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Abstract—Parallel file system (PFS) is commonly used in high-end computing systems. With the emergence of solid state drives

(SSDs), hybrid PFS, which consists of both HDD and SSD servers, provides a practical I/O system solution for data-intensive

applications. However, most existing data layout schemes are inefficient for hybrid PFS due to their unawareness of server

heterogeneities and workload changes in different parts of a file. In this study, we propose a heterogeneity-aware region-level data

layout scheme, HARL, to improve the data distribution of a hybrid PFS. HARL first divides a file into fine-grained, varying sized regions

according to the workload features of an application, then determines appropriate file stripe sizes on servers for each region based on

the performance of heterogeneous servers. Furthermore, to further improve the performance of a hybrid PFS, we propose a dynamic

region-level layout scheme, HARL-D, which creates multiple replicas for each region and redirects file requests to the proper replicas

with the lowest access costs at the runtime. Experimental results of representative benchmarks and a real application show that HARL

can greatly improve I/O system performance, and demonstrate the advantages of HARL-D over HARL.

Index Terms—Parallel I/O system, parallel file system, solid state drive, data layout, hybrid parallel file system
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1 INTRODUCTION

MANY large-scale applications are becoming data-
intensive, and I/O performance is turned out to be

the bottleneck of computer systems. To tackle this challenge,
parallel file systems (PFSs), such as OrangeFS [1], Lustre [2],
GPFS [3] and PanFS [4], is often used to form the base of
high-performance computer systems. By serving a client
request concurrently from multiple file servers, PFSs can
dramatically improve the aggregate I/O bandwidth of
underlying storage systems. However, a frustrating aspect
of PFSs is that their common-case performance is often
worse than their reported peak performance [5], [6].

The new storage technologies, such as flash-based solid
state drives (SSD), provide a possible alternative solution
for I/O system design. Unlike traditional HDDs, SSDs are
composed of semiconductor chips, and thus provide higher
I/O performance [7]. Although having performance advan-
tage over HDDs, SSDs bring cost concerns when they are
used completely to replace HDDs in a large cluster. Thus, a
hybrid PFS, which consists of both HDD servers (HServer)
and SSD servers (SServer), is more practical for HPC sys-
tems under a limited storage budget [5], [8].

Although hybrid PFSs are promising, their efficiency
relies on an efficient data layout scheme, an algorithm

defining how a file’s data is distributed on available storage
servers. Currently, most existing layout schemes distribute
all file data acrossmultiple serverswith a fixed-size stripe [6],
as shown in Fig. 2a. This can provide concurrent data access
from multiple servers and come with even data placement
on each server. While these schemes are widely used and
simple to implement, they are typically designed for PFSs
with homogeneous servers. When applied to hybrid PFSs,
these schemeswould raise the following challenges.

First, the performance gap betweenHServers and SServers
can significantly degrade the performance of PFSs. SServers
always have higher performance than HServers, thus they
usually require less I/O time to complete the same amount of
data accesses. However, current layout schemes generally
assign identical stripes to bothHServers and SServers, leading
to severe load imbalance among heterogeneous servers. To
illustrate this issue, we ran IOR [9] with 512 KB request size
and 16 processes on a hybrid OrangeFS file system with the
default layout (Stripe size is 64 KB). Fig. 1a shows the I/O
time on each server, normalized to the minimum of all serv-
ers. We can observe that the slow HServers (Server 1-6) take
roughly 300 percent I/O time compared with fast SServers
(Server 7-8), which means that the potential of the high-per-
formance SServers are not fully underutilized.

Second, complex I/O patterns may also compromise the
efficiency of I/O systems. Current layout schemes often
adopt a fixed-size stripe for the whole file [10], however the
I/O patterns of different parts of a file can be totally differ-
ent [10], [11]: request sizes can be large at one file chunk but
small at another; request types can be read operation in one
I/O phase but write in another. As a data layout is only effi-
cient for a certain type of workloads, such file-level static
striping methods may not adapt to the workload changes.
Fig. 1b shows the performance of IOR with varied request
sizes from 128 to 2,048 KB under fixed stripe sizes from 16 KB
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to 2 MB. We can see that there is a huge variation in I/O
bandwidth under different I/Oworkloads and stripe sizes.

In this paper, we propose a heterogeneity-aware region-
level (HARL) data layout scheme, named HARL, to address
the challenges in the current data distribution of PFSs. Since
a fixed-size stripe is sub-optimal for either heterogeneous
servers in the storage system or applications with complex
I/O patterns, HARL relies on a storage and application-
aware allocation scheme to determine the optimal file stripe
sizes on heterogeneous servers. More specifically, HARL
first divides a file into fine-grained regions according to the
changes of application’s I/O workload; then, HARL assigns
appropriate file stripe sizes to both HDD and SSD servers
based on their storage performance for each file region. It
essentially represents a promotion from the traditional one
dimensional fixed-size stripe layout to a two-dimensional
varied-size stripe layout. In this way, HARL can significantly
speeds up I/O system performance by mitigating load
imbalance among heterogeneous servers and increasing I/O
efficiency of data accesses in each file region.

Since a static data layout scheme is not the most efficient
way to serve varying data accesses, we propose HARL-D, a
dynamic data layout scheme that leverages data replication to
further improve the performance of a hybrid PFS. For each
file region, HARL-D creates multiple replicas, each with opti-
mized stripe sizes on HServers and SServers. By redirecting
each file request to themost appropriate replica, HARL-D can
further improve the overall I/O performance. As opposed to
the static data layout scheme heterogeneity-aware region-
level in our conference version [12], whose stripe sizes are
immutable after the initial creation, such a dynamic policy is
more flexible to adapt to the varied data accesses at runtime.

Notably, HARL is transparent to applications, as such it
requires no modifications to the applications and can be
integrated with any hybrid PFS in a simple way. In sum-
mary, this study makes the following contributions.

� A mathematical cost model, which considers I/O
patterns, system architecture, network overhead,
storage performance and data layout characteristics,
is introduced to evaluate the data access time of one
file request in a hybrid PFS.

� A static region-level data layout scheme (HARL),
which logically divides a file into regions and then
optimizes the stripe sizes on HServers and SServers
for each region based on the cost model, is presented
to optimize the performance of a hybrid PFS.

� A dynamic region-level data layout scheme (HARL-
D), which creates multiple replicas for each file
region and redirects file requests to the preferable
replica with the lowest access cost, is described to
further improve the performance of a hybrid PFS.

� A prototype of the proposed data layout scheme is
implemented and integrated into MPICH2 [13].
Experimental results with representative bench-
marks and an application show that HARL can sig-
nificantly improve the I/O throughput of a hybrid
PFS, and demonstrate the advantages of HARL-D
over HARL.

The reminder of this paper is organized as follows.
Section 2 discusses the related work. The static and dynamic
region-level data layout scheme are described in Sections 3
and 4. Section 5 presents the performance evaluation with
commonly used benchmarks. Finally, the conclusions are
summarized in Section 6.

2 RELATED WORK

In this section we briefly discuss some related work on
improving the performance of parallel I/O systems from
three aspects.

I/O Access Reorganization. A great deal of research has
focused on reorganizing I/O accesses at the parallel I/Omid-
dleware layer. For example, instead of accessing multiple
small, noncontiguous requests, data sieving [14] applies the
strategy of accessing a contiguous chunk created by gathering
the noncontiguous requests. Datatype I/O [15] and List I/O
techniques [16] allow noncontiguous I/O requests to be con-
verted into a single I/O request, thereby limiting the number
of total requests. Collective I/O [14] also optimizes I/O
performance by rearranging I/O accesses into a larger contig-
uous request, but it considers multiple processes of a parallel
program instead of an individual process. Two-phase I/O
[17] is one of the implementations of collective I/O opera-
tions. It consists of two main phases: shuffle phase and I/O
phase. For write optimization, PLFS [18] redirects multiple
parallel requests to a set of efficiently reorganized log-format-
ted files to generate more sequential write requests, but the
read performance of these files may not be ideal due to the
inevitable data restructuring.

Data Layout in HDD-Based File Systems. Parallel file
systems support different data layout strategies, which
allow for numerous data layout optimization methods.
Several techniques, including data partition [19], [20], data

Fig. 1. Performance statistics of IOR in a hybrid PFS. In (a), server 1-6 are HServers, and server 7-8 are SServers. In (b), the legend “#K” denotes the
data layout with a fixed-size stripe of #KB on each server.

HE ET AL.: HARL: OPTIMIZING PARALLEL FILE SYSTEMSWITH HETEROGENEITY-AWARE REGION-LEVEL DATA LAYOUT 1049

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:07 UTC from IEEE Xplore.  Restrictions apply. 



migration [21], and data replication [6], [22], are applied
to optimize data layouts depending on I/O workloads.
Segment-level layout scheme logically divides a file to sev-
eral parts and appoints an optimal stripe size for each
part [10]. However, it only considers application heteroge-
neity, and thus it could be potentially used in conjunction
with our proposed solution. Another methodology, server-
level adaptive layout strategy, selects different stripe sizes
depending upon the type of the file server [23]. PARLO is
designed for accelerating queries on scientific datasets by
applying user specified optimizations [24]. AdaptRaid con-
fronts load imbalance in heterogeneous disk arrays [25]
using an adaptive number of blocks, which cannot be imple-
mented in PFSs.

Data Layout in SSD-Based File Systems. SSDs are commonly
integrated into parallel file systems due to their performance
benefits. A popular method is to use SSDs as a cache of tradi-
tional HDDs, e.g., Sievestore [26] and iBridge [27]. Another
widely used approach is to utilize SSDs as a part of data
storage, such as I-CASH [28] and Hystor [29]. Wu et al. [30]
discusses the data placement and scheduling trade-offs
for hybrid storage. Although effective, the vast majority of
research is focused on a single file server.

Recently a great of work paid more attention on the data
layouts of multiple heterogeneous servers. S4D-Cache [5],
[31] uses all SSD-based file servers as a cache and selectively
caches performance-critical data on these high performance
servers. CARL [32] selects and places file regions with high
access costs onto SSD-based file servers at the I/O middle-
ware layer, but the region cannot be placed onto both SSDs
and HDDs. PADP [33] and PSA [34], [35] employ stripe size
variation to improve the performance of hybrid PFSs.
HAS [36], [37] adaptively selects the optimal data layout for

heterogeneous parallel file systems with specific access
patterns.

The above mentioned techniques are effective in improv-
ing the performance of PFSs. However, there is little effort
devoted to data layout considering both heterogeneous
servers in a hybrid PFS and complex I/O workloads at dif-
ferent part of a file. Recent work method to overcome such
challenges in a hybrid PFS. However, it relies on a prior
knowledge of access patterns of application. As opposed to
this, this study uses a holistic adaptive file stripe optimiza-
tion method to address all these issues.

3 HETEROGENEITY-AWARE REGION-LEVEL DATA

LAYOUT

3.1 Overview of HARL

The proposed data layout scheme, HARL, aims to optimize
the hybrid PFS layout by using varied-size file stripes
instead of fixed size. To accommodate both heterogeneous
servers and complex I/O workloads, HARL adopts the idea
of “divide and conquer” to achieve the optimal data layout.
First, it divides a large file into several small regions accord-
ing to the I/O workloads such that each region has more
similar access patterns. Then, HARL determines the appro-
priate file stripe sizes on heterogeneous servers based on
their storage performance for each region.

Fig. 2b illustrates the idea of the heterogeneity-aware
region-level data layout scheme. In this example, HARL
divides a file into three adjacent regions and assigns differ-
ent stripe sizes on HServers and SServers for each region.
Specially, since SServers have higher I/O performance,
SServers are usually allocated with larger stripe sizes than
HServers in each region, so that each server can complete
their I/O requests near-simultaneously. Compared with
the traditional layout (Fig. 2a), HARL is a fine-grained,
adaptive data layout scheme, which can significantly allevi-
ate the load imbalance among heterogeneous servers and
improve the hybrid PFS performance.

To obtain the optimal layout scheme, one needs to rely
on a prior knowledge of the data access patterns. Fortu-
nately, many data-intensive applications have predictable
I/O patterns [19], [38], [39]. For example, the BTIO applica-
tion [40], an I/O kernel responsible for solving block-
tridiagonal matrices on a three dimensional array, has this
feature. For BTIO, once the size of the array, the number of
time steps, the write interval, and the number of processes
are given, the I/O behaviors can be accurately predicted
before the program executes. Since the program often run
multiple times and these patterns do not fluctuate signifi-
cantly, it provides an opportunity for HARL to achieve the
optimal data layout based on its I/O behavior analysis.

Fig. 3 shows the procedure of HARL, which includes
three phases. In the Tracing Phase, the runtime statistics of
data accesses are collected into a trace file during the
application’s first execution. In the Analysis Phase, by ana-
lyzing the I/O trace, the large file is divided into different
regions according to the application’s I/O characteristics,
then each region’s stripe sizes are determined based on a
data access cost model. In the Placing Phase, the file is placed
on the underlying heterogeneous servers at runtime with
the optimal file stripes obtained in the Analysis Phase.

Fig. 2. Two data layout schemes in a hybrid parallel file system. This
figure shows how a file’s data are distributed on HServers and SServers,
focusing on the stripe size configuration. The height of the rectangle on
each server represents the stripe size assigned to them. While case
(a) uses a fixed-size stripe for each server within the whole file, case
(b) divides a file into multiple regions and uses varied-size stripes for
HServers and SServers to distribute data in each region.
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Through these three phases, HARL can largely improve the
application’s I/O performance in subsequent runs.

3.2 I/O Trace Collection

A trace collector is responsible for collecting runtime file
access information of parallel applications. While there are
some techniques and tools that can be used for data analy-
sis, we use IOSIG, which is an I/O pattern collection and
analysis tool developed in our previous work [41], to cap-
ture the information required by HARL. IOSIG is a plug-
gable library of MPI-IO, which supports MPI-IO and
standard POSIX IO interfaces. IOSIG can help to gather all
the information of file operations, including file access type,
operation time, and other process related data. After run-
ning the applications with the trace collector, we can get pro-
cess ID, MPI rank, file descriptor, type of operation, offset,
request size, and time stamp information. To facilitate the
region division and guide the optimal data layout, the col-
lector sorts all file read and write requests in ascending
order in terms of their offsets.

3.3 File Region Division

Since fixed stripe sizes on servers are unable to provide
optimal performance for the whole file, as discussed in Sec-
tion 1, HARL divides a file into fine-grained regions and
applies special stripe size optimization for each region. One
may logically divide the address space of a file into regions
by a fixed chunk size (e.g., 64 or 128 MB). While this method
is simple, it is difficult to select a proper region size that fits
diverse I/O patterns in a real system. In contrast, HARL
adopts a varied-size region division method, as shown in
Algorithm 1.

The algorithm’s goal is to identify continuous file chunk
accessed with similar I/O patterns, so that a given data
layout may benefit more I/O requests. Starting from file
offset 0, the algorithm uses average request size as a common
feature to find the proper delimiting points. It reads the
first two entries of the requested size from the trace file
and calculates the coefficient of variation (CV), the result
of dividing the standard deviation by the average request
size in the current sample. It continually adds the next
request and calculates the CV until the trace ends. If the
new CV value falls close to the previous one, namely,
the percentage difference between the new CV value
and the previous one is less than 100 percent (line 9), it

continues adding the next entry and repeats the calcula-
tions. Otherwise, it logs the offset, creates another delimit-
ing point to start a new region, and restarts calculations
with a new CV. As a normalized measure of dispersion of
data distribution, CV is very sensitive to changes in the
average request size and allows us to detect the point
where the application changes the I/O behavior. At the
end, the algorithm returns a list of file regions with their
average request sizes.

Algorithm 1. File Region Division Algorithm

Input: Sizes of file requests: r0; . . . ; rn�1; Offset of file
requests: o0; . . . ; on�1

Output: Offset of each file region O0; . . . ; Om�1; Average
request size for each file region: A0; . . . ; Am�1

1 sum ¼ 0 ; cv prev ¼ 0; reg ¼ 0 /*region #*/;
2 reg init ¼ 0 /*The first request served by this region */;
3 for i ¼ 0; i < n; iþþ do
4 sumþ ¼ ri;
5 avg ¼ sum

i�reg initþ1;

6 std ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi

k¼reg initðrk � avgÞ2=ði� reg initþ 1Þ
q

;
7 cv new ¼ std=avg;
8 if ð100 � jcv new� cv prevjÞ=cv prev < threshold then
9 cv prev ¼ cv new;
10 else
11 sum ¼ 0 /*Restart with new CV */;
12 cv prev ¼ 0;
13 /* Set offset and average request size in region: reg */;
14 Oreg ¼ oreg init;
15 Areg ¼ avg;
16 reg init ¼ iþ 1 /*The first request served for next

region will be iþ 1 */;
17 /*Created region for next region */;
18 regþþ;
19 end
20 end

One potential issue is that this algorithm may generate
too many regions, which leads to substantial extra metadata
management overhead and compromises the final I/O
performance. To overcome this issue, we limit the number
of created regions by adjusting the threshold value. If the
number of the regions is greater than the number from the
fixed-size region division, as in the segment-level layout
scheme [10], the threshold increases from 100 percent to a
higher value. This tuning can guarantee that the number of
the regions is bounded by the number of the fixed-size
region division method [10]. Using a fixed region size of 64
MB as an example, the total regions in a 10 GB file requires
at most 160 entries in RST, an acceptable metadata over-
head. Furthermore, we combine adjacent regions with the
same stripe sizes to reduce the total number of RST entries.

3.4 Access Cost Model

To obtain the optimal stripe size on each server for a given
file region, we introduce an analytical model to evaluate the
data access time of a file request in a hybrid PFS. The model
fully considers the application, the system (architecture, net-
work, and storage), and the layout related characteristics in
the data access procedure, and the corresponding parame-
ters are listed in Table 1.

Fig. 3. The procedure for HARL scheme.
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Note that the storage parameters show distinct features
for heterogeneous servers. First, SServer has a much smaller
start up time and data transfer time than HServer. This is
because SServer does not involve slower mechanical move-
ments. Second, unlike HServer, SServer usually shows dif-
ferent read and write performance because it requires time-
consuming garbage collection and wear leveling operations
for writes [7]. While simple, this model is sufficient for
approximating the general performance profile for hetero-
geneous servers, as shown in our experiments.

The cost is defined as the I/O completion time of each file
request, and it includes three parts. The network transfer
time (TX) is the data transfer time on network, the storage
startup time (TS) refers to the consumption before data
operations on storage devices, and the storage transfer time
(TT ) is the time spent on actual data read/write operations.

As a file request is usually executed concurrently by mul-
tiple sub-requests, the file request cost T is determined by
the largest cost of its all sub-requests. Assume the sub-
requests are distributed on the m (m 2 ½0;M�) HServers and
the n (n 2 ½0; N �) SServers, and the maximal sub-request
sizes on HServers and SServers are sm and sn respectively,
then we can calculate the request cost as follows.

TX is related with the data size and the network data
transfer rate. It is determined by the maximal network
transfer cost of all sub-requests on HServers and SServers.
Thus

TX ¼ maxfsmt; sntg: (1)

TS is determined by the longest startup time on themþ n
servers. Let a denote the startup time in each HServer,
then the startup time of them sub-requests can be a variable
X ¼ maxða1;a2; . . . ;amÞ, where ai (1 4 i 4 m) has an

independent identical distribution as a. Assume a follows

an uniform distribution on [amin
h , amax

h ], then the probability

function of a is P ða < xÞ ¼ ðx� amin
h Þ=ðamax

h � amin
h Þ, where

x 2 ½amin
h ;amax

h �, and the probability density function ofX is

fðxÞ ¼ m� ðx� amin
h Þm�1

ðamax
sr � amin

sr Þm
;amin

h 4 x 4 amax
h : (2)

Hence, the startup time on themHServers is

TS
h ¼

Z amax
h

amin
h

xfðxÞdx ¼ amin
h þ m

mþ 1
ðamax

h � amin
h Þ: (3)

Similarly, the startup time for read sub-requests on the n
SServers is

TS
sr ¼ amin

sr þ
n

nþ 1
ðamax

sr � amin
sr Þ: (4)

Based on Equations (3) and (4), the overall startup time
for a file read request is

TSR ¼ maxfTS
h ; T

S
srg: (5)

TT is also determined by the maximal storage transfer
time of all the sub-requests. For a read request, it can be cal-
culated as

TTR ¼ maxfsmbh; snbsrg: (6)

Based on Equations (1), (5), and (6), the overall cost of a
file read request is

T ¼ TX þ TSR þ TTR: (7)

The Equations (5), (6) depict the cost for reads, startup
and transfer time for writes (TSW and TTW ) will be similar
except we exchange the read parameters with write. Thus
the overall cost of a write request is

T ¼ TX þ TSW þ TTW : (8)

From above equations, we can see that T depends on
four parameters: sm, sn, m and n, which can be calculated
according to the stripe sizes h and s. We assume the file
data are distributed from the 0th to the (M+N-1)th server in
a round-robin way, and let S ¼M � hþN � s, rb ¼ bo=Sc,
re ¼ bðoþ rÞ=Sc, lb ¼ o� rb � S, and le ¼ ðoþ rÞ � re � S,
then the server number of the beginning and ending
sub-requests are nb ¼ ðlb < M � hÞ?blb=hc : bðlb �M � hÞ=sc
þM, ne ¼ ðle < M � hÞ?ble=hc : bðle �M � hÞ=sc þM, the
size of the beginning and ending fragment are sb ¼ ðlb <
M � hÞ?bh� lb%hc : h� ðle �M � hÞ%s, se ¼ ðle < M � hÞ?
bh� le%hc : s� ðle �M � hÞ%s. Based on the locations
where the file request begins and ends, the sub-request dis-
tributions fall into four cases, as shown in Fig. 4. Due to
space limitation, we only describe how to calculate these
parameters for case (a) where the request begins and ends
at certain HServers. Let Dr ¼ re � rb, Dc ¼ ne � nb, then the
four critical parameters are calculated as in Fig. 5. By follow-
ing the same arguments, we can derive the parameters for
other cases.

From the cost model, one can observe that the access time
of a file request can be significantly impacted by the server

TABLE 1
Parameters in Cost Analysis Model

Application Parameters

o Offset of the file request
r Size of the file request
op Type of the file request (read or write)

Architecture Parameters

M Number of HDD servers (HServers)
N Number of SSD servers (SServers)

Network Parameters

t Unit data network transfer time

Storage Parameters

amin
h

Minimum startup time on HServer
amax
h Maximum startup time on HServer

bh Unit data transfer time on HServer
amin
sr

Minimum startup time for read on SServer
amax
sr Maximum startup time for read on SServer

bsr Unit data transfer time for read on SServer
amin
sw

Minimum startup time for write on SServer
amax
sw Maximum startup time for write on SServer

bsw Unit data transfer time for write on SServer

Data Layout Parameters

h Stripe size on HServer
s Stripe size on SServer
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stripe size h and s, motivating us to optimize them to
improve I/O performance.

3.5 Stripe Sizes Determination

Based on the above per-file-request model, HARL uses a
heuristic iterative algorithm to find the optimal stripe sizes
on HServers and SServers for each region. The goal is to
minimize the data access cost of all file requests in that
region instead of a single request.

Algorithm 2 shows the procedure of determining the
optimal stripe sizes for each region. Starting from h equal-
ing 0, the loop iterates h in ‘step’ increments while h is less

than R. We use the average request size R because we use
it to divide the region in Algorithm 1 and it is a good metric
to describe the common feature of the workloads. The

extreme configuration we do consider is where h is R,
which means dispatching the file request data only on one
HServer may obtain better I/O performance. In the second
loop, s starts from a size which is larger than h because
this configuration can lead to load balance among heteroge-
neous servers. We also consider the extreme case where the
requested data are only placed on one SServer. For each
pair of stripe sizes, the loop iterates to calculate the total
access cost of all file requests in that region, according to
the proposed data access cost in Section 3.4. Note that the
request cost is accumulated based on the request type
(lines 9 and 12) since the read operations come with differ-
ent performance as the write operation. Finally, the pair of
stripe sizes leading to minimal region access cost (Reg cost)
is chosen. The ‘step’ value is 4 KB (line 3), which can be
chosen by the user. Finer ‘step’ values result in more precise
h and s values, but with increased calculation overhead.
However, the computational overhead of this algorithm is
acceptable because the calculations are simple arithmetic
operations that run off-line.

Algorithm 2. Region Stripe Size Determination

Input: File region: reg including file request R0; . . . ; Rk�1,
Average request size R in Reg

Output: optimal stripe sizes:H for HServer, S for SServer
1 step 4KB;
2 opt cost 1;
3 for h 0; h � R;h hþ step do
4 for s hþ step; s � R; s sþ step do
5 for i 0; i < k; i iþ 1 do
6 Reg cost 0;
7 if operation_type(Ri) = Read then
8 Ti  Calculate cost of Ri according to

Equation (7);
9 else
10 Ti  Calculate cost of Ri according to

Equation (8);
11 end
12 Reg cost Reg costþ Ti;
13 end
14 if Reg cost < opt cost then
15 opt cost Reg cost;
16 H  h;
17 S  s;
18 end
19 end
20 end

3.6 Static Region-Level Data Placement

To guide the data placement, the information of optimal
stripe sizes for each region is stored into a global region
stripe table (RST). Fig. 6 shows an example of the RST
data structure. In this example, the file consists of multi-
ple regions, and the stripe sizes for the first three regions
are (16 KB, 64 KB), (36 KB, 144 KB), and (26 KB, 80 KB)
respectively. Although the metadata includes more infor-
mation, its size is not too large because the number of
regions is limited in the region division algorithm in Sec-
tion 3.3. Moreover, if adjacent regions have the same
optimal stripe sizes, the two regions are combined into a
larger region. This can further reduce the metadata man-
agement overhead.

In the Placing Phase, the file is placed on the underlying
heterogeneous servers with optimal stripe sizes for each
fine-grained file region. A PFS commonly includes three
components. The file clients issue requests on behalf the
applications, the servers are responsible for storing file data,
and the metadata servers (MDS) contain the description
information of the files. Upon receiving a file request, a cli-
ent first contacts MDS to get the file’s metadata, then it inter-
acts with servers directly. To perform the optimal data
placement, MDSs look up the RST table according to the
request’s offset and length, and return this information to

Fig. 4. Four typical cases of file sub-request distribution on servers. (a):
Both beginning and ending sub-requests are located on HServers; (b):
Beginning sub-request is on HServers but ending sub-request is on
SServers; (c): Beginning sub-request is on SServers but ending sub-
request is on HServers; (d): Both beginning and ending sub-requests
are on SServers.

Fig. 5. The calculation of critical parameters sm, sn, m and n in case
(a) of Fig. 4. These parameters are related with stripe sizes h and s.

Fig. 6. Data structure of the RST table in HARL scheme.
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the client. Then, the client writes the file data on each server
with the optimal stripe sizes from RST.

3.7 Implementation

The proposed layout scheme can be implemented either in
the PFS or I/O middleware layer. The former solution
requires specific file metadata communication between cli-
ents and servers to support the region-level striping strat-
egy, which is not currently supported by PFSs. In order to
maintain its portability and achieve a simple implementa-
tion, HARL is integrated into the I/O middleware layer,
which lies above various PFSs.

We implement HARL within MPICH2 [13] that runs on
OrangeFS [1]. In the Analysis Phase, we use one file server in
the parallel file system to test the startup time a and data
transfer time b for HServers and SServers with read/write
patterns. These parameters can vary with different I/O pat-
terns. In addition, we use a pair of nodes (one client node
and one file server) to estimate the network transfer time t.
We repeat the tests thousands of times (the number is con-
figurable), and then calculate their average values, which
are used as the parameter values.

In the Placing Phase, HARL logically maps a large file into
multiple OrangeFS files, each representing a separate file
region with similar I/O workloads. In MPICH2, a region-to-
file mapping table (R2F) is used to record the translation from
a logical file region to a physical OrangeFS file. For each
region, the data is distributed on underlying servers with
the optimal stripe sizes stored in RST. This can be imple-
mented by leveraging the existing varied-size striping
mechanism in OrangeFS. RST and R2F are stored in the
same directory as the applications, and are loaded when
MPI InitðÞ is triggered and unloaded when MPI FinalizeðÞ
is executed. Furthermore, the MPI File read=writeðÞ (and
other variants of read/write) are modified, so file requests
can be automatically forwarded to the files in the PFSs with
optimized stripe sizes.

4 DYNAMIC REGION-LEVEL DATA LAYOUT

SCHEME

In the previous section, we described a static region-level
data layout in a hybrid PFS. By allocating optimized stripe
sizes for HServers and SServers, this layout scheme is prom-
ising to decrease the overall data access cost in each region.
However, since a static layout is usually favorable for a cer-
tain type of access patterns, this static layout still can not
reduce the data access cost for each request with a various
pattern, thus it is not the most efficient way to serve all data
accesses. In a practical system, many applications have com-
plex access patterns, it is desirable to develop new data lay-
out schemes to further improve I/O performance.

4.1 Idea of Dynamic Data Layout

To address the issue of the static data layout approach,
we propose a dynamic region-level data layout scheme
(HARL-D), which leverages data replication to further
improve parallel I/O performance at runtime. Since a static
layout is only favorable for a limited access patterns, HARL-
D creates multiple replicas for each region. For each data
access, the strategy dynamically chooses the replica with the
lowest access cost to serve the request. Since each request is

assigned to the best fit replica, this replication-based
dynamic data layout strategy can serve various I/O work-
loads with higher performance.

For data replication, the first issue is how many replicas
(denoted by n) should be created for each region. Although
we could create a corresponding replica for each access pat-
tern to achieve perfect performance, it may lead to unac-
ceptable storage cost. For simplicity, we make three replicas
for each file region throughout this paper (n ¼ 3), as shown
in Fig. 7. Of course, one can choose different number of rep-
licas depending on his performance and cost trade-offs.

The second issue is how to determine the optimal layout
policy for each replica. Obviously we cannot further
decrease the overall I/O cost if we create a replica with a
randomly chosen data layout (a pair of h and s). To address
this issue, we classify requests in a region into n groups,
each with similar access patterns, and then create a replica
for each group with an optimal layout based on the repre-
sentative access characteristics.

Inspired by the data clustering approach in statistics
domain [42], we try to find the centers of these groups with
an iterative refinement method. The detailed description of
the algorithm is as shown in Algorithm 3, where each
request is characterized by the request size. As such, all
requests can be represented by a set of points in a one-
dimensional Euclidean Space. For any point P1ðx1Þ and
P2ðx2Þ, their distance can be defined as

jjP1 � P2jj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2

q
: (9)

If the number of requests is less than or equal to n, a ran-
domly selected request point is assigned to Pgi as a center of

the ith group. Otherwise, each request point is assigned to
groupGi whose center is closest to the request point. After all
the request points have been processed, the algorithm
re-compute the new center for each group. This procedure is
repeated until Pgi is no longer changed or three times atmost.

Although the computational overhead of the algorithm
increases in proportion to the number of requests, the
request grouping is an off-line method and it only runs
once based on the I/O trace analysis, so the computation
overhead in a practical HPC system is acceptable.

The optimal data layout policy (a pair of h and s) for each
replica is determined by the access pattern of one center of
the group, according to Algorithm 2 in previous Section 3.5.
In this case, the input of the algorithm is replaced by the

Fig. 7. The dynamic data layout scheme. Each region has three replicas,
each with a different stripe size pair (h and s) on HServers and SServers.
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requests in each group and the average request size R is
replaced by the request size of the center point. Since file
requests in each group have closed access patterns, the cho-
sen ðh; sÞ will have high likelihoods to benefit from the
given requests for that group. During the subsequent run of
the application, the dynamic data layout scheme will esti-
mate the request access cost if it were redirected to the cre-
ated replicas, and assign it to the corresponding replica
with lowest access cost.

Algorithm 3. Iterative Request Grouping

Input: Requests: R[1; i] in each file region
Output: Group G1; G2; G3

1 if ði � nÞ then
2 for ð8i 2 ½1; n�Þ do
3 Pgi  randomly selected R[t];
4 end
5 end
6 else
7 count 0;
8 while ðPgi is changedjjcount � 3Þ do
9 Gi  argmin

jGjj
fjjPsj � Pgi jjg;

10 Pgi  
1

jGij
X

Psj2Gi

Psj ;

11 countþþ;
12 end
13 end

One concern is how to handle data writes in the subse-
quent runs of the application. As it involves multiple repli-
cas, we use a lazy synchronization mechanism [38] for data
writes to improve performance and keep data consistency.
First, we write data to the selected replica. Then, we apply
lazy updates to synchronize data from the first replica to
other replicas. Hence, we only consider the data access cost
on the chosen replica for data writes, and ignore the back-
ground data synchronization cost.

4.2 Implementation

The selection of the replica for each file request is based on
the cost analysis with the proposed model. We made a pro-
totype of the cost estimation and dynamic data replica selec-
tion by modifying several MPI-IO functions.

MPI File open: we open all corresponding replica files,
each with a different data layout.

MPI File read: we first calculate data access costs for all
replicas based on the proposed model, and then choose the
replica with the lowest cost to handle the request. When data
access is finished, the offsets of all replicas are synchronized.

MPI File write: we handle the request on one replica
with the lowest cost, then insert the requests of other repli-
cas into a lazy synchronization queue. To avoid interfering
with the normal I/O operations, a dedicated data synchro-
nization thread is implemented to conduct these lazy write
requests in the queue. When data access is finished, the off-
sets of all replicas are synchronized.

MPI File seek: we calculate the offset and perform seek
operations in all opened replica files.

MPI File close: we synchronize data blocks for all repli-
cas and close all opened replica files.

5 PERFORMANCE EVALUATION

5.1 Experimental Setup

The experiments were conducted on a 65-node SUN Fire
Linux cluster. Each computing node has two AMD Opteron
(tm) processors, 8 GB memory and a 250 GB HDD. The
operating system is Ubuntu 13.04 and the parallel file sys-
tem is OrangeFS v2.8.6. All nodes are equipped with Gigabit
Ethernet interconnection, and eight nodes are equipped
with additional PCI-E X4 100 GB SSD. Eight nodes are used
as computing nodes, eight as HServers, and eight as SSer-
vers. All SServers and HServers are accessed through one
OrangeFS. By default, six HServers and two SServers are
used to build the hybrid OrangeFS file system, and the file
is striped over the file servers in a round-robin fashion.

The widely-used parallel file system benchmark IOR [9],
BTIO [40], HPIO [43], and an application [11] are used to
test the hybrid file system performance.

5.2 Evaluation on Static Heterogeneity-Aware Data
Layout

In the experiments, we compare three data layout schemes:
the fixed-size stripe, the randomly-chosen stripe and the
proposed HARL scheme.

5.2.1 IOR Benchmark

Read and Write Results. The experiments are conducted to
compare the I/O performance of the hybrid PFS with the
proposed data layout scheme, HARL, and two other strate-
gies, which use a fixed-size or randomly chosen file stripe.
For the following tests, IOR benchmark runs with 16 pro-
cesses, and the request size is kept to 512 KB unless other-
wise specified. Each process is responsible for accessing its
own 1=16 of a 16 GB shared file and continuously issues
requests with random offsets.

Fig. 8 demonstrates the I/O performance of the hybrid file
system with different layouts. In this figure, layout ‘64 KB’

Fig. 8. Throughputs of IOR with different layouts.
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means the stripe sizes are 64KB for all file servers, and ‘36KB-
148KB’means the stripe size is 36KB forHServers and 148KB
for SServers. The rest of the layouts have similar meaning. It is
observed that the proposed heterogeneity-aware layout can
achieve I/O performance improvement for both read and
write operations. While the performances of the fixed-size
and randomly chosen stripe schemes vary with the adopted
stripe size, HARL provides the best performance. With the
optimal data layout of (32 KB, 160 KB) and (36 KB, 148 KB) for
reads and writes respectively, HARL improves the I/O per-
formance by 73.4 and 176.7 percent over the default layout
with a fixed-size stripe of 64KB. Comparedwith other layouts
with different but fixed-size stripes, HARL improves the per-
formance up to 138.6 percent for reads and 177.6 percent for
writes. Comparedwith the randomly chosen stripe strategies,
the read performance can improve to 154.5 percent and write
performance can improve to 215.4 percent. The experiments
proveHARLperforms optimally and the stripe size determin-
ing formula is effective.

Varying Number of Processes. The I/O performance is also
evaluated with a varied number of processes. The IOR
benchmark is executed with 8, 32, 128 and 256 processes,
respectively, at a fixed request size of 512 KB. As shown in
Fig. 9, the results are similar to the previous test. HARL
improves the I/O performance for both read and write
operations. With different number of processes, the I/O
throughput increases to 144.1, 141.8, 202.7 and 274.1 per-
cent, respectively, for reads compared with layout schemes
with a fixed-size stripe, and 116.4, 182.7, 192.8, and 268.3
percent for writes, respectively. Compared with the default
layout (stripe size of 64 KB), the read performance achieves
a 144.1, 138.1, 182.3, and 120.2 percent improvements, and
write performance achieves a 104.8, 182.2, 168.5, and 235.1
percent improvements. The results illustrate that HARL has
high scalability in terms of number of processes.

Varying Request Sizes. In Fig. 10, the I/O performance is
examined with varied request sizes. The IOR benchmark is

executed with request sizes of 128 and 1024 KB. HARL
improves read performance from 24.1 to 325.0 percent, and
write performance from 32.4 to 293.5 percent, in comparison
with conventional layout methods. In terms of the default
layout with 64 KB stripe size, HARL achieves an 80.1 percent
improvement for read and 147.1 percent forwrite operations.
Comparedwith layout strategieswhich use randomly varied
stripe sizes, the read performance boosts from 20.6 to 222.3
percent, and write performance increases from 22.7 to 263.1
percent. When the request size is 128 KB, the optimal stripe
size pair is (0 KB, 64 KB); thus, distributing the file only on
the two SServers offers the highest I/O performance. When
the request size is 1,024 KB, HARL distributes the file on
bothHServers and SServers for higher I/O performance.

Varying Server Configurations. The I/O performance is
examined with varied ratios of HServers to SServers. The
OrangeFS is built using HServers and SServers with the
ratios of 7:1 and 2:6. The request size is kept to 512 KB. Fig. 11
shows the average I/O throughput with different file server
configurations. As the results depict, HARL improves I/O
performance for both data reads and writes. Read perfor-
mance increases from 37.6 to 556.1 percent, and write perfor-
mance improves from 112.2 to 288.7 percent in comparison
with other layout methods. Compared with the default lay-
out with a 64 KB stripe size, HARL achieves a 474.9 percent
improvement for reads and a 180.3 percent for writes. In the
experiments, read and write performance are improved as
the number of SServers increased. This is because the I/O
performance of SServers is efficiently utilized by the hetero-
geneity-aware layout scheme. If the number of SServers is
small, HARL distributes the file on both SServers and HSer-
vers. However, if the number of SServers is greater, the file is
placed only on high-performance SServers.

Varying I/O Workloads. All the above results have clearly
confirmed the efficiency of HARL with uniform I/O work-
loads. In the experiments, we evaluated HARL under
varied I/O accesses. In order to simulate the complicated

Fig. 9. Throughputs of IOR with various numbers of processes. Fig. 10. Throughputs of IOR with various request sizes.
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non-uniform I/O workload, we modified IOR benchmark to
access a four-region data file. The size of each region is 256,
1,024, 2,048 and 4,096 MB, respectively. For each region,
IOR issues requests with different request sizes. Fig. 12
shows the average I/O throughput of the hybrid PFS with
different data layout strategies. From the results, it can be
easily observed that HARL improves read performance
from 59.4 to 265.8 percent, and write performance from 17.2
to 200.7 percent compared with other layout methods. Com-
pared with the default data layout with a 64 KB fixed stripe
size, HARL achieves a 255.6 percent improvement for reads
and 116.9 percent for writes. The results indicate that the

new region-level layout scheme, which divides a file into
regions with similar workloads, is capable of increasing per-
formance at a large scale for complex I/O workloads com-
pared with the existing file-level data layout schemes.

5.2.2 BTIO Benchmark

Apart from IOR benchmark above, we also use BTIO bench-
mark to evaluate HARL. BTIO represents a typical scientific
application with interleaved intensive computation and
read/write mixed I/O phases. BTIO uses a Block-Tridiagonal
(BT) partitioning pattern to solve the three-dimensional com-
pressible Navier-Stokes equations. We consider the Class A
and full subtype BTIO workload in the experiments. That is,
BTIOwrites and reads a total size of 1.69 GB data with collec-
tive I/O functions. We use 4, 16, and 64 compute processes
since BTIO requires a square number of processes. Output file
is striped across six HServers and two SServers. Fig. 13 dis-
plays the aggregated I/O throughputs. Compared with the
default layout with 64 KB stripe size, HARL achieves 163.5,
116.9, and 114.8 percent improvementwith 4, 16, 64 processes,
respectively. For other varied but fixed-size stripingmethods,
HARL also demonstrates performance advantages.

5.2.3 Real Application

Finally, the proposed layout is evaluated with a real
application’s I/O trace, called ’Anonymous LANL App 2’
[11]. In this application, each process issues I/O requests in a
non-uniformway at different parts of a shared file. In the first
part of the file, the request size of each process is relatively
small and barely varies. In the following part of the file,
request sizes are very small. In the last part, each process
issues requests of 131,072 bytes and 131,056 bytes iteratively.
The data accesses of this application were replayed according
to the I/O trace to simulate the same data access scenario. In
the experiment, eight nodes are clients, six nodes areHServers
and two nodes are SServers. For this application, HARL rec-
ognizes three different regions where the application’s I/O
behavior is similar. From Fig. 14 we can conclude that HARL
can achieve 30.3 to 91.1 percent performance improvement
compared to data layouts with a fixed-size stripe. The results
indicate that the proposed adaptive data layout is an effective
performance optimization strategy for applications with non-
uniform I/Oworkloads.

5.3 Evaluation on Dynamic Region-Level Data
Layout

We compare HARL-D with HARL to verify the need of
dynamic data layout when applications have various pat-
terns in different parts of a file.

Fig. 11. Throughputs of IOR with various server configurations.

Fig. 12. I/O throughputs with non-uniform workloads.

Fig. 13. I/O throughputs of BTIO with different layouts.
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5.3.1 The IOR Benchmark

Wemodify IOR benchmark to access a three-region data file.
Within each region, IOR issues requests with size of 8, 64 and
512 KB. Fig. 15 shows the average I/O throughput of the
hybrid PFS with different data layout strategies when we
vary the process number from 8 to 256. From the results, it
can be easily observed that HARL-D improves read perfor-
mance from 32.4 to 37.9 percent, and write performance
from 27.6 to 36.2 percent compared with HARL. This is
because HARL only provides one replicas for requests in
each region, which can not bring the best performance for all
requests since they have different request sizes. However,
HARL-D provides three replicas and it redirects requests to
the proper replicas with lowest access costs, thus it is capable
of further increasing performance of parallel PFSs.

5.3.2 The HPIO Benchmark

We also modify HPIO to simulate the complex access pat-
terns. HPIO can generate various data access patterns by
changing three parameters: region count, region spacing,
and region size. We set the region count to 2048 and the
region spacing to 0. We vary the region size with 256 and
512 KB. Fig. 16 shows I/O throughputs of HPIO in terms of
16, 32, 64, and 128 processes. Similar to the IOR tests,
HARL-D shows better performance than HARL, but the

improvement is not as substantial as that of IOR. This is
because the variation of access pattern of HPIO is not as
significant as that of IOR, which can benefit more from mul-
tiple replicas. However, HARL-D still exhibit moderate per-
formance improvement over HARL.

5.3.3 Real Application

We evaluate HARL-Dwith the real application ’Anonymous
LANLApp 2’. Fig. 17 shows the performance results. Similar
to previous tests, we find that HARL-D outperforms HARL:
it obtains 12.8 percent performance improvement compared
toHARL. This indicates for some data-intensive real applica-
tions, the dynamic data layout scheme exhibits performance
advantages over the static data layout scheme.

5.4 Discussion

While making all file servers to complete their I/O accesses
near-simultaneously, HARL would potentially lead to more
storage space consumption on SServers. Fortunately, most
file systems fail to fully utilize the storage space in the
underlying devices [44]. In a practical system, this issue is
not frequently encountered since the capacities of current
SSDs are increasing quickly. In the worst case, where there
is a possibility of an SServer running out of space, we could
use a data migration method to balance the storage space by

Fig. 14. Performance of LANL App2 with different layouts.

Fig. 15. I/O throughputs with varying numbers of processes.

Fig. 16. Throughputs of HPIO with various numbers of processes.

Fig. 17. Performance of LANL App2 under HARL-D.
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moving data from SServers to HServers, so the remaining
available space on SServers can be guaranteed for new
incoming requests. This problem can also be addressed by
selectively storing users’ performance-critical data in a
hybrid PFS, while storing the remaining data in a traditional
PFS on HServers.

Although HARL is currently implemented for a single
application, it can be also applied to multiple applications
with varied I/O workloads. We identify the I/O access pat-
terns at the MPI file level, and do not distinguish between
requests coming from the same application or from differ-
ent applications. For the latter case, we may apply our
method to different workloads separately to find their indi-
vidual data access patterns.

6 CONCLUSION

We propose a (HARL) data layout scheme, which distrib-
utes data across HDD and SSD servers considering applica-
tion workload and server I/O performance. HARL divides
a file into fine-grained regions according to I/O workloads,
and adopts varied stripe sizes on HServers and SServers for
each region based on the server performance. Furthermore,
we develop a dynamic data layout scheme (HARL-D),
which creates multiple replicas for each region and redirects
file requests to the proper replicas to reduce the access cost
at the runtime. In essence, HARL provides an improved
matching between the data access characteristic of applica-
tions and the data handling capability of file servers in a
hybrid PFS. Experimental results show that HARL signifi-
cantly improves the performance of hybrid PFSs over the
fixed-size and randomly-chosen striping methods: the I/O
performance improves from 20.6 to 556.1 percent for reads
and 22.7 to 288.7 percent for writes, and demonstrates the
advantages of HARL-D over HARL.

In the future, we will extend our cost model to accommo-
date more than two server performance profiles. Another
direction is to explore on-line data layout and data migra-
tion methods to make heterogeneous I/O systems more
intelligent and efficient. Furthermore, we plan to exploit the
potential of our approach in distributed systems, e.g.,
Hadoop and Spark.
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