
GPU-Based Parallel Researches on RRTM Module of
GRAPES Numerical Prediction System

Fang Zheng1 2
1School of Computer,Wuhan University,Wuhan,China, 430072

2School of Science, Huazhong Agricultural University, Wuhan, China, 430070
Email: zhengfang@mail.hzau.edu.cn

Xianbin Xu 1 3*
1School of Computer,Wuhan University,Wuhan,China, 430072

3School of Computer,Wuhan Donghu University, Wuhan, China, 430212
Email: xbxu@whu.edu.cn

Dongdong Xiang 1 Zhuowei Wang1 Ming Xu1 Shuibing He4
1School of Computer,Wuhan University,Wuhan,China, 430072

4Department of Computer Science Illinois Institute of Technology Chicago, IL 60616
Email: {whuwzw,dongdongxiang,mrxuming}@gmail.com, hesbingxq@163.com

Abstract—GRAPES (Global and Regional Assimilation and
Prediction System) is a new generation of numerical
weather prediction (NWP) system of China. As the system
processes amount of data and requires high real-time,so it is
always a hot research field of parallel computing.This is the
first time that we use GPU (Graphics Processor Unit)
general-purpose computing and CUDA technology on
RRTM (Rapid Radiative transfer model) long-wave
radiation module of GRAPES_Meso model for parallel
processing, we rewrited the RRTM module with CUDA
Fortran according to the characteristics of the GPU
architecture.Enhancing the computational efficiency with
optimization strategys such as the code tuning,
asynchronous memory transfer,compiler option and etc.
The optimization results indicate that a 14.3×speedup is
obtained. Experiments are carried out on the multi-GPU
platform,and can be easily extended to GPU clusters, the
results show that the parallel computing algorithm is
correct , stable and efficient.

Index Terms—GPU, CUDA, GRAPES system, RRTM,
Parallel computing

I. INTRODUCTION

GRAPES (Global and Regional Assimilation and
Prediction Enhanced System) is a new generation of
numerical weather prediction (NWP) system,it is
developed by China Meteorological Academy. Radiation
process is one of the most important physical
parameterization schemes in numerical weather
prediction models and climate models. In numerical
weather and climate simulation, the executing time of
LW flux (longwave radiation flux) is more than 1/3 of
the total computation time. Therefore, a fast and an
accurate long-wave radiation parameterization process is
need. RRTM developed by AER retains the highest
accuracy relative to line-by-line results for single column
calculations,and it is a rapid radiative transfer model
which utilizes the correlated-k approach to calculate

fluxes and heating rates efficiently and accurately. RRTM
is one of three long-wave radiation parameterizing
schemes for the physical process of GRAPES .

For a large-scale numerical weather prediction system,
in order to run real-time business, parallel computing is
essential.And usually the simulation of the radiative
transfer in the atmosphere were computed on Ultra-large
CPU clusters with hundreds or thousands of nodes[1]. In
the computation model of GRAPES, The atmosphere can
be mathematically partitioned into a 2-D grid across the
earth’s surface, with a third dimension consisting of
atmospheric layers. Therefore the GRAPES model has
good fine-grained data parallelism and very suitable for
parallel computing. At the same time , with the
development of High-performance computing and
parallel computing technology, GPU has been widely
used for the general purpose with the release of
CUDA(Compute Unified Device Architecture) by
NVIDIA for its high performance of floating-point
arithmetic operation,large memory bandwidth and
powerful parallel processing capabilities. And it has
attracted more and more attention of researchers in the
field of science and engineering for its low-cost, low
power and powerful computing capabilities. GPU will
become an important branch of high-performance
computing.Various applications have already achieved
high performance on GPU,such as the simulation of
seismic waves propagating in geophysical exploration [2]
and accelerating the process of DBT(dynamic binary
translation) on CPU/GPU architecture[3].

This paper presents an approach to port RRTM module
of GRAPES to GPU platform. Enhancing the
computational efficiency with optimization strategys.
Experiments are carried out on the multi-GPU
platform,and can be easily extended to GPU clusters.

The rest of the paper is organized as follows.Section 2
is related work.In section 3,introducing the construction

550 JOURNAL OF COMPUTERS, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jcp.8.3.550-558

of RRTM module.In section 4 ,we propose the parallel
scheme of RRTM module in GRAPES system.Section 5
introducing the parallel strategy and optimization
techniques of RRTM .Section 6 is the conclusion and the
future work.

II. RELATED WORK

WRF is a new generation mesoscale numerical weather
forecast model and data assimilation system which is
made by meteorological community of USA, 3DAR and
WRF V.2 were released in 2004. Due to its highly
modular features makes it very suitable for parallel
computingAnd WRF model system has broad application
in weather forecasts and in air quality forecasts.

J.Michalakes et al[4,5] in 2008 ported a
computationally intensive physics module from the
Weather Research and Forecast (WRF) model using GPU
with CUDA, they achieved the 5× to 20× speedup in
WSM5 with little optimization effort has been put into
GPU code.

J.Delgado et al.[6] proposed and described a developed
methodology to port WRF originally written in
FORTRAN to NVIDIA CUDA. The contribution of their
work was to save development effort by specifying a
simple iterative approach to port that did not require
knowledgements of the application being ported, but they
didn’t consider the improvement of performance.

G. Ruetsch et al. [7] presented the approach and results
of porting the Long-Wave Rapid Radiative Transfer
Model (RRTM) component of the WRF code to the GPU
using CUDA Fortran. The paper discussed that how the
data structures have been modified for the GPU
architecture,strategies for optimizing data movement, and
determining how to partition the code into different
kernels and how these kernels were configured. However,
because RRTM relied heavily on lookup tables,
performance optimization became very data dependent.

In this paper,we ported the GRAPES code to the GPU
using CUDA Fortran. First,to improve the performance of
GRAPES in the porting process, we optimized RRTM
modules with using some optimizations. We implemented
a standalone version of the individual module rather than
performing an entire simulation to test a single module
and compared our GPU output to the CPU output. Second,
a parallel programming model (CUDA MPI) was
presented in multi-GPU computing environment when
simulating the RRTM. Finally, domain partitioning of
GRAPES and asynchronous memory transfer mode were
used for multi-GPU computations. we found that the
experiment results which obtaining from the GPU code
were accuracy and efficiency.

III. BACKGROUD

A. RRTM of GRAPES
Longwave (LW) radiation plays a crucial role in

influencing the weather, climate and climate sensitivity to
external radiation.Therefore,accurate long-wave radiation
parameterization is very important for weather and
climate research in atmospheric models.In the numerical

computation of the weather and climate,the calculation
time of LW flux (longwave radiation flux) accounted for
1/3 or more of the total time.Therefore, a great need for a
rapid and accurate long-wave radiation parameterization.

The long-wave radiation parameterization of the
RRTM module for GRAPES system was developed by
Mlawer[16] of AER which is a rapid radiative transfer
model which calculates fluxes and cooling rates for the
longwaves pectral region (10-3000cm-1) for an arbitrary
clear atmosphere. The molecular species treated in the
model are water vapor, carbon dioxide, ozone, methane,
nitrous oxide, and the common halocarbons. And the
radiative transfer in RRTM is performed using the
correlated-k method: the k distributions are attained
directly from the LBLRTM line-by-line model, which
connects the absorption coefficients used by RRTM to
high-resolution radiance validations done with
observations. The correlated-k method is an approximate
technique for the accelerated calculation of fluxes and
cooling rates for inhomogeneous atmospheres.This
method is capable of achieving an accuracy comparable
with that of line-by-line models with an extreme
reduction in the number of radiative transfer operations
performed. The radiative transfer operations for a given
homogeneous layer and spectral and are carried out using
a small set of absorption coefficients that are
representative of the absorption coefficients for all
frequencies in the band.

B. Description of RRTM Module
The original serial CPU code implementation of

RRTM were obtained from the Kernel Benchmark Page[6]
at NCAR. The figure 1 is the pseudo-code for the highest
level of module.

Figure 1. Pseudo-code for the RRTM module

subroutine radiation_driver (parameter list)
the part of defining variables
the part of initializing data
call radconst(parameter list)
call cal_cldfra(parameter list)
lwrad_select:

select case(config_flags%ra_lw_physics)
！longwave radiation physics process

case (RRTMSCHEME)
！adopt RRTM scheme

call rrtminit (parameter list)
！call rrtminit function

times(1) = rsl_internal_microclock()
 ！timing function

call rrtmlwrad (parameter list)
 ! call rrtmlwradfunction

times(2) = rsl_internal_microclock()
！timing function

case(other SCHEME)
end select lwrad_select

other code（such as the short wave raditation）
end subroutine radiation_driver

JOURNAL OF COMPUTERS, VOL. 8, NO. 3, MARCH 2013 551

© 2013 ACADEMY PUBLISHER

In the beginning of the module, the driver of the
radiation initializes the data ,and according to the
parameters a scheme of longwave radiation physics
process is launched,then calling an initialization routine
rrtminit(), next calculating the long-wave radiation
transfer process by calling the routine rrtmlwrad() and
the rrtm() subroutine.The subroutine rrtm() are
composed of these steps:

initrad(): computes the ozone mixing ratio
distribution；

mm5atm (): prepares atmospheric profiles；
setcoef (): calculates various quantities needed for the
radiative transfer algorithm specific to this atmosphere
gasabs ():calculates gaseous optical depths
rtrn ():calculates the radiative transfer for both clear and
cloudy columns

The gaseous optical depths and Planck fractions in
gasabs() calls 16 subroutines taugbn() computing for 16
different long-wave spectral bands, where n = 1,…,16.
The structure of function package for the RRTM module
is shown in Fig. 2.

Figure 2 .function package structure of the RRTM module

IV. ACCELERATING RRTM WITH GPU

A. Typical Parallel Mode of GRAPES
The two dominant parallel models are message passing

and shared memory,also MPI and OpenMP are used in
the of GRAPES model for parallel processing,and
GRAPES provides two parallel programming schemes
for different computing platforms:

(1) patch parallel program for distributed memory
computer system (multi-tasking) (as Fig.7 shows,patch
corresponding to subdomain).

(2) tile parallel program for shared memory computer
system (multi-thread parallel computing).

In GRAPES computation model, the overhead of
thread management is low, and the efficiency of thread
synchronization is high. Exchanging and sharing
information of the programs which running on different
processors could be easily realized using on-chip memory,
then GRAPES programs are suitable for fine-grained
parallel computing.

In the CUDA programming model, the CPU is viewed
as a control processor that is responsible for parameter
setup, data initialization, and execution of the serial

portions of the program. The GPU is viewed as a co-
processor whose job is to accelerate data parallel
computations. Threads within the same block to share
data using high-speed on-chip shared memory. Threads
from different blocks can share data via global memory.
CUDA adopts a SIMD data-parallel model in which one
instruction is executed multiple times in parallel on
different data elements. So we can enhance the GRAPES
system performance by using the GPU’s fine-grained
parallel feature.

B. Running mode of GRAPES based on GPU
WRF model is supported by NCAR and free of

charge released for public [8][9].The architecture of
GRAPES is similar to the one of WRF system. Taking
the advantage of GPU,CUDA and numeric computing
technologies, we have completed its GPU parallel codes
of GRAPES_Meso. Our researches of accelerating
GRAPES meteorological model based on GPU are at the
forefront in China.

Multi-GPU computing is now a part of the super-
computing.The Message Passing Interface(MPI) is
widely used for parallel programming on clusters.MPI
can work well on both shared and distributed memory
system. Using MPI with one node mapped to each GPU
is the most straightforward way to use a multi-GPU.In
our implementation, we extend our GRAPES system in
multi-GPU environment(one node mapped to 4 GPUs).
Each node run four CPU processes, and each CPU
process control one GPU,Fig.3 is shown as the structure
of multi-GPU .

Figure 3 .Communication between multi-GPU

The parallel mode of GRAPES system on the GPU
platform is described simply as follows:
step1: Setting the number of GPU which executing the
CUDA parallel program of GRAPES system
(communicating with MPI), setting the number of block
in the GPU, etting the variables and parameters of
computing region and parallel decomposition region , etc;
step2: Setting a GPU as a master node which is
responsible for inputing initial data for GPU computing,

RRTM

INIRAD

MM5ATM

SETCOEF

GASABS

RTRN

TAUGB1

TAUGB2

TAUGB3

TAUGB16

…
..

RRTMLWRAD

552 JOURNAL OF COMPUTERS, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

and the master node also distribute and collect the results
of other GPU computing nodes;
step3: Each GPU computing integral iteration part;
step4: Each GPU calling time integral calculation
including the dynamical and physical processes of
program. Exchanging data between each GPU;
step5: Each GPU determining whether to output
intermediate results,if necessary,the data will be
aggregated to master GPU node for output;
 step 6: Each GPU judging whether the computation is
over, if the computation is over,collecting the results and
sending to the master node,ending the program.
Otherwise, returns to Step 4 and continue.

C. Parallel scheme of RRTM module based on GPU
In the version of CPU code of RRTM,the structure

of most subroutine is as following :

do j=jts,jte
do i=its,ite

call RRTM Module;
end do

end do
The above code contains a lot of looping structures,

and iterative structures.In the Fortran version code,
usually independent subroutines are called in the main
function.

As the Fig.2 shows,the subroutine RRTM consists of
five subroutines,we separate each subroutine into one
kernel except the GASABS,and GASABS is split into 16
kernels[17,18].

For the characteristics of the procedure,there are three
parallel strategys in the parallel computing of the RRTM
on GPU.

(1) Parallelization between each iteration step .
(2) Parallelization between subroutines.
As the subroutine of the GASABS is encapsulated into

different kernels,and the computational data for the 16
kernels is independent,so the subroutines can be executed
currently.

(3) Parallelization within subroutines.
According to the characteristic of CUDA, instructions

of one GPU kernel is executed by multiple threads in the
same thread block,so the threads for the same subroutines
is current.

Also, considering the parallel code, GPU architecture
and other factors, there are two parallel layers.

(1) Parallelization of instruction-level.
We take some parallel strategys in some parts of the

code,such as unrolling the loop,adjustmenting the
scheduling policy of instruction.(as transferring more data
to be calculated to a thread for hiding memory access
latency.)

(2) Parallelization of thread-level.
In this level,every kernel execute their respective

parallelized thread.(task partitions for data domain,each
thread computes a region,there is little or no inter-
regional data exchange.)

D. Mapping data Structure to GPU
CUDA provides an interface to program on the GPU

for general purpose applications. In CUDA, the GPU can
execute multiple concurrent threads. Threads are
executed in SIMD thread blocks. Blocks and threads are
indexed by block and thread ids, and the GPU can be
viewed as a set of multiprocessors. One or more thread
blocks is dispatched to each processor. Blocks are further
organized into grids[10].

In the framework of GRAPES model, The atmosphere
is divided into horizontal and vertical three-dimensional
grids, where x axis representing longitude, y axis
representing latitude, and the z axis representing the
vertical direction,the decomposition of the region is
illustrated in Fig.3. Mapping to the RRTM numeric
computing scheme,the atmosphere is divided into 28
layers vertically and each layer is divided into a
horizontal 73×60 grids.As Fig.4 shows, the value of k is
28,x is 73 and y is 60.Each grid point corresponds to a set
of data, so the calculation is the process of interaction
between the data. As the process of k direction is
independent, the basic parallelism idea is that a thread
deal with every processing task of each column on GPU
indexing i and j two-dimensional directions. NVIDIA
GPUs consist of blocks of “multiprocessors” each
containing a number of “thread processors”. So each
vertical atmospheric column is assigned to a
multiprocessor, each atmospheric layer within a column
is assigned to a thread processor.

Figure.4 3D physical space

In the language of Fortran and C, plane coordinate can
be expressed using two-dimensional array,and 3D
coordinate can be expressed using three-dimensional
array. Therefore, transformation of the original
coordinate in the CPU is needed for only one-
dimensional array could be used in CUDA.

In the CUDA FORTRAN code [9], built-in variable
threadIdx.x identify a unique thread inside a thread block.
Likewise, each kernel determines which block to be
executed with the built-in variables blockIdx.x and
blockIdx.y. The size of the block is identified by using the
built-in variable blockdim.x. The build-in variables of
CUDA are used to identify a unique thread, which is then
used in dividing the work, so that each CUDA kernel
thread computes one linear spatial (1 dimension).

idxy variable represents coordinate of the horizontal
grid points X, Y, which can be expressed as expression
idxy=(blockIdx%x-1)*blockDim%x+threadIdx%x, lay

JOURNAL OF COMPUTERS, VOL. 8, NO. 3, MARCH 2013 553

© 2013 ACADEMY PUBLISHER

variable represents coordinate of the vertical dimension Z,
which can be expressed as expression lay = (blockIdx%y-)
*blockDim%y+threadIdx%y. So a point in a three-
dimensional grid can be identified by an idx and a lay
variable as one-dimensional linear data.

E. GPU-based Implementation of RRTM Module
In the implementation of RRTM module based on

GPU, first initializing rrtminit_cuda () subroutine, calling
the CPU version of the subroutine rrtminit (), transfering
the calculating data to the storage of GPU, and then
calling rrtmlwrad () routine, starting the computation of
5 basis subroutines in rrtmlwrad ().

As large amount of data should be processed in the
computation, and for the limitation of the numbers of
registers and capacity of memory, the data transmission
between GPU and CPU is needed for next computing step.
In order to avoid the exchange of data too frequently,
resulting low efficiency of parallel programs, loop
unrolling, iteration are commonly used.

GPU can execute thousands of concurrent threads
simultaneously for its SIMT (Single Instruction, Multiple
Thread) characteristics. As GPU's computations rely on
the scheduler of CPU, for the limitations of the storage
capacity,data transmission between GPU and CPU is
inevitable. Data exchange between the GPU and CPU
lead to memory latency. Therefore, sufficient number of
active threads need to be run for hiding the memory
latency and improving computational efficiency.

In order to perform as much concurrent threads as
possible, we adopt two parallel strategies. As we
mentioned above, atmosphere can be depicted as a three-
dimensional grid,according to the Fig. 4. Given input data
is a (X, Y, Z) = (73,60,28) three-dimensional mesh data
set.In the calculation,we implement two different data
parallelisms.The one is coarse-grained parallelism , each
thread calculate a separate column data ,there are
73*60=4380 threads in the horizontal dimension.
The other one is fine-grained parallelism, horizontal
dimension is divided into 28 layers, there are
73*60*28=122640 threads executing currently,each
thread calculate a grid point. Thread allocation scheme is
illustrated in Fig. 5.

 Figure 5. schematic visualization of computational kernel

In addition to the above-mentioned parallel strategies,
parallelization between subroutines has also been used.In
the implementation of the coarse-grained parallelism,each
thread calculate a vertical column data, so some threads
block the execution of other threads for they are
interdependence of each other’s computational data.
Considering these factors, We can not just launch one
kernel to perform rrtmlwrad_cuda (), but should launch
multiple different kernels and different executing
configurations for caculation of different kernel. We can
benefit from the above method.(1) If the computing data
of a kernel is independence, threads of the kernel is
lanched to calculate a grid point of 3D mesh.(2) If the
computational data of a kernel is dependence, threads of
the kernel is lanched to calculate a vertical column of 3D
mesh. Using of multiple kernels can also reduce pressure
of register,and reducing the transfer of data from local
memory to the register ,thereby enhancing the efficiency
of execution.In addition, in order to reduce the use of
registers, the configuration of the thread block size for
different kernel functions can be adjusted according to
circumstances in the implementation.

V. EXPERIMENTAL RESULTS AND OPTIMIZATION
TECHNIQUES OF RRTM

A . GPU Device and CUDA Conception
In this section, we introduce our experiment

environment, available device resource. The GPU-based
RRTM scheme experiments were performed on Intel
Xeon 5500 connect to centOS 2.6.18-164.el5 x86_64
version system (36GB of memory). The system is also
equipped with 4×NVIDIA Tesla C1060 cards. Table I
shows its specifications. The Fortran compiler is the PGI
Fortran compiler version 10.4 that has support for CUDA
Fortran and the development environment is mpich 2-
1.2.1p1. For post-processing and displaying of GRAPES
system, you can selectively install netcdf or other post-
processing software GrADS[15].

Testing CUDA programs are more difficult than

Number of thread processors 512

Frequency of thread processors 1.296Ghz

Single Precision Floating Point
Capability 933GFlops

Double Precision Floating Point
Capability 78 GFlops

Global memory 512bit,800MHz GDDR3

Global memory bandwidth 102 GB/s

Shared memory per streaming
multiprocessor (SM) 16K

Number of 32-bit registers per
SM 16K

Max power consumption 188W

Ta

TABLE 1

SPECIFICATIONS OF THE NVIDIA TESLAC1060

554 JOURNAL OF COMPUTERS, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

traditional programs, an entire simulation to test the
single module. To obtain input data for testing, the
module can be modified to print the values of its input
variables while performing a full simulation. This output
can be directed to a file that can later be used as input
data. Our testing method is to compare our GPU output to
the CPU output from the GRAPES Fortran version. The
procedure is showed in Fig. 6. The CPU and GPU version
of the code are separately executed. When the difference
between GPU and CPU data values is close to 0, the
procedure is over.

In addition to parallelism of the RRTM based-on GPU
platform, optimization techniques within the kernel are
also carried out such as optimizing data scheduling, using
constant memory, improving circulation structure and ect.

Figure 6 .the flow diagram of test

B. Asynchronous Memory Transfer
For a large numerical weather prediction (NWP)

system，not only computation speed，but also memory
size is important.Multiple GPUs is an available solution
for both speed and storage.We extend our implementation
to multiple GPUs .

These GPUs cannot share their global memory，so we
must manage them by CPU threads and exchange data
between neighboring GPUs with CPU memory.It is a
higher layer coarse grained parallel like classic
distributed memory parallel system that requires domain
decomposition.

The computational domain of GRAPES system is
divided into four subdomains which mapping to four
GPUs for computing. Fig.7 shows the domain
partitioning of GRAPES. Each subdomain is surrounded
by a boundary region,this is because the correlation of
computing data between their neighboring subdomain.

As GPUs cannot control the data transfer between
themselves,the data communication process should be
realized via CPU.First,the data are copied from CPU to
GPU by CUDA API(cudamemcpy()),CPU lanch the
GPU kernel executing GPU program,at last copying the
results from GPU to CPU when the GPU program is
over.The efficiency of this approch is not very high since
the GPU will be idle during communication.A better
approach is that the computations can be carried out
concurrently with communications.

CUDA provides an asynchronous transfer mode to

make executing a kernel and copying data between CPU
and GPU possible simultaneously,this mode is realized
by using a stream, two streams in one GPU are
created,and be managed as follows:
(1) Copying left border and subdomain from host to

Device(stream1);
(2) Launching GPU kernel for computing(stream1);
(3) Copying right border from host to Device(stream 2);
(4) Copying left border from Device to host for other

GPU’s computation (stream 1);
(5) Launching GPU kernel for computing(stream2);
(6) Copying right border from Device to host (stream 2);

The execution time for memory transfers and GPU
kernel execution is illustrated in Fig.8. GPU execution
and memory transfers executed simultaneously,the
communicational time is hidden.

Table 2 shows the performances of the computations

by asynchronous memory transfer and synchronous
memory transfer modes .It is obvious that using
asynchronous memory, the performance increases,the
speedup is 1.21.

TABLE 2.
PERFORMANCES OF THE ASYNCHRONOUS MEMORY

TRANSFER

CPU time(us) GPU+I/O time(us)

Asyn-transfer 690524 50256

Start

CPU code Segment GPU code Segment

CPU output data value GPU output data value

Comparison script

Difference between
GPU and CPU data

values close to 0

Finish

yes

no

Figure 8.Asynchronous memory transfer mode

left
border

 up border

Bottom border

right
border

sub

Figure 7. Domain partitioning of GRAPES

2
subdomain

3
subdomain

4
subdomain

tile

1
subdomain

JOURNAL OF COMPUTERS, VOL. 8, NO. 3, MARCH 2013 555

© 2013 ACADEMY PUBLISHER

syn-transfer 690524 60809

speedup 1 1.21

C. Dimensions of the Thread Block and Compiler
Optimization

Maximizing utilization of available computing
resources should be consider to set the thread block
dimensions when dividing the thread block. Therefore,
the number of thread blocks should be at least the same
number of SM in the GPU card. In order to avoid the
thread synchronization and idle SM while effectively
hidden pipeline delay when accessing memory
device .The number of thread blocks in the device should
be at least more than twice the number of processors.

The Tesla C1060 as an example, should contain at
least 64 thread blocks, and the number of blocks should
be set to a multiple of 64. Shared memory which is
assigned to each thread block should be at least the half
of the total shared memory available for each SM.If the
number of thread blocks is sufficient, the number of
thread in each thread block should be multiple of warp
(32 threads per a warp) to avoid of a waste of computing
resources by lack filling the warp[13].In the parallel
algorithm of RRTM module, we tested the module in
different size of thread blocks .the results are illustrated
in Table 3 and Fig. 9.

In the testing process, block size was set to 128, 256
and 512, Table 3 is the test results of the comparison. In
the test, the CPU code of of RRTM module was compiled
using both -O3 and -fast optimization option.- O3 option
increased the cost of storage and extended compiling
time, but it reduced executing time; and-fast option is to
vector the input data, it makes the code run faster, but
may bring some loss of precision.

Figure 9. Performance comparison of the routine operation in the

RRTM module .

Table 3 and Fig. 9 shows executing performance
comparison of each subroutine in the RRTM
modules .we can see intuitively that the execution time

of each subroutine and the proportion of the total
execution time with different block thread.

Execution time of rtrn () and gasabs () routine is
about 86% of the total execution time.However,in the
GPU version , execution time of these two subroutines is
about 80% of the total time, slightly less than the CPU’s
executing time. The main reason is that part of the time
was consumed for data transmission from the CPU-to-
GPU equipment, Thus the proportion of time used to
calculate decline relatively.

Meanwhile, in two different compiler optimization
options of CPU code, gasabs () are the most time-
consuming part, accounting for 50% of the total time,
while rtrn () is about 30%.However, the GPU version is
not the case, the most time-consuming subroutine is rtrn()
(accounting for 52% of the total time) rather than
gasabs()(accounting for 28% of the total time) after GPU
acceleration of RRTM module. The cause of rtrn ()
consuming more time in the GPU is GPU’s low
utilization.As the compuation depends on the physical
data in the 3D grid , executing thread in rtrn () kernel
only cover a limited horizontal grid. Number of the
executing threads is far less than a total of 4380 and half
of the maximum occupancy number of concurrent threads
in Tesla C1060 - about 15,000.In contrast, taugbn ()
kernel in gasabs () subroutine, there is no data
dependence on the vertical coordinate, so it can have
enough threads to cover the entire computing grid.

According to Table 3, we can obtain that the
subroutine execution time under the thread block
division of (128,1,1) and (256,1,1) are not very different,
except initrad () subroutine. The execution time of other
routines in the thread block dimensions for the (512,1,1)
are significantly reduced than the other two
dimensions,these indicate that the design of thread
dimension has a certain influence on parallel
performance of the algorithm.

TABLE 3.

THE SUBROUTINE IN DIFFERENT SIZE OF THREAD BLOCKS

Thread block size is also different in different Thread

dimensions. so the GPU memory access scheduling time
is different. If thread dimension is too small, thread

subroutine

running time（us）

-O3

option

-fast

option

GPU

128

GPU

256

GPU

512

initrad（） 20716 15721 3052 3021 2995

mm5atm（） 33426 29203 5254 4382 4169

setcoef（） 35628 32156 5671 4352 3256

 gasabs（） 372882 292961 19385 19921 19005

rtrn（） 227872 153960 35623 35216 20831

rrtmlwrad（） 690524 524001 68985 66892 50256

556 JOURNAL OF COMPUTERS, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

block unit data is transferred to GPU memory more
frequently(such as lobal memory, constant memory,
texture memory).If the data offset of data accessing in
thread block is large, memory access latency will be not
been hidden, thus affecting the overall execution time.

Therefore, increasing the thread block size (the value
of the thread block dimensions) can hide some memory
access latency in some degree and increase performance
of the parallel algorithm. But, if the definition of thread
block size is too large, for the all threads within the same
block are shared with a constant memory, texture
memory and shared memory, When the applying storage
space of these threads is greater than the hardware
configuration , it may cause kernel failed to start.Through
the above analysis, algorithm performance can be
improved effectively when the thread block dimension of
the RRTM module is defined as (512,1,1) ,and ultimately
RRTM module reached 13.7x speedup.

D. Constant Memory
The common variables used in the module are stated as

followings:
integer, constant :: kts, kte, ktep1, nlayers
integer, constant :: nx, ny, nxy, nxyPad
! Variables used to input associated dimension data

values in the Module ， identified with the keyword
constant are stored in constant memory.

real, constant :: preflog_c(59),tref_c(59)
! Constants used in setcoef（）subroutine

After compiling in the CUDA Fortran these variables
will be stored in the GPU constant memory.The constant
memory is read-only and has cache, If the data is buffered
in cache, its access latency is only one clock cycle,
however if the memory without cache, accessing
efficiency of memory is the same to global memory,
about 400 to 600 clock cycles.Therefore, the read-only
variables are stored in the GPU's constant memory,
constant cache can effectively reduce the access time of
global memory, so as to enhance the computing
speed.With setting the size of thread blocks(512,1,1) and
constant memory optimization,the results are shown in
Table 4 as following.

TABLE 4

OPTIMIZATION RESULTS AFTER USING CONSTANT MEMORY

running time（us）

without constant memory with constant

50256 48375

By comparing with previous execution time, reducing

(50256-48375) / 50256 = 3.7% using constant memory,
and ultimately to a comprehensive acceleration ratio
690524/48375 = 14.3.

VI. CONCLUSION AND FUTURE WORK

Based on the study on the GRAPES global / regional
assimilation prediction system principles, structures,

parallel programs, We propose a basic parallel ideas for
RRTM module in GPU platform. With performance
analysis of the program, based on the characteristics of
the architecture for the GPU, from code optimization,
memory optimization, compiler options, etc. to optimize
the performance of the program, and achieved 14X
speedup.

As RRTM module depends on the look-up table, the
improvement of program performance is also correlate
with the input data, Especially with storage of variable.
(stored in the register or constant memory, etc.) The
global memory and constant memory are used in our
Optimization, but this is not necessarily the best option
for a particular input data set. As to the lookup table,
coalesced memory access should be considered. If using
texture memory to store the lookup table is more
appropriate than using constant memory with limited size.
As CUDA Fortran does not support texture memory, we
do not adopt this method. Experiments are carried out on
the GPU platform, the results show that the parallel
computing algorithm is correct, stable and efficient for
operational implementation of GRAPES in near future.

ACKNOWLEDGMENT

We would like to thank the support of Fundamental
Research Funds for the Central Universities (Grant
No.3101012), and the Key Laboratory of High
Confidence Software Technologies Program (Grant
No.HCST201104).

REFERENCES

[1] J.Michalakes, J. Hacker, R.Loft, M. O. McCracken,
A.Snavely, N.Wright, T. Spelce, B. Gorda, and B. Walkup.
Wrf nature run. In proceedings of the 2007 ACM/IEEE
conference on Super-computing,pages 1-6, 2007.

[2] Zhangang Wang, Suping Peng, Tao Liu. GPU
Accelerated 2-D Staggered-grid Finite Difference Seismic
Modelling [J],Joural of Software, Vol 6, No 8 (2011)
1554-1561.

[3] Erzhou Zhu, Haibing Guan,etc. A Translation Framework
for Executing the Sequential Binary Code on CPU/GPU
Based Architectures[J], JOURNAL OF SOFTWARE,
VOL. 6, NO 12,(2011) 2331-2341.

[4] Michalakes, J., J. Dudhia, D. Gill, T.Henderson, J.
Klemp,W.Skamarock, and W. Wang, 2005: The Weather
Research and Forecast Model: Software architecture and
performance. 11th Workshop on High Performance
Computing in Meteorology, World Scientific, 156-168.

[5] V. Simek, R. Dvorak, F. Zboril, and J. Kunovsky,
"Towards accelerated computation of atmospheric
equations using CUDA,"in Proceeding of 11th
International Conference on Computer Modelling and
Simulation, UKSIM '09, Cambridge, 2009, pp. 449-45.

[6] B.Huang, J Mielikainen, H Oh,etc. Development of a
GPU-based high-performance radiative transfer model for
the Infrared Atmospheric Sounding Interferometer
(IASI)[J], Journal of Computational Physics,2010, 230
(2011) 2207-2221.

[7] J.Michalakes and M. Vachharajani. GPU acceleration of
numerical weather prediction. In Workshop on Large
Scale Parallel Processing 2008 (IPDPS2008), Miami, FL,
April 18, 2008.

JOURNAL OF COMPUTERS, VOL. 8, NO. 3, MARCH 2013 557

© 2013 ACADEMY PUBLISHER

[8] J. Delgado, J. Gazolla, E. Clua, and S. Masoud Sadjadi,
An Incremental Approach to Porting Complex Scientific
Allications to GPU/CUDA. EScience 2010.

[9] G. Ruetsch, E. Phillips, and M. Fatica, GPU Acceleration
of the Long-Wave Rapid Radiative Transfer Model in
WRF using CUDA FORTRAN, Many-Core and
Reconfigurable Supercomputing Conference 2010 (MRSC
2010), CASPUR, Rome, March 2010.

[10] GPU Acceleration of NWP: Benchmark Kernels Web
Page: http://www.mmm.ucar.edu/wrf/WG2/GPU/

[11] Roe, K., Stevens, D.: ‘Maximizing Multi-core
Performance of the Weather Research and Forecast Model
over the Hawaiian Islands’,Proceedings of the Advanced
Maui Optical and Space Surveillance Technologies
Conference, 2010. Ed.: S. Ryan, The Maui
EconomicDevelopment Board., p.E66.

[12] Baghsorkhi, S.S., Delahaye, M., Patel, S.J., Gropp, W.D.,
and Hwu,W.-m.W.: ‘An adaptive performance modeling
tool for GPU architectures’, SIGPLAN Not., 45, (5), pp.
105-114.

[13] Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S., Stone, S.S.,
Kirk, D.B.,and Hwu, W-m.W.: ‘Optimization principles
and application performance evaluation of a multithreaded
GPU using CUDA’,Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of
parallel programming, 2008, pp. 73-82.

[14] Hong, S., and Kim, H.: ‘An integrated GPU power and
performance model’. Proc. Proceedings of the 37th annual
international symposium on Computer architecture, Saint-
Malo, France pp. Pages280-289.

[15] GrADS ocumentation[EB/OL].
http://grads.iges.org/grads/gadoc/.

[16] Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J.,
Clough, S.A.: ‘Radiative transfer for inhomogeneous
atmospheres: RRTM, a validated correlated-k model for
the longwave. Journal of Geophysical Research, 1997,102
(D14), 16663–16682.

[17] F.sh. Lu, J.Song, X. Cao, X.q. Zhu: ‘GPU Computing for
Longwave Radiation Physics: A RRTM_LW Scheme Case
Study ’, Proc. Proceedings of the 9th IEEE International
Symposium on Parallel and Distributed rocessing with
Applications Workshops (ISPAW), 2011,Busan,pages 71-
76.

[18] F.sh. Lu, J.Song, X. Cao, X.q. Zhu: ‘CPU/GPU computing
for long-wave radiation physics on large GPU clusters’,
volume41, 2012, pp47-51.

Fang Zheng is a Ph.D. candidate of the School of
Computer,Wuhan University, Wuhan, China.She received a
B.A. degree in 2002 and a M.S. degree in 2005 from Central
China Normal University,Wuhan,China . She is especially
interested in high performance computing, and distributed
system and etc.

Xianbin Xu graduated from the department of system
architecture in Huazhong University of science and technology
and worked for teaching in Huazhong University of science and
technology from 1977 to 1985.He got Ph.D. of school of
computer in Wuhan University. He is now president of institute
of computer in Wuhan University. His research interests focus
on network storage,data grid and distributed system.

Dongdong Xiang receives his B.A and M.S degree from the
School of Computer,Wuhan University, Wuhan,China. His
research interests focus on high performance computing,data
grid and distributed system and etc.

Zhuowei Wang is a Ph.D. candidate of the School of
Computer,Wuhan University, Wuhan, China.She received a
B.A. degree in 2007 from China University of
Geosciences,China and a M.S. degree in 2009 from Wuhan
University.She is especially interested in high performance
computing, data grid,distributed system and etc.

Ming Xu received the B.Sc. degree from the Hubei University
of Technology in 2001 and M.Sc.degree in the Department of
Computer from National University of Defense Technology in
2007.He is currently a Ph.D.student in the Wuhan University.
His research areas include high performance computing.

Shuibing He is a postdoctoral researcher at the SCS laboratory
of Illinois Institute of Technology. He received his Ph.D. in
Computer Science in Dec. 2009 from the Huazhong University
of Science and Technology. His research areas include parallel
computer architecture, distributed storage and file systems,
embedded system. He is currently working on I/O performance
evaluation and optimization.

558 JOURNAL OF COMPUTERS, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

