �0�

(b) Request size is 1024K

Fig. 8. Throughputs of IOR with varied request sizes

�

�

�

�

�

�

��8 �
�	+����+) 9+
)�1���+) ��8 �
�	+��<�	�� 9+
)�1�<�	��

��
�
��
�
��

!
�
�

��
"#

$
��
��
%

0&4 �&4 �0�

(a) 5HServers : 3SServers

�

�

�

�

�

�

��8 �
�	+����+) 9+
)�1���+) ��8 �
�	+��<�	�� 9+
)�1�<�	��

��
�
��
�
��

!
�
�

��
"#

$
��
��
%

0&4 �&4 �0�

(b) 6HServers : 2SServers

Fig. 9. Throughputs of IOR with varied file server configurations

improve I/O throughput for both read and write operations.

When the ratio is 5:3, HAS improves the read and write

performance by up to 171.6% and 232.4% respectively, when

compared to ADL. Compared with SDL, HAS increases the

read performance by 21.9%, and write performance by 17.1%.

When the ratio is 6:2, the performance gap is decreased

because the server configuration is more homogeneous. In the

experiments, the read and write performance disparity between

HAS and ADL enlarges as the number of SServers increase

because HAS is storage device conscious.

By varying the system characteristics, we prove that the

620

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:56 UTC from IEEE Xplore. Restrictions apply.

�

�

��

�

��

�

��

�

�� �� ��

��
�
��
�
��

!
�
�

�"
#
$
��
��
%

; 1(������2��������

0&4 �&4 �0�

Fig. 10. Throughputs of BTIO under different data placement schemes

consideration of system traits is essential to optimal data

distribution.

C. BTIO benchmark

Apart from the synthetic benchmark above, we also use

the BTIO benchmark [20] from the NAS Parallel Bench-

mark (NPB3.3.1) suite to evaluate the proposed scheme.

BTIO represents a typical scientific application with inter-

leaved intensive computation and I/O phases. BTIO uses a

Block-Tridiagonal (BT) partitioning pattern to solve the three-

dimensional compressible Navier-Stokes equations.

We consider the Class B and epio subtype BTIO workload
in the experiments. That is, we write and read a total size of

1.69GB data. We use 16, 36, and 64 compute processes since

BTIO requires a square number of processes. Each process

accesses its own independent file. Output files are distributed

across six HServers and two SServers on the hybrid OrangeFS

file system.

As shown in Figure 10, compared to ADL and SDL, HAS

achieves better throughput and scalability. Compared to ADL,

HAS improves the performance by 153.1%, 157.6%, and

175.2% with 16, 36, 64 processes, respectively. For SDL, HAS

achieves the improvement by up to 48.2%.

All the experiment results have confirmed that the pro-

posed HAS scheme is a promising method to improve the

performance of hybrid PFSs. It helps parallel file systems

provide high performance I/O service to meet the growing

data demands of many HPC applications.

V. RELATED WORK

A. I/O Request Stream Optimization

Much research has focused on reorganizing I/O request

streams to minimize access time spent on I/O device and

network. Generally, such optimizations are implemented at

the I/O middleware layer. For example, instead of accessing

multiple small, noncontiguous requests, data sieving [21]

applies the strategy of accessing a contiguous chunk created by

gathering the noncontiguous requests. Datatype I/O [22] and

List I/O techniques [23] allow noncontiguous I/O requests to

be converted into a single I/O request, thereby limiting the

number of total requests. Collective I/O [21] also rearranges

I/O accesses into a larger contiguous request, but considers

the multiprocess level instead of a single process.

B. Data Layout in HDD-based File Systems

Parallel file systems have different data layout strategies,

which allow for numerous data layout optimization meth-

ods [12]. Several techniques, including data partition [10],

[11], data migration [24], and data replication [12], [13],

[25], are applied to optimize data layouts depending on I/O

workloads. Segment-level layout scheme logically divides a

file to several parts and appoints an optimal stripe size for

each part [26]. Another methodology, server-level adaptive

layout strategy, selects different stripe sizes depending upon

the type of the file server [14]. PARLO is designed for

accelerating queries on scientific datasets by applying user

specified optimizations [9]. Tantisiriroj et. al [27] uses HDFS-

specific layout optimizations [28] to improve the performance

of PVFS. However, all these works are designed for homo-

geneous HDD-based file systems, and can’t be applied to

heterogeneous environments.

C. Data Layout in SSD-based File Systems

SSDs are commonly integrated into parallel file systems due

to their performance benefits. For now, most SSDs are used

as a cache to HDDs, e.g. Sievestore [29], iTransformer [30],

and iBridge [31]. Hybrid storage with SSDs is another popular

technique to exploit their merits, including I-CASH [32] and

Hystor [33]. Although effective, the vast majority of research

is focused on a single file server. Data layout optimizations

in Hybrid PFSs have not received their needed attention.

CARL [8], our previous work, selects and situates file regions

with high access costs onto SSD-based file servers at the I/O

middleware layer, but the region cannot be placed onto both

SSDs and HDDs. PADP [17] and PSA [34] employ stripe

size variation to improve the performance of hybrid PFSs,

yet the schemes are only optimized for the one-horizontal (1-
DH) layout policy, without fully considering the application’s
access patterns. This work achieves an optimal data layout

accounting for both application access patterns and server

performance by choosing the least expensive layout under

three typical layout policies.

VI. CONCLUSIONS

In this study, we propose a heterogeneity-aware selective

(HAS) data layout scheme for parallel file systems with both

HDD and SSD-based servers. HAS alleviates the inter-server

load imbalance by varying the file stripe sizes or the number of

files on different servers based on their storage performance.

In addition, HAS selects the optimal data layout from three

types of candidates according to application access patterns to

further improve I/O efficiency. We introduce a data access cost

model and a linear programming optimization method to deter-

mine the appropriate data layout method for given application

patterns and system traits. In principle, HAS improves hybrid

parallel file system performance by matching data layout with

both application characteristics and storage capabilities. We

have developed and presented the proposed HAS data layout

optimization scheme in OrangeFS. Experimental results show

that HAS improves the I/O performance by up to 292.7% over

621

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:56 UTC from IEEE Xplore. Restrictions apply.

the existing file data layout schemes. In the future, we plan to

propose more intelligent data layout schemes for applications

with complex access patterns.

ACKNOWLEDGMENT

The authors are thankful to the anonymous reviewers and

the members of the SCS research group for their valuable

feedback and comments toward this study. This work is sup-

ported in part by a research grant from Huawei Technologies

Co, Ltd., the US National Science Foundation under Grant No.

CNS-0751200, CCF-0937877 and CNS-1162540, and Natural

Science Foundation of Hubei Province of China under Grant

No. 2014CFB239.

REFERENCES

[1] “Orange File System,” http://www.orangefs.org/.
[2] S. Microsystems, “Lustre File System: High-performance Storage Ar-

chitecture and Scalable Cluster File System,” Tech. Rep. Lustre File
System White Paper, 2007.

[3] F. Schmuck and R. Haskin, “GPFS: A shared-disk File System for Large
Computing Clusters,” in Proceedings of the 1st USENIX Conference on
File and Storage Technologies, 2002, pp. 231–244.

[4] R. Latham, R. Ross, B. Welch, and K. Antypas, “Parallel I/O in
Practice,” Tech. Rep. Tutorial of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2013.

[5] A. Caulfield, L. Grupp, and S. Swanson, “Gordon: Using Flash Memory
to Build Fast, Power-efficient Clusters for Data-intensive Applications,”
in Proceedings of the Fourteenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS ’09), 2009.

[6] M. Zhu, G. Li, L. Ruan, K. Xie, and L. Xiao, “HySF: A Striped File
Assignment Strategy for Parallel File System with Hybrid Storage,” in
Proceedings of the IEEE International Conference on Embedded and
Ubiquitous Computing, 2013, pp. 511–517.

[7] S. He, X.-H. Sun, and B. Feng, “S4D-Cache: Smart Selective SSD Cache
for Parallel I/O Systems,” in Proceedings of the International Conference
on Distributed Computing Systems, 2014.

[8] S. He, X.-H. Sun, B. Feng, X. Huang, and K. Feng, “A Cost-Aware
Region-Level Data Placement Scheme for Hybrid Parallel I/O Systems,”
in Proceedings of the IEEE International Conference on Cluster Com-
puting, 2013.

[9] Z. Gong, D. A. B. II, X. Zou, Q. Liu, N. Podhorszki, S. Klasky, X. Ma,
and N. F. Samatova, “PARLO: PArallel Run-time Layout Optimization
for Scientific Data Explorations with Heterogeneous Access Patterns,” in
Proceedings of the 13th IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing, 2013.

[10] Y. Wang and D. Kaeli, “Profile-Guided I/O Partitioning,” in Proceedings
of the 17th Annual International Conference on Supercomputing, 2003,
pp. 252–260.

[11] S. Rubin, R. Bodik, and T. Chilimbi, “An Efficient Profile-Analysis
Framework for Data-Layout Optimizations,” ACM SIGPLAN Notices,
vol. 37, no. 1, pp. 140–153, 2002.

[12] H. Song, Y. Yin, Y. Chen, and X.-H. Sun, “A Cost-Intelligent
Application-Specific Data Layout Scheme for Parallel File Systems,” in
Proceedings of the 20th International Symposium on High Performance
Distributed Computing, 2011, pp. 37–48.

[13] J. Jenkins, X. Zou, H. Tang, D. Kimpe, R. Ross, and N. F. Sam-
atova, “RADAR: Runtime Asymmetric Data-Access Driven Scientific
Data Replication,” in Proceedings of the International Supercomputing
Conference. Springer, 2014, pp. 296–313.

[14] H. Song, H. Jin, J. He, X.-H. Sun, and R. Thakur, “A Server-Level
Adaptive Data Layout Strategy for Parallel File Systems,” in Proceedings
of the IEEE 26th International Parallel and Distributed Processing
Symposium Workshops and PhD Forum, 2012, pp. 2095–2103.

[15] “Interleaved Or Random (IOR) Benchmarks,”
http://sourceforge.net/projects/ior-sio/, 2014.

[16] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding Intrinsic Char-
acteristics and System Implications of Flash Memory Based Solid State
Drives,” in Proceedings of the Eleventh International Joint Conference
on Measurement and Modeling of Computer Systems, 2009, pp. 181–
192.

[17] S. He, X.-H. Sun, B. Feng, and F. Kun, “Performance-aware data
placement in hybrid parallel file systems,” in Proceedings of the 14th
International Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP), 2014.

[18] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp, “Parallel I/O
Prefetching Using MPI File Caching and I/O Signatures,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2008, pp. 1–12.

[19] Y. Liu, R. Gunasekaran, X. Ma, and S. S. Vazhkudai, “Automatic
Identification of Application I/O Signatures from Noisy Server-Side
Traces,” in Proceedings of the 12th USENIX conference on File and
Storage Technologies, 2014, pp. 213–228.

[20] “The NAS parallel benchmarks,” www.nas.nasa.gov/publications/npb.html,
2014.

[21] R. Thakur, W. Gropp, and E. Lusk, “Data Sieving and Collective I/O
in ROMIO,” in The Seventh Symposium on the Frontiers of Massively
Parallel Computation, 1999, pp. 182–189.

[22] A. Ching, A. Choudhary, W.-k. Liao, R. Ross, and W. Gropp, “Efficient
Structured Data Access in Parallel File Systems,” in Proceedings of the
IEEE International Conference on Cluster Computing, 2003, pp. 326–
335.

[23] A. Ching, A. Choudhary, K. Coloma, L. Wei-keng, R. Ross, and
W. Gropp, “Noncontiguous I/O Accesses through MPI-IO,” in Pro-
ceedings of the 3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid, 2003, pp. 104–111.

[24] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Liptak, R. Ran-
gaswami, and V. Hristidis, “Borg: Block-Reorganization for Self-
Optimizing Storage Systems,” in Proccedings of the 7th conference on
File and Storage Technologies, San Francisco, California, 2009, pp. 183–
196.

[25] H. Huang, W. Hung, and K. G. Shin, “FS2: Dynamic Data Replication
in Free Disk Space for Improving Disk Performance and Energy Con-
sumption,” in Proceedings of the 20th ACM Symposium on Operating
Systems Principles, 2005, pp. 263–276.

[26] H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang, “A Segment-Level
Adaptive Data Layout Scheme for Improved Load Balance in Parallel
File Systems,” in Proceedings of the 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2011,
pp. 414–423.

[27] W. Tantisiriroj, S. Patil, G. Gibson, S. Seung Woo, S. J. Lang, and
R. B. Ross, “On the Duality of Data-Intensive File System Design:
Reconciling HDFS and PVFS,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), 2011, pp. 1–12.

[28] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in Proceedings of the IEEE 26th Symposium
on Mass Storage Systems and Technologies, 2010, pp. 1–10.

[29] T. Pritchett and M. Thottethodi, “SieveStore: a Highly-Selective,
Ensemble-level Disk Cache for Cost-Performance,” in Proceedings of
the 37th Annual International Symposium on Computer Architecture,
2010, pp. 163–174.

[30] X. Zhang, K. Davis, and S. Jiang, “iTransformer: Using SSD to Improve
Disk Scheduling for High-performance I/O,” in Proceedings of 26th
IEEE International Parallel and Distributed Processing Symposium,
2012, pp. 715–726.

[31] X. Zhang, K. Liu, K. Davis, and S. Jiang, “iBridge: Improving Unaligned
Parallel File Access with Solid-State Drives,” in Proceedings of 27th
IEEE International Parallel and Distributed Processing Symposium,
2013.

[32] Q. Yang and J. Ren, “I-CASH: Intelligently Coupled Array of SSD and
HDD,” in Proceedings of the IEEE 17th International Symposium on
High PerformanceComputer Architecture, 2011, pp. 278–289.

[33] F. Chen, D. A. Koufaty, and X. Zhang, “Hystor: Making the Best
Use of Solid State Drives in High Performance Storage Systems,” in
Proceedings of the international conference on Supercomputing, 2011,
pp. 22–32.

[34] S. He, Y. Liu, and X.-H. Sun, “PSA: A Performance and Space-Aware
Data Layout Scheme for Hybrid Parallel File Systems,” in Proceedings
of the Data Intensive Scalable Computing Systems Workshop, 2014, pp.
563–576.

622

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:56 UTC from IEEE Xplore. Restrictions apply.

