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Abstract—GRAPES (Global and Regional Assimilation and 
Prediction System) is a new generation of numerical 
weather prediction (NWP) system of China. As the system 
processes amount of data and requires high real-time,so it is 
always a hot research field of parallel computing.This is the 
first time that we use GPU (Graphics Processor Unit) 
general-purpose computing and CUDA technology on 
RRTM (Rapid Radiative transfer model) long-wave 
radiation module of GRAPES_Meso model for parallel 
processing, we rewrited the RRTM module with CUDA 
Fortran according to the characteristics of the GPU 
architecture.Enhancing the  computational efficiency with 
optimization strategys such as the code tuning, 
asynchronous memory transfer,compiler option and etc. 
The optimization results indicate that a 14.3×speedup is 
obtained. Experiments are carried out on the multi-GPU 
platform,and can be easily extended to GPU clusters, the 
results show that the parallel computing algorithm is 
correct , stable and efficient.  

Index Terms—GPU, CUDA, GRAPES system, RRTM, 
Parallel computing 

I. INTRODUCTION

GRAPES (Global and Regional Assimilation and 
Prediction Enhanced System) is a new generation of 
numerical weather prediction (NWP) system,it is 
developed by China Meteorological Academy. Radiation 
process is one of the most important physical 
parameterization schemes in numerical weather 
prediction models and climate models. In numerical 
weather and climate simulation, the executing time of 
LW flux (longwave radiation flux) is more than 1/3 of 
the total computation time. Therefore, a fast and an 
accurate long-wave radiation parameterization process is 
need. RRTM developed by AER retains the highest 
accuracy relative to line-by-line results for single column 
calculations,and it is a rapid radiative transfer model 
which utilizes the correlated-k approach to calculate 

fluxes and heating rates efficiently and accurately. RRTM 
is one of three long-wave radiation parameterizing 
schemes for the physical process of GRAPES . 

For a large-scale numerical weather prediction system, 
in order to run real-time business, parallel computing is 
essential.And  usually the simulation of the radiative 
transfer in the atmosphere were computed on Ultra-large 
CPU clusters with hundreds or thousands of nodes[1]. In 
the computation model of GRAPES, The atmosphere can 
be mathematically partitioned into a 2-D grid across the 
earth’s surface, with a third dimension consisting of 
atmospheric layers. Therefore the GRAPES model has 
good fine-grained data parallelism and very suitable for 
parallel computing. At the same time , with the 
development of High-performance computing and 
parallel computing technology, GPU has been widely 
used for the general purpose with the release of 
CUDA(Compute Unified Device Architecture) by 
NVIDIA  for its high performance of floating-point 
arithmetic operation,large memory bandwidth and 
powerful parallel processing capabilities. And it has 
attracted more and more attention of researchers in the 
field of science and engineering for its low-cost, low 
power and powerful computing capabilities. GPU will 
become an important branch of high-performance 
computing.Various applications have already achieved 
high performance on GPU,such as the simulation of 
seismic waves propagating in geophysical exploration [2] 
and accelerating the process of DBT(dynamic binary 
translation) on  CPU/GPU architecture[3].  

This paper presents an approach to port RRTM module 
of GRAPES to GPU platform. Enhancing the 
computational efficiency with optimization strategys. 
Experiments are carried out on the multi-GPU 
platform,and can be easily extended to GPU clusters. 

The rest of the paper is organized as follows.Section 2 
is related work.In section 3,introducing the construction 
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of RRTM module.In section 4 ,we propose the parallel 
scheme  of RRTM module in GRAPES system.Section 5 
introducing the parallel strategy and  optimization 
techniques of RRTM .Section 6 is the conclusion and the 
future work. 

II.  RELATED WORK 

WRF is a new generation mesoscale numerical weather 
forecast model and data assimilation system which is 
made by meteorological community of USA, 3DAR and 
WRF V.2 were released in 2004. Due to its highly 
modular features makes it very suitable for parallel 
computingAnd WRF model system has broad application 
in weather forecasts and in air quality forecasts. 

J.Michalakes et al[4,5]  in 2008 ported a 
computationally intensive physics module from the 
Weather Research and Forecast (WRF) model using GPU 
with CUDA, they achieved the 5× to 20× speedup in 
WSM5 with little optimization effort has been put into 
GPU code. 

J.Delgado et al.[6] proposed and described a developed 
methodology to port WRF originally written in 
FORTRAN to NVIDIA CUDA. The contribution of their 
work was to save development effort by specifying a 
simple iterative approach to port that did not require 
knowledgements of the application being ported, but they 
didn’t consider the improvement of performance. 

G. Ruetsch et al. [7] presented the approach and results 
of porting the Long-Wave Rapid Radiative Transfer 
Model (RRTM) component of the WRF code to the GPU 
using CUDA Fortran. The paper discussed that how the 
data structures have been modified for the GPU 
architecture,strategies for optimizing data movement, and 
determining how to partition the code into different 
kernels and how these kernels were configured. However, 
because RRTM relied heavily on lookup tables, 
performance optimization became very data dependent.  

In this paper,we ported the GRAPES code to the GPU 
using CUDA Fortran. First,to improve the performance of 
GRAPES in the porting process, we optimized RRTM 
modules with using some optimizations. We implemented 
a standalone version of the individual module rather than 
performing an entire simulation to test a single module 
and compared our GPU output to the CPU output. Second, 
a parallel programming model (CUDA MPI) was 
presented in multi-GPU computing environment when 
simulating the RRTM. Finally, domain partitioning of 
GRAPES and asynchronous memory transfer mode were 
used for multi-GPU computations.  we found that the 
experiment results which obtaining from the GPU code 
were accuracy and efficiency. 

III.  BACKGROUD 

A. RRTM of GRAPES 
Longwave (LW) radiation plays a crucial role in 

influencing the weather, climate and climate sensitivity to 
external radiation.Therefore,accurate long-wave radiation 
parameterization is very important for weather and 
climate research in atmospheric models.In the numerical 

computation of the weather and climate,the calculation 
time of LW flux (longwave radiation flux)  accounted  for 
1/3 or more of the total time.Therefore, a great need for a 
rapid and accurate long-wave radiation parameterization. 

The long-wave radiation parameterization of the 
RRTM module  for GRAPES system was developed by 
Mlawer[16] of AER which is a rapid radiative transfer 
model which calculates fluxes and cooling rates for the 
longwaves pectral region (10-3000cm-1) for an arbitrary 
clear atmosphere. The molecular species treated in the 
model are water vapor, carbon dioxide, ozone, methane, 
nitrous oxide, and the common halocarbons.  And the 
radiative transfer in RRTM is performed using the 
correlated-k method: the k distributions are attained 
directly from the LBLRTM line-by-line model, which 
connects the absorption coefficients used by RRTM to 
high-resolution radiance validations done with 
observations. The correlated-k method is an approximate 
technique for the accelerated calculation of fluxes and 
cooling rates for inhomogeneous atmospheres.This 
method   is capable of achieving an accuracy comparable 
with that of line-by-line models with an extreme 
reduction in the number of radiative transfer operations 
performed. The radiative transfer operations for a given 
homogeneous layer and spectral and are carried out using 
a small set of absorption coefficients that are 
representative of the absorption coefficients for all 
frequencies in the band. 

B. Description of RRTM Module 
The original serial CPU code implementation of 

RRTM were obtained from the Kernel Benchmark Page[6] 
at NCAR. The figure 1 is the pseudo-code for the highest 
level of module. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

Figure 1. Pseudo-code for the RRTM module 

subroutine radiation_driver (parameter list )   
the part of defining variables 
the part of initializing data 
call radconst(parameter list) 
call cal_cldfra(parameter list)     
lwrad_select: 

select case(config_flags%ra_lw_physics)   
！longwave radiation physics process 

case (RRTMSCHEME)          
！adopt RRTM scheme 

call  rrtminit (parameter list)  
！call rrtminit  function 

times(1) = rsl_internal_microclock() 
 ！timing function 

call  rrtmlwrad (parameter list) 
   ! call rrtmlwradfunction 

times(2) = rsl_internal_microclock()  
！timing function 

case(other SCHEME) 
end select  lwrad_select 

other code（such as the short wave raditation） 
end subroutine radiation_driver 
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In the beginning of the module, the driver of the 
radiation initializes the data ,and according to the  
parameters a scheme of longwave radiation physics 
process is launched,then calling an initialization routine 
rrtminit( ), next calculating the long-wave radiation 
transfer process by calling the routine rrtmlwrad( ) and 
the rrtm( ) subroutine.The subroutine rrtm( ) are 
composed of these steps: 

initrad( ): computes the ozone mixing ratio 
distribution； 

mm5atm ( ): prepares atmospheric profiles； 
setcoef ( ): calculates various quantities needed for the 
radiative transfer algorithm specific to this atmosphere 
gasabs ( ):calculates gaseous optical depths 
rtrn ( ):calculates the radiative transfer for both clear and 
cloudy columns 

The gaseous optical depths and Planck fractions in 
gasabs( ) calls 16 subroutines taugbn( ) computing for 16 
different long-wave spectral bands, where n = 1,…,16. 
The structure of function package for the RRTM module 
is shown in Fig. 2. 

 
  
 
 
 
 
 
 
 
 
 
 

Figure 2 .function package structure of the RRTM module 

IV. ACCELERATING RRTM WITH GPU 

A. Typical Parallel Mode of GRAPES 
The two dominant parallel models are message passing 

and shared memory,also MPI and OpenMP are used in 
the of GRAPES model for parallel processing,and 
GRAPES provides two parallel programming schemes  
for different computing platforms: 

(1) patch parallel program for distributed memory 
computer system (multi-tasking) (as Fig.7 shows,patch 
corresponding to subdomain). 

(2) tile parallel program for shared memory computer 
system (multi-thread parallel computing). 

In GRAPES computation model, the overhead of 
thread management is low, and the efficiency of thread 
synchronization is high. Exchanging and sharing 
information of the programs which running on different 
processors could be easily realized using on-chip memory, 
then GRAPES programs are suitable for fine-grained 
parallel computing. 

In the CUDA programming model, the CPU is viewed 
as a control processor that is responsible for parameter 
setup, data initialization, and execution of the serial 

portions of the program. The GPU is viewed as a co-
processor whose job is to accelerate data parallel 
computations. Threads within the same block to share 
data using high-speed on-chip shared memory. Threads 
from different blocks can share data via global memory. 
CUDA adopts a SIMD data-parallel model in which one 
instruction is executed multiple times in parallel on 
different data elements. So we can enhance the GRAPES 
system performance by using the GPU’s fine-grained 
parallel feature. 

B. Running mode of GRAPES based on GPU 
WRF model is supported by NCAR and free of 

charge released for public [8][9].The architecture of 
GRAPES is similar to the one of WRF system. Taking 
the advantage of GPU,CUDA and numeric computing 
technologies, we have completed its  GPU parallel codes 
of GRAPES_Meso. Our researches  of  accelerating 
GRAPES  meteorological model based on GPU are at the 
forefront in China. 

Multi-GPU computing is now a part of the super-
computing.The Message Passing Interface(MPI) is 
widely used for parallel programming on clusters.MPI 
can work well on both shared and distributed memory 
system.  Using MPI with one node mapped to each GPU 
is the most straightforward way to use a multi-GPU.In 
our implementation, we extend our GRAPES system  in 
multi-GPU environment(one node mapped to 4 GPUs). 
Each node run  four CPU processes, and each CPU 
process  control one  GPU,Fig.3 is shown as the structure 
of multi-GPU . 

Figure 3 .Communication between multi-GPU 

The parallel mode of GRAPES system on the GPU 
platform is described simply as follows: 
step1: Setting the number of GPU which executing the 
CUDA parallel program of GRAPES system 
(communicating with MPI), setting the number of block 
in the GPU, etting the variables and parameters of 
computing region and parallel decomposition region , etc; 
step2: Setting a GPU as a master node which is 
responsible for inputing initial data for GPU computing, 

RRTM 

INIRAD 

MM5ATM 

SETCOEF 

GASABS 

RTRN 

TAUGB1

TAUGB2

TAUGB3

TAUGB16

…
.. 

RRTMLWRAD 

552 JOURNAL OF COMPUTERS, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER



and the master node also distribute and collect the  results 
of other GPU computing nodes; 
step3: Each GPU computing integral iteration part; 
step4: Each GPU calling time integral calculation 
including the dynamical and physical processes of 
program. Exchanging data between each GPU; 
step5: Each GPU determining whether to output 
intermediate results,if necessary,the data will be 
aggregated to master GPU node for output; 
 step 6: Each GPU judging whether the computation is 
over, if the computation is over,collecting the results and 
sending to the master node,ending the program. 
Otherwise, returns to Step 4 and continue. 

C. Parallel  scheme of  RRTM module based on GPU 
In the version of CPU code of RRTM,the structure 

of  most subroutine is as following : 
 
 

do j=jts,jte  
do i=its,ite 

call RRTM Module; 
end do 

end do 
The above code contains a lot of looping structures, 

and iterative structures.In the Fortran version code, 
usually independent subroutines are called in the main 
function.  

As the Fig.2 shows,the subroutine RRTM consists of  
five subroutines,we separate each subroutine into one 
kernel except the  GASABS,and GASABS is split into 16 
kernels[17,18]. 

For  the characteristics of the procedure,there are three 
parallel strategys in the parallel computing of the  RRTM 
on GPU. 

(1) Parallelization between each iteration step . 
(2) Parallelization between subroutines. 
As the subroutine of the GASABS is encapsulated into 

different kernels,and the computational data for the 16 
kernels is independent,so the subroutines can be executed 
currently. 

(3) Parallelization within subroutines. 
According to the characteristic of CUDA, instructions 

of one GPU kernel is executed by multiple threads in the 
same thread block,so the threads for the same subroutines 
is current. 

Also, considering the parallel code, GPU architecture 
and other factors, there are two parallel layers. 

(1) Parallelization of instruction-level. 
We take some parallel strategys in some parts of the 

code,such as unrolling the loop,adjustmenting the 
scheduling policy of instruction.(as transferring more data 
to be calculated to a thread for  hiding memory access 
latency.) 

(2) Parallelization of thread-level. 
In this level,every kernel execute their respective 

parallelized thread.( task partitions for data domain,each 
thread computes a region,there is little or no inter-
regional data exchange. ) 

D. Mapping data Structure  to GPU 
CUDA provides an interface to program on the GPU 

for general purpose applications. In CUDA, the GPU can 
execute multiple concurrent threads. Threads are 
executed in SIMD thread blocks. Blocks and threads are 
indexed by block and thread ids, and the GPU can be 
viewed as a set of multiprocessors. One or more thread 
blocks is dispatched to each processor. Blocks are further 
organized into grids[10].  

In the framework of GRAPES model, The atmosphere 
is divided into horizontal and vertical three-dimensional 
grids, where x axis representing longitude, y axis 
representing latitude, and the z axis representing the 
vertical direction,the decomposition of the region is 
illustrated in Fig.3. Mapping to the RRTM numeric 
computing scheme,the atmosphere is divided into 28 
layers vertically and each layer is divided into a 
horizontal 73×60 grids.As Fig.4 shows, the value of k is 
28,x is 73 and y is 60.Each grid point corresponds to a set 
of data, so the calculation is the process of interaction 
between the data. As the process of k direction is 
independent, the basic parallelism idea is that a thread 
deal with every processing task of each column on GPU 
indexing i and j two-dimensional directions. NVIDIA 
GPUs consist of blocks of “multiprocessors” each 
containing a number of “thread processors”. So each 
vertical atmospheric column is assigned to a 
multiprocessor, each atmospheric layer within a column 
is assigned to a thread processor.   

 
Figure.4 3D physical space 

In the language of Fortran and C, plane coordinate can 
be expressed using two-dimensional array,and 3D 
coordinate can be expressed using three-dimensional 
array. Therefore, transformation of the original 
coordinate in the CPU is needed for only one-
dimensional array could be used in CUDA. 

In the CUDA FORTRAN code [9], built-in variable 
threadIdx.x identify a unique thread inside a thread block. 
Likewise, each kernel determines which block to be 
executed with the built-in variables blockIdx.x and 
blockIdx.y. The size of the block is identified by using the 
built-in variable blockdim.x. The build-in  variables of 
CUDA are used to identify a unique thread, which is then 
used in dividing the work, so that each CUDA kernel 
thread computes one linear spatial (1 dimension).  

idxy variable represents coordinate of  the horizontal 
grid points X, Y, which can be expressed as expression 
idxy=(blockIdx%x-1)*blockDim%x+threadIdx%x, lay  
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variable represents coordinate of the vertical dimension Z, 
which can be expressed as expression lay = (blockIdx%y-) 
*blockDim%y+threadIdx%y. So a point in a three-
dimensional grid can be identified by an  idx and a lay 
variable as one-dimensional linear data. 

E.  GPU-based Implementation of RRTM Module 
In the implementation of RRTM module based on 

GPU, first initializing rrtminit_cuda ( ) subroutine, calling 
the CPU version of the subroutine rrtminit ( ), transfering 
the calculating data to the  storage of GPU, and then 
calling rrtmlwrad ( ) routine, starting the computation of 
5 basis subroutines in rrtmlwrad ( ). 

As large amount of data should be processed in the 
computation, and  for the limitation of the numbers of 
registers and capacity of memory, the data transmission 
between GPU and CPU is needed for next computing step. 
In order to avoid the exchange of data too frequently, 
resulting low efficiency of parallel programs, loop 
unrolling, iteration are commonly used. 

GPU can execute thousands of concurrent threads 
simultaneously for its SIMT (Single Instruction, Multiple 
Thread) characteristics. As GPU's computations rely on 
the scheduler of CPU, for the limitations of the storage 
capacity,data transmission between GPU and CPU is  
inevitable. Data exchange between the GPU and CPU 
lead to memory latency. Therefore, sufficient number of 
active threads need to be run for hiding the memory 
latency and improving computational efficiency.  

In order to perform as much concurrent threads as 
possible, we adopt two parallel strategies. As we 
mentioned above, atmosphere  can be depicted as a three-
dimensional grid,according to the Fig. 4. Given input data 
is a (X, Y, Z) = (73,60,28) three-dimensional mesh data 
set.In the calculation,we implement two different data 
parallelisms.The  one is coarse-grained parallelism , each 
thread calculate a separate column data ,there are 
73*60=4380 threads in the horizontal dimension. 
The other one is fine-grained parallelism, horizontal 
dimension is divided into 28 layers, there are 
73*60*28=122640 threads executing currently,each 
thread calculate a grid point. Thread allocation scheme  is 
illustrated in Fig. 5. 

 Figure 5. schematic visualization of computational kernel 

In addition to the above-mentioned parallel strategies, 
parallelization between subroutines has also been used.In 
the implementation of the coarse-grained parallelism,each 
thread calculate a vertical column data, so some threads 
block the execution of  other threads for they are 
interdependence of each other’s computational data. 
Considering these factors, We can not just launch one  
kernel to perform rrtmlwrad_cuda ( ), but should launch 
multiple different kernels and different executing 
configurations for caculation of different kernel. We can 
benefit from the above method.(1) If the computing data 
of a kernel is independence, threads of the kernel is 
lanched to calculate a grid point of 3D mesh.(2) If the 
computational data of a kernel is dependence, threads of 
the kernel is lanched to calculate a vertical column of 3D 
mesh. Using of multiple kernels can also reduce pressure 
of register,and reducing the transfer of data from local 
memory to the register ,thereby enhancing the efficiency 
of execution.In addition, in order to reduce the use of 
registers, the configuration of the thread block size for  
different kernel functions can be adjusted according to 
circumstances in the implementation.              

V.  EXPERIMENTAL RESULTS AND OPTIMIZATION 
TECHNIQUES OF RRTM 

A . GPU Device and CUDA Conception 
In this section, we introduce our experiment 

environment, available device resource. The GPU-based 
RRTM scheme experiments were performed on Intel 
Xeon 5500 connect to centOS 2.6.18-164.el5 x86_64 
version system (36GB of memory). The system is also 
equipped with 4×NVIDIA Tesla C1060 cards. Table I 
shows its specifications. The Fortran compiler is the PGI 
Fortran compiler version 10.4 that has support for CUDA 
Fortran and the development environment is mpich 2-
1.2.1p1. For post-processing and displaying of GRAPES 
system, you can selectively install netcdf or other post-
processing software GrADS[15]. 

 
 

 
 

Testing CUDA programs are more difficult than 

Number of thread processors 512 

Frequency of thread processors 1.296Ghz 

Single Precision Floating Point 
Capability 933GFlops 

Double Precision Floating Point 
Capability 78 GFlops 

Global memory 512bit,800MHz GDDR3 

Global memory bandwidth 102 GB/s 

Shared memory per streaming 
multiprocessor (SM) 16K 

Number of 32-bit registers per 
SM 16K 

Max power consumption 188W 

Ta

TABLE 1   

SPECIFICATIONS OF THE NVIDIA TESLAC1060 
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traditional programs, an entire simulation to test the 
single module. To obtain input data for testing, the 
module can be modified to print the values of its input 
variables while performing a full simulation. This output 
can be directed to a file that can later be used as input 
data. Our testing method is to compare our GPU output to 
the CPU output from the GRAPES Fortran version. The 
procedure is showed in Fig. 6. The CPU and GPU version 
of the code are separately executed. When the difference 
between GPU and CPU data values is close to 0, the 
procedure is over. 

In addition to parallelism of the RRTM based-on GPU 
platform, optimization techniques within the kernel  are 
also carried out such as optimizing data scheduling, using 
constant memory, improving circulation structure and ect.  
 

 

 

 

 

  
 

 

 

 

 
 

 
 
 
 
 
 

Figure 6 .the flow diagram of test 

B. Asynchronous Memory Transfer 
For a large numerical weather prediction (NWP) 

system，not only computation speed，but also memory 
size is important.Multiple GPUs is an available solution 
for both speed and storage.We extend our implementation 
to multiple GPUs . 

These GPUs cannot share their global memory，so we 
must manage them by CPU threads and exchange data 
between neighboring GPUs with CPU memory.It is a 
higher layer coarse grained parallel like classic 
distributed memory parallel system that requires domain 
decomposition. 

The computational domain of GRAPES system is 
divided into four subdomains which mapping to four 
GPUs for computing. Fig.7 shows the domain 
partitioning of GRAPES. Each subdomain is surrounded 
by a boundary region,this is because the correlation of 
computing data between their neighboring subdomain. 

As GPUs cannot control  the data transfer between 
themselves,the data communication process should be 
realized via CPU.First,the data are copied from CPU to 
GPU by CUDA API(cudamemcpy( )),CPU lanch the 
GPU kernel executing GPU program,at last copying the 
results from GPU to CPU when the GPU program is 
over.The efficiency of this approch is not very high since 
the GPU will be idle during communication.A better 
approach is that  the computations can be carried out 
concurrently with communications. 

 
 
 
 
 
 
 
 
 
 
 
 

 
CUDA provides an asynchronous transfer mode to 

make executing a kernel and copying data between CPU 
and GPU possible simultaneously,this mode is realized 
by using a stream, two streams in one GPU are 
created,and be managed as follows: 
(1) Copying left border  and subdomain from host to 

Device(stream1); 
(2) Launching GPU kernel for computing(stream1); 
(3) Copying right border from host to Device(stream 2); 
(4) Copying left border  from Device to host for other 

GPU’s computation (stream 1); 
(5) Launching GPU kernel for computing(stream2); 
(6) Copying right border from Device to host (stream 2); 

The execution time for memory transfers and GPU 
kernel execution is illustrated in Fig.8. GPU execution 
and memory transfers  executed simultaneously,the 
communicational time is hidden. 

 
Table 2 shows the performances of the computations 

by asynchronous memory transfer and synchronous 
memory transfer modes .It is obvious that using 
asynchronous memory, the performance increases,the 
speedup is 1.21. 

TABLE 2.  
PERFORMANCES OF THE ASYNCHRONOUS MEMORY 

TRANSFER 
 

CPU time(us) GPU+I/O time(us) 

Asyn-transfer 690524 50256 

Start 

CPU code Segment GPU code Segment

CPU output data value GPU output data value

Comparison script

Difference between 
GPU and CPU data 

values close to 0 

Finish 

yes

no 

Figure 8.Asynchronous memory transfer mode 

left 
border 

 up border

Bottom border

right 
border 

 
sub

Figure 7. Domain partitioning of GRAPES 

2 
subdomain

3 
subdomain 

 

4 
subdomain

tile

1  
subdomain
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syn-transfer 690524 60809 

speedup 1 1.21 

C. Dimensions of the Thread Block and Compiler 
Optimization 

Maximizing utilization of available computing 
resources should be consider to set the thread block 
dimensions when dividing the thread block. Therefore, 
the number of thread blocks should be at least the same 
number of SM in the GPU card. In order to avoid the 
thread synchronization and idle SM while effectively 
hidden pipeline delay when accessing memory 
device .The number of thread blocks in the device should 
be at least more than twice the number of processors. 

The Tesla C1060 as an example, should contain at 
least 64 thread blocks, and the number of blocks should 
be set to a multiple of 64. Shared memory which is 
assigned to each thread block should be at least the half 
of the total shared memory available for each SM.If the 
number of thread blocks is sufficient, the number of  
thread in each thread block should  be multiple  of warp 
(32 threads per a warp) to avoid of a waste of computing 
resources by lack filling the warp[13].In the parallel 
algorithm of RRTM module,  we tested  the module in 
different  size of thread blocks .the results are illustrated 
in Table 3 and Fig. 9.  

In the testing process, block size was set to 128, 256 
and 512, Table 3 is the test results of the comparison. In 
the test, the CPU code of of RRTM module was compiled 
using both -O3 and -fast  optimization option.- O3 option 
increased the cost of storage  and extended compiling 
time, but it reduced  executing time; and-fast option is to 
vector the input data, it makes the code run faster, but 
may bring some loss of precision. 

 

 
 

 
Figure 9. Performance comparison of the routine operation in the 

RRTM module . 
 

Table 3 and Fig. 9 shows executing  performance 
comparison of each subroutine in the RRTM 
modules  .we can see intuitively that the execution time 

of each subroutine and the proportion of the total 
execution time  with different block thread. 

Execution time of rtrn ( ) and gasabs ( ) routine is 
about 86% of the total execution time.However,in the 
GPU version , execution time of these two subroutines is  
about 80% of the total time, slightly less than the CPU’s 
executing time. The main reason is that part of the time 
was consumed for data transmission from the CPU-to-
GPU equipment, Thus the proportion of time used to 
calculate decline relatively. 

Meanwhile, in two different compiler optimization 
options of CPU code, gasabs ( ) are the most time-
consuming part, accounting for 50% of the total time, 
while rtrn ( ) is about 30%.However, the GPU version is 
not the case, the most time-consuming subroutine is rtrn( ) 
(accounting for 52% of the total time) rather than 
gasabs( )(accounting for 28% of the total time) after GPU 
acceleration of  RRTM module. The cause of rtrn ( ) 
consuming more time in the GPU is GPU’s low 
utilization.As the compuation  depends on  the physical 
data in the 3D grid , executing thread in rtrn ( ) kernel 
only cover a limited horizontal grid. Number of the 
executing threads is far less than a total of 4380 and half 
of the maximum occupancy number of concurrent threads 
in Tesla C1060 - about 15,000.In contrast, taugbn ( ) 
kernel in gasabs ( ) subroutine, there is no data 
dependence on the vertical coordinate, so it can have 
enough threads  to cover the entire computing grid. 

According to Table 3, we  can  obtain  that the 
subroutine execution time  under the thread block 
division  of (128,1,1) and (256,1,1) are not very different, 
except initrad ( ) subroutine. The execution time of other 
routines in the thread block dimensions for  the (512,1,1) 
are significantly reduced than the other two 
dimensions,these  indicate that  the design of thread 
dimension  has a certain influence on parallel 
performance of the algorithm. 

TABLE 3. 

THE SUBROUTINE IN DIFFERENT SIZE OF THREAD BLOCKS 

 
Thread block size is also different in different Thread 

dimensions. so the GPU memory access scheduling time 
is different. If  thread dimension is too small, thread 

subroutine 

running time（us） 

-O3 

option 

-fast 

option 

GPU 

128 

GPU 

256 

GPU 
 

512 

initrad（） 20716 15721 3052 3021 2995 

mm5atm（） 33426 29203 5254 4382 4169 

setcoef（） 35628 32156 5671 4352 3256 

 gasabs（） 372882 292961 19385 19921 19005

rtrn（） 227872 153960 35623 35216 20831

rrtmlwrad（） 690524 524001 68985 66892 50256
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block unit data is transferred to GPU memory more 
frequently(such as lobal memory, constant memory, 
texture memory  ).If the data offset of data accessing in 
thread block is large, memory access latency will be not 
been hidden, thus affecting the overall execution time. 

Therefore, increasing the thread block size (the value 
of the thread block dimensions) can hide some memory 
access latency in some degree and increase performance 
of the parallel algorithm. But, if the definition of thread 
block size is too large, for the all threads within the same 
block are shared with a constant memory, texture 
memory and shared memory, When the applying storage 
space of these threads is greater than the hardware 
configuration , it may cause kernel failed to start.Through 
the above analysis, algorithm performance  can be 
improved effectively when the thread block dimension of 
the RRTM module is defined as (512,1,1) ,and ultimately 
RRTM module reached 13.7x  speedup. 

D. Constant Memory 
The common variables used in the module are stated as  

followings: 
integer, constant :: kts, kte, ktep1, nlayers 
integer, constant :: nx, ny, nxy, nxyPad  
! Variables used to input associated dimension data 

values in the Module ， identified with the keyword 
constant are stored in constant memory. 

real, constant :: preflog_c(59),tref_c(59) 
! Constants used in setcoef（）subroutine 

After  compiling  in the CUDA Fortran these variables 
will be stored in the GPU constant memory.The constant 
memory is read-only and has cache, If the data is buffered 
in cache, its access latency is only one clock cycle, 
however if the memory without  cache, accessing 
efficiency of memory is the same to global memory, 
about 400 to 600 clock cycles.Therefore, the read-only 
variables are stored in the GPU's constant memory, 
constant cache can effectively reduce the access time of 
global memory, so as to enhance the computing 
speed.With setting the size of thread blocks(512,1,1) and 
constant memory optimization,the results are shown in 
Table 4 as following. 

TABLE 4 

OPTIMIZATION RESULTS AFTER USING CONSTANT MEMORY 

running time（us） 

without constant memory with constant 

50256 48375 

 
By comparing with previous execution time, reducing 

(50256-48375) / 50256 = 3.7% using constant memory, 
and ultimately to a comprehensive acceleration ratio 
690524/48375 = 14.3. 

VI. CONCLUSION AND FUTURE WORK 

Based on the study on the GRAPES global / regional 
assimilation prediction system principles, structures, 

parallel programs, We propose a basic parallel ideas for 
RRTM module in GPU platform. With performance 
analysis of the program, based on the characteristics of 
the architecture for the GPU, from code optimization, 
memory optimization, compiler options, etc. to optimize 
the performance of the program, and achieved 14X 
speedup. 

As RRTM module depends on the look-up table, the 
improvement of program performance is also correlate 
with the input data, Especially with storage of variable. 
(stored in the register or constant memory, etc.) The 
global memory and constant memory are used in our 
Optimization, but this is not necessarily the best option 
for a particular input data set. As to the lookup table, 
coalesced memory access should be considered. If using 
texture memory to store the lookup table is more 
appropriate than using constant memory with limited size. 
As CUDA Fortran does not support texture memory, we 
do not adopt this method. Experiments are carried out on 
the GPU platform, the results show that the parallel 
computing algorithm is correct, stable and efficient for 
operational implementation of GRAPES in near future.  
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