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Abstract—Maximal biclique enumeration (MBE) in bipartite
graphs is an important problem in data mining with many real-
world applications. Parallel MBE algorithms for GPUs are needed
for MBE acceleration leveraging its many computing cores. How-
ever, enumerating maximal bicliques using GPUs has three main
challenges including large memory requirement, thread divergence,
and load imbalance. In this paper, we propose GMBE1, an
advanced GPU solution for the MBE problem. To overcome the
challenges, we design (1) a node-reuse approach to reduce GPU
memory usage with advanced node pruning, (2) a bitmap-based set
intersection approach to minimize thread divergence, and (3) a
load-aware task scheduling framework to achieve load balance
among threads within GPU warps, facilitated by a novel set union
approach. Our experiments reveal that GMBE1 is 1.23 faster
than the latest GPU-based MBE algorithm GMBE on average
when running on the same NVIDIA A100 GPU.

Index Terms—Graph computing, maximal biclique enumeration,
GPU.

I. INTRODUCTION

A bipartite graph G¼ ðU,V,EÞ contains two disjoint vertex
sets U and V, where an edge e 2 E only occurs between

two vertices in U and V, respectively. A biclique is a complete
bipartite graph, i.e., there exists an edge between two vertices if
and only if the two vertices are in different vertex sets. A maxi-
mal biclique inG is a subgraph ofG, which is a biclique and can
not be further enlarged to form a larger biclique. Maximal bicli-
que enumeration (MBE) aims to find all maximal bicliques inG.

MBE is important in bipartite graph analysis, with widespread
applications, such as anomaly detection in e-commerce networks
[1], [2], social recommendation in social networks [3], gene expres-
sion analysis in expression datasets [4], andGNN information aggre-
gation [5]. Consider an example in an e-commerce network, where
the purchasing relationships can be modeled by a bipartite graph. It
is suspicious for a large group of customers to buy a set of products
together because online sellers are likely to make fake purchases
through illegal platforms to improve their credibility and positive rat-
ings [1], [2]. We can identify all these suspicious groups by enumer-
ating all themaximal bicliques in the network, and then detect them.

Over the past few decades, many MBE algorithms have been
proposed to speed up the enumeration of all maximal bicliques
in bipartite graphs [3], [4], [6], [7], [8], [9], [10], [11], [12]. A
mainstream approach is to use the set enumeration tree [13] to
recursively enumerate all candidate subgraphs, and then judge
whether they are maximal bicliques. The enumeration space of
this method is a powerset of V or U, so the computational over-
head is very high [14], especially for large graphs. Thus, many
efforts are made to reduce the enumeration space using pruning
[8], [9] and vertex ordering [4], [9]. Recent work accelerates enu-
meration node checking using the prefix tree [10]. However, they
only achieve limited speedup for not exploring the parallelism of
multi-core CPUs. Other works design parallelization strategies
for the multi-core CPUs [7]. However, their performance speedup
is constrained by the limited parallelism of CPUs.

Recent efforts speed up MBE with GPUs [15], [16], but they
still face three major challenges. First, the existing MBE algo-
rithms require large memory space and frequent memory alloca-
tions to store the intermediate data of each enumerated subgraph,
thus they cannot efficiently run on GPUs with limited memory
capacity and high dynamic memory allocation overhead [17], due
to the severe shortage of memory resources.

Second, the performance of existing MBE algorithms suffers
from irregular computation [18] while GPUs are suitable to per-
form regular computation with high parallelism. Specifically,
different GPU threads in the same warp in the MBE algorithm
may take different execution paths to access different vertex
neighbors, causing the thread divergence problem [19]. GPUs
will serialize these diverged thread operations [20], resulting in
low thread utilization and poor memory access efficiency.

Lastly, existing MBE algorithms have a serious load imbalance
problem on GPUs. The reason is that the maximal biclique sizes
are varied significantly with real-world graphs for the power-law
distribution of vertex degrees. As a result, threads assigned to
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each GPU core have different running times. When load imbal-
ance happens, thousands of GPU threads have to wait for the
slowest one to complete, causing degraded GPU performance.

Many existing studies have used GPUs to improve the perfor-
mance of other graph enumeration problems, like maximal clique
enumeration [21] and graph pattern mining [19]. The optimiza-
tions include data graph partitioning [22], two-level parallelism
[23], adaptive buffering [24], hybrid order on GPU [19], etc. How-
ever, they are inefficient for MBE on GPUs, because the enumer-
ated subgraphs for MBE generally contain much more vertices
than those in other graph enumeration problems. For instance, it
may enumerate maximal bicliques comprising several to thou-
sands of vertices, while the triangle counting algorithm only con-
siders subgraphs with three vertices. The larger subgraphs
generated at runtime require larger memory and computation costs
and lead to more serious problems of large memory requirement,
thread divergence, and load imbalance mentioned above.

To address all the challenges and achieve advanced maximal
biclique enumeration on GPUs, we design the GPU-based MBE
algorithm (GMBEþ) considering the characteristics of GPU archi-
tecture andMBE computation pattern. Specifically, first, by replac-
ing recursion with iteration, we not only optimize memory usage
by reusing the memory space of enumeration nodes but also
enhance performance through node pruning based on intermediate
results, such as local neighborhood sizes. Second, we utilize bit-
maps to store vertex neighbors in cases where the current node
contains a small number of vertices. This approach efficiently
minimizes thread divergence by simplifying set intersections
and accelerating them using bitwise operations between same-
sized bitmaps. Finally, GMBEþ carefully manages the size of
subtrees assigned to GPU threads and schedules the tasks using
two-level queues to achieve load balance within GPU warps
and blocks leveraging persistent thread programming models
for GPUs. Notably, we devise a warp-wide intersect-path-
based set union approach to help balance the workload. Com-
pared to GMBE [15] (the conference version), GMBEþ further
expedites set intersections using bitmaps and optimizes set
unions based on Intersect Path (IP) [25].

We adopt the fast CUDA primitives [26] to implement the
GMBEþ prototype and conduct extensive experiments on real-
world datasets to demonstrate the efficiency of GMBEþ. Our
experimental results show that GMBEþ is 1.2� faster than the lat-
est GPU-basedMBE algorithmGMBE (the conference version) on
averagewhen run on the sameNVIDIAA100GPU.

The paper is organized as follows: Section II provides back-
ground on baseline MBE solutions, graph representations, and
GPU architecture. Section III describes the challenges of MBE
on GPUs, and Section IV presents our corresponding design sol-
utions. Section V details the implementation of GMBEþ.
Section VI evaluates our design. Section VII discusses related
work, and Section VIII concludes.

II. BACKGROUND

In this section, we briefly review the recent MBE algorithms
on CPUs, graph representations, and introduce the compute uni-
fied device architecture (CUDA) in modern GPUs.

A. MBE Algorithms on CPUs

Notation definitions. Given a bipartite graph GðU,V,EÞ. U
and V are two disjoint vertex sets inG. E is the edge set inG and
E � U�V . For each vertex u in U, NðuÞ denotes the neighbors
of u, i.e., NðuÞ ¼ fvjðu,vÞ 2 Eg. N2ðuÞ denotes the 2-hop neigh-
bors of u, i.e., N2ðuÞ ¼ [v2NðuÞNðvÞ− fug. For a vertex set X,
CðXÞ denotes the common neighbors of vertices in X, i.e.,
CðXÞ ¼ \u2X NðuÞ. DðXÞ is the maximum degree of vertices in
X, i.e., DðXÞ ¼maxu2XjNðuÞj. D2ðXÞ is the maximum 2-hop
degree of vertices in X, i.e., D2ðXÞ ¼maxu2XjN2ðuÞj. We have a
symmetrical definition for each vertex v in V. A biclique is a ver-
tex set pair ðL,RÞ in G s.t., L� U and R� V and 8u 2 L,
v 2 R, ðu,vÞ 2 E. A biclique ðL,RÞ is a maximal biclique if there
is no biclique ðL0,R0Þ such that ðL[RÞ � ðL0 [R0Þ. Fig. 1 shows
all maximal bicliques in a bipartite graphG0.
Problem statement. The MBE problem aims to enumerate all
maximal bicliques in a bipartite graph.
Baseline solution. To solve the MBE problem, recent works
[3], [4], [6], [7], [8], [9], [10] recursively run a backtracking
procedure to generate the powerset of V using a set enumeration
tree [13] and then obtain all maximal bicliques correspondingly.
In most works [3], [6], [7], [8], each enumeration node is repre-
sented as a 3-tuple ðL,R,CÞ, where L� U and R,C � V. R and
C are disjoint and used to generate the powerset of V. R stores
the current subset of V, while C stores the candidate vertices
for expanding R. ðL,RÞ is the corresponding biclique where
L¼ CðRÞ. In the following, we show the basic recursive proce-
dure for each enumeration node in existing works using Algo-
rithm 1. Then, we detail Algorithm 1 with an example.

The procedure starts at a root node initialized as ðU,;,VÞ. In
each enumeration node, each candidate vertex vc 2 C is tra-
versed sequentially (line #2) to generate a new biclique ðL0,R0Þ
(line #3). The parent node allows expanding R with untraversed
candidate vertices in C (lines #5,6). The new candidate set C0

contains all vertices in C−R0 that connect with any vertex in L0

(lines #7,8). The new biclique is maximal if and only if R0 is
equal to CðL0Þ (line #9). All maximal bicliques are enumerated
exactly once (line #10). The procedure recursively generates
new nodes in a depth-first search (DFS) manner to enumerate all
maximal bicliques (line #11). After processing a new node, we
remove vc from the current candidate set C (line #12). Besides,
some works [4], [9] use a set Q to keep traversed candidate ver-
tices for accelerating the node checking in line #9. Similar to
many existing works [3], [6], [7], [8], we omit the set Q to
reduce the memory consumption.

Fig. 1. A bipartite graphG0 containing 6 maximal bicliques.
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Example 2.1: Fig. 2 depicts an enumeration tree for a bipar-
tite graph G0 using Algorithm 1. The vertices on the edge
between two nodes are used to expand R of the new node,
including a traversed vertex vc and the other untraversed can-
didate vertices in parenthesis. For presentation convenience,
we always use the subscript to denote the corresponding ver-
tex set of an enumeration node. For instance, Lp denotes L set
of node p.

We start from the root node and recursively search the sub-
spaces in a DFS manner by traversing candidate vertices in C
following a pre-imposed order. By traversing v1, we enter node
p. We know Lp ¼ Lroot \Nðv1Þ ¼ fu1,u2,u3,u4,u5g \ fu1,
u2g ¼ fu1,u2g. We then expand Rp with candidate vertices v1,
v2, and v3 because CðLpÞ \Croot ¼ fv1,v2,v3g \ fv1,v2,v3,
v4g ¼ fv1,v2, v3g. Node p generates a maximal biclique ðLp,
RpÞ because Rp ¼ CðLpÞ. v4 is in the new candidate vertex set
Cp because Lp \Nðv4Þ ¼ fu1,u2g \ fu2,u4,u5g ¼ fu2g 6¼ ;.
Continuing this process, the root node can generate node s1 by
traversing v3. We then know Ls1 ¼ fu1,u2,u4g and Rs1 ¼
ðCðLs1Þ \CrootÞ [Rroot ¼ fv3g. Compared to node s, node s1
generates a non-maximal biclique because the parent node of
node s1 (i.e., the root node) fails to expand Rs1 with vertex v2
since v2 has been traversed by root node to generate node r.
Other nodes can be generated similarly as shown in the figure.

Recent optimizations. To reduce the computational overhead,
researchers mainly focus on reducing the enumeration space,
using various vertex ordering, pruning approaches [4], [8], [9],
and the prefix tree [10]. To achieve further speedup, other works
parallelizes MBE algorithms on multicore CPUs [7] or distrib-
uted architectures [6]. Specifically, they distribute all vertices v
in V across CPU threads, and each thread generates a subtree
correspondingly using 1-hop and 2-hop neighbors of v. How-
ever, their performance speedup is constrained by the limited
parallelism of CPUs. Recent studies [15], [16] accelerate MBE
with GPUs, but their performance declines due to challenges
outlined in Section III.

B. Graph Representations

Graph representations significantly impact MBE algorithms,
especially set intersection efficiency (e.g., lines #3,5,7,9 in
Algorithm 1). Fig. 3 depicts two popular representations for
bipartite graphs. The adjacency list is favored in recent works
for its minimal storage size (in OðjEjÞ) [8], [9], [10], [15]. How-
ever, each set intersection entails OðDðVÞÞ time for comparing
two adjacency lists sequentially. The Bitmap enables fast set
intersection via bitwise AND operations (i.e., Oð1Þ for small
graphs) but demands excessive memory for large graphs (i.e.,
OðjUj � jVjÞ). Therefore, we need to make a trade-off between
memory usage and execution time when determining an optimal
graph representation in memory.

C. GPU Architecture and Programming

GPU architecture. Fig. 4 shows the general architecture of a
modern GPU. A GPU generally consists of a global memory, a
shared L2 cache, and multiple streaming multiprocessors (SMs).
Each SM contains an individual L1 cache, a programmable
multi-bank shared memory, and multiple computing cores. A
modern GPU can be equipped with thousands of lightweight
cores in total, thus providing massive computing power. Unlike
computing resources, memory resources on the GPU are rela-
tively limited. For example, the recently popular NVIDIA A100

Fig. 2. An enumeration tree for bipartite graphG0.

Fig. 3. Comparison of adjacency list and bitmap representations for bipartite
graph G0ðU,V ,EÞ in Fig. 1. Adjacency list computes Nðv1Þ \Nðv4Þ in 3 steps
by sequentially comparing vertex neighbors, whereas the bitmap computes it
using a bitwise and (&) operation.

Algorithm 1: Recursive MBE Algorithm.
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[27] can provide up to 6,912 cores, but only up to 80 GB of
memory.
CUDA programming model. The CUDA (Compute Unified
Device Architecture) programming model [20] provides a paral-
lel computing platform and a set of APIs that allows users to
efficiently use GPUs for general-purpose processing. It adopts
the SIMT (Single instruction, multiple threads) execution model
[28] to manage numerous threads. CUDA divides GPU kernels
into multiple grids, each consisting of multiple blocks. A block
includes multiple threads and is assigned to an SM during exe-
cution. The SM groups 32 parallel threads into a warp and exe-
cutes multiple warps concurrently. For each warp, all threads
execute one common instruction at a time. Thus, thousands of
GPU cores can efficiently work in parallel to achieve high
performance.
GPU usage guidelines. There are several notable guidelines for
improving the efficiency of GPU programs. First, dynamic
memory allocations on GPUs are expensive because many
threads may allocate new memory at the same time, causing
problems such as thread contention, synchronization overhead,
and memory fragmentation [17]. Hence, we should manage the
valuable GPU memory wisely and avoid frequent memory allo-
cations. Second, we should minimize the thread divergence, i.e.,
threads in a warp take different execution paths on the GPU.
Since GPU needs to serialize these paths, thread divergence can
severely degrade the execution performance [20]. Third, we
should pay more attention to the load balancing among multiple
cores on the GPU, because thousands of cores have to wait for
the slowest thread to run on a lightweight core, which is costly.

III. CHALLENGES OF MBE ON GPUS

A naive approach to performingMBE on the GPU is to divide
the whole enumeration tree into multiple subtrees and assign
each subtree to an individual SM for execution. For example,
for the enumeration tree in Fig. 2, we divide it into four subtrees,
then assign SM0 to conduct the execution for enumeration
nodes p and q, and assign SM1 to conduct the execution for
enumeration nodes r, s, t, and t1, and so on. However, this naive

approach faces the following three problems, thus making MBE
on GPUs challenging.

A. Large Memory Requirement

MBE algorithms usually allocate memory for new enumera-
tion nodes (lines #3-8 in Algorithm 1), which is expensive on
GPUs as mentioned in Section II-C. To achieve high perfor-
mance, a typical approach is to pre-allocate enough memory
space on GPUs to accommodate all enumeration nodes before
execution. In this case, each enumeration node requires OðjLj þ
jRj þ jCjÞ memory bounded by OðDðVÞ þD2ðVÞÞ, and each
subtree activates at most DðVÞ nodes at the same time for back-
tracking. Thus, the total amount of memory space that needs to
be pre-allocated for each subtree traversal procedure is DðVÞ �
ðDðVÞ þD2ðVÞÞ � sizeof(vertex). For example, when using the
NVIDIA A100 GPU with 40 GB memory to perform MBE on a
real-world bipartite graph BookCrossing [29], the memory
requirement for each subtree traversal procedure is 13,601�
ð13,601þ 53,915Þ � sizeof(int) B ¼ 3.67GB. We need more
than 108� 3:67 GB ¼ 397GB memory to fully utilize the 108
SMs, which exceeds the maximum memory space on the GPU
(i.e., 40 GB), thus facing a severe memory shortage.

B. Massive Thread Divergence

As mentioned in Section II-C, thread divergence can signifi-
cantly degrade thread performance on GPUs. In the case of
MBE on GPUs, thread divergence mainly occurs when irregu-
larly accessing neighborhoods of vertices on adjacency lists.
Recent MBE algorithms typically represent bipartite graphs
using adjacency lists due to their memory efficiency, as dis-
cussed in Section II-B. However, in this scenario, threads within
the same warp may access neighborhoods of different vertices,
and each neighborhood may contain a different number of verti-
ces. This leads to each thread accessing different memory areas
and executing different control flows. Therefore, it’s crucial to
develop a GPU-friendly approach to ensure regularized neigh-
borhood accesses for each thread.

C. Load Imbalance

The parallel MBE algorithm is likely to generate severe
imbalanced workloads on GPUs for two main reasons. First, the
running time for processing each enumeration node in the enu-
meration tree varies greatly since nodes contain various numbers
of candidate vertices. Second, the number of nodes in subtrees
differs significantly because different maximal bicliques ðL,RÞ
contain various numbers of vertices in R. The enumeration tree
grows as R increases as shown in Algorithm 1. As a result, most
cores in the GPU will spend a large portion of time waiting for
the processing of the largest enumeration tree, which aggravates
the load imbalance. Related graph pattern mining algorithm
G2Miner [19] always assigns each enumeration tree to a warp in
the GPU. However, Fig. 5 shows that if we assign each enumer-
ation tree to a warp based on our new algorithm GMBEþ, over
74% of SMs (i.e., 80 SMs / 108 SMs) waste 80% of running
time (i.e., 217s / 270s) waiting for the slowest one on the

Fig. 4. GPU architecture.
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BookCrossing dataset. It is necessary to balance workloads for
MBE in a finer granularity.

IV. DESIGN OF GMBE+

We design a GPU-based MBE algorithm (GMBEþ) with
three novel techniques. (1) We develop an iterative MBE algo-
rithm to replace the original recursive approach. It reduces
memory usage by reusing the enumeration nodes and conducts
node pruning based on local neighborhood sizes. (2) It enables
bitmap-based set intersections to minimize thread divergence.
And (3) it supports load-aware task scheduling to balance
workloads among threads in warps and blocks. We propose a
warp-wide intersect-path-based set union approach to aid in
load balancing. We describe them in detail and analyze
GMBEþ in depth.

A. Iteration With Node Reuse

1) Iterative MBE Algorithm With Node Reuse: To reduce
memory usage, we propose an iterative MBE algorithm with
node reuse. The key idea is that we can reuse a node x to repre-
sent its child nodes with additional metadata stored in the node
x. By doing this, we save the memory space allocated for the
child nodes of x. We can efficiently support node reuse because
during enumeration the L[R[C of the child nodes of x is
always a subset of the L[R[C of its parent node x. For
instance, vertices fu2,v1, v2,v3,v4g in child node q ðfu2g,fv1,
v2, v3,v4g,;Þ is the subset of vertices fu1,u2, v1,v2,v3, v4g in its
parent node p ðfu1,u2g,fv1, v2,v3g,fv4gÞ as shown in Fig. 2.
We detail this iterative algorithm in Algorithm 2.

Specifically, instead of dynamically creating and freeing
nodes for recursions in Algorithm 1, we replace recursions
(line #11 in Algorithm 1) with iterations (lines #2-5, 7, 16 in
Algorithm 2) and explicitly manage nodes with a stack-like
structure node_buf. The node_buf structure and its update pro-
cess can refer to Fig. 6. A node_buf consists of a root node
ðL�,R�,C�Þ, the attribute depth of each vertex in L� [R� [C�,
and the traversed vertices from the root node to the current
node. The depth of each vertex is updated according to the depth
of the current node (i.e., the number of ancestor nodes of the
current node). We can apply the node reuse strategy on node_
buf by actively updating the depth field, and backtrack to
ancestor nodes using the traversed vertices field. In this way,
GMBEþ can derive all nodes in a fixed memory region during
iteration, minimizing the need for dynamic allocation in GPUs.
To minimize overhead, at the start and end of each node

computation, we batch-check and update the ‘depth’ attribute
with a complexity of OðjLj þ jRj þ jCjÞ, since each vertex is
accessed once. This cost is negligible compared to the OðjLj �
ðjRj þ jCjÞÞ complexity, which arises from computing the inter-
sections between L and the neighbors of vertices in R and C.
Next, we illustrate the key functions designed for node reuse.
� init_and_push(ðL�,R�,C�Þ): this function is used for creat-

ing and initializing a node_buf using the root node ðL�,R�,
C�Þ of a subtree (line #2 in Algorithm 2). The node_buf
stores all vertices in L� [R� [C� and actively tracks the
depth for each vertex. We initialize the depth for vertices in
L� [R� to 0 and the depth for vertices in C� to1.

� push(ðL0,R0,C0Þ): we use this function to reuse the node_
buf of a parent node to generate a child node (line #16 in
Algorithm 2). When we push a new node ðL0,R0,C0Þ at

Fig. 5. Load imbalance for the MBE problem. 80 SMs waste over 217 seconds
waiting for the slowest one on BookCrossing if we assign each enumeration tree
to a warp based on our new algorithm GMBEþ as shown in Section VI-C.

Algorithm 2: Iterative MBE Algorithm.

Fig. 6. Illustration of GMBEþ with pruning using local neighborhood size.
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depth D, we first update the depths of vertices in L� to D if
they are also in L0, and then update the depths of vertices in
C� to D if they are also in R0 and their current depths are
1. Therefore, the new ðL0,R0,C0Þ can be found in the origi-
nal ðL�,R�,C�Þ by the depth field, as L0 contains all vertices
in L� whose depth is equal to D, and R0 contains all vertices
in R� [C� whose depth is not greater than D, and C0 con-
tains all vertices in C� whose depth is 1. Finally, we
append the traversed vertices with the chosen vertex v0.

� pop(): we use this function to get the current node
ðL,R,CÞ and then backtrack to its parent node using
node_buf (line #4 in Algorithm 2). When we pop a node
ðL,R,CÞ at depth D, we first remove the latest traversed
vertex v0 in node_buf. Then, we update the depth for ver-
tices in L to D− 1 and update the depth for vertices in C
with depth D to 1.

Compared to the original node structure which only tracks the
ðL,R,CÞ, our proposed node_buf tracks more information with
more memory consumption for a single node, which is bounded
by 3�DðVÞ þ 2�D2ðVÞ. Whereas, a single node_buf is ade-
quate to be reused for all enumeration nodes for running a
subtree traversal procedure shown in Algorithm 2, which signifi-
cantly reduces the memory requirement and enables running
thousands of MBE procedures on GPUs in parallel concurrently.
For instance, an A100 GPU of 40 GB memory is adequate to
run over 10k of subtree traversal procedures on the BookCross-
ing dataset [29] because each procedure requires only ð3�
13,601þ 2� 53,915Þ� sizeof(int) B ¼ 595 KB. Compared to
the naive implementation discussed in Section III-A which
requires 13,601� ð13,601þ 53,915Þ� sizeof(int) B ¼ 3.67
GB, this node reuse approach saves 6,178� memory space for
running each MBE procedure on BookCrossing.

2) Pruning Using Local Neighborhood Size: To enhance the
efficiency, we propose a GPU-friendly pruning approach. Spe-
cifically, given a node ðL,R,CÞ, we define local neighbors of a
vertex v 2 V as NLðvÞ, where NLðvÞ is equal to NðvÞ \ L. We
further define local neighborhood size for a vertex v as the num-
ber of local neighbors of v. We can obtain local neighborhood
sizes for candidate vertices without additional overhead because
they are intermediate results for computing the candidate set
(line #12 in Algorithm 2).

An interesting observation is that we can safely prune nodes
generated by vertices whose local neighborhood size does not
change after traversing any of its child nodes. More formally,
suppose node p has traversed vertex vq to generate node q and is
now traversing vertex vx to generate node x. If the local neigh-
borhood sizes of vertex vx are identical in nodes p and q,
denoted as jLp \NðvxÞj ¼ jLq \NðvxÞj ¼ jNðvqÞ \ Lp \NðvxÞj,
then we conclude that Lx ¼ Lp \NðvxÞ � NðvqÞ and vq belongs
to CðLxÞ. As vq has been traversed and cannot be added to Rx,
we can confidently prune node x since it will fail the node
checking at line #14 in Algorithm 2. Thus, we further optimize
Algorithm 2 by maintaining local neighborhood sizes for all
candidate vertices in node_buf. We can then prune useless can-
didates if their local neighborhood sizes do not change after pop-
ping a traversed child node. We use an example to demonstrate
the application of this pruning approach.

Example 4.1: Fig. 6 depicts that GMBEþ iteratively enu-
merates all maximal bicliques in the subtree rooted by node r
in Fig. 2 with the fixed memory in node_buf. Specifically,
GMBEþ initializes node_buf using node r, where L� ¼ Lr,
R� ¼ Rr, and C� ¼ Cr. Node_buf then initializes the depth for
vertices in L� [R� to 0 and initializes the depth for vertices
in C� to 1. Node_buf initializes the local neighborhood size
(i.e., jNLj) for vertices in C� according to the definition. For
instance, jNLðv3Þj at node r is jNðv3Þ \ Lrj ¼ jfu1,u2,u4g\
fu1,u2,u3,u4gj ¼ 3.

Next, we generate node s by traversing v3. We know Ls ¼
Lr \Nðv3Þ ¼ fu1,u2,u4g. The depth of node s is 1, node_buf
updates the depth for u1,u2,u4, and v3 to 1 because they belong
to Ls [Rs. The depth for other vertices (i.e., u3 and v4) in L�

and R� remains 0. The depth for v4 in Cs remains as1.
We then update the local neighborhood size for v3 and v4

using Ls. We know jNLðv3Þj ¼ jNðv3Þ \ Lsj ¼ jfu1,u2,u4g \
fu1,u2,u4gj ¼ 3. jNLðv4Þj ¼ jNðv4Þ \ Lsj ¼ jfu2,u4,u5g \
fu1,u2,u4gj ¼ 2. We can generate other nodes similarly.

After processing the subtree rooted by node s, node_buf
pops node s and recovers the parent node r. node_buf resets
depth for u1,u2, and u4 to 0 and resets the depth for v3 to 1
because their original depth is the same as the depth of node s.
GMBEþ proactively prunes node t1 by removing useless can-
didate vertex v4 at node r because the local neighborhood size
(i.e., 2) for v4 does not change after popping node s.

B. Bitmap-Based Set Intersections

To minimize thread divergence, we introduce a bitmap-based
set intersection approach. The key idea is that we directly store
local neighborhoods of vertices using bitmaps when the current
node holds only a small number of vertices. Instead of allocating
memory for these neighborhoods, we carefully reuse memory in
node_buf. This approach supports set intersections using
bitwise operations between same-sized bitmaps, effectively
reducing thread divergence. Consequently, different threads
consistently follow the same control flow when performing set
intersections.

Specifically, when the size of L in the current node ðL,R,CÞ
is below our defined threshold s, we replace the local neighbor-
hood size field in node_buf with multiple |L|-bit bitmaps and
reuse these bitmaps for descendant nodes. Each bitmap illus-
trates the connection between a vertex vc in C� and all vertices
in L, representing the local neighborhood of vc. By storing these
neighborhoods in bitmaps, we enable fast set intersections
through bitwise AND (&) operations in lines #8, 10, 12 in Algo-
rithm 2, with each set intersection taking OðsÞ time. We practi-
cally set the threshold s to 32 so that each set intersection
requires only a single bitwise AND between two 32-bit integers
in Oð1Þ time (See Section VI-D). Additionally, we proactively
prune nodes generated by vertices whose local neighborhoods,
in bitmap format, remain unchanged after traversing any child
nodes, as demonstrated in Section IV-A2.

Example 4.2: Fig. 7 shows how GMBEþ employs bitmap-
based set intersections. In comparison to Fig. 6, we only
replace the local neighborhood size field in node_buf with the
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bitmap field. Each bitmap represents the local neighborhood
of a vertex. For instance, in node t, the local neighborhood of
v3 is determined by Lt \Nðv3Þ ¼ fu2,u4g \ fu1,u2,u4g ¼ fu2,
u4g, corresponding to the second and fourth vertices in
L� ¼ fu1,u2,u3,u4g. Thus, the bitmap for v3 in node t is 0101,
and we can derive other bitmaps similarly. Besides, node r
can proactively prune node t1 as the bitmaps for v4 remain
unchanged after node s is accessed.

C. Load-Aware Task Scheduling

1) Task-Centric Scheme: For exploring the massive parallel-
ism of GPUs, a naive approach is assigning a task to manage
each enumeration tree whose root node is vs (vs 2 V). We show
the naive approach in Algorithm 3. Then we map these tasks to
warps [19] or blocks [30] in GPUs. We denote these schemes as
the warp-centric scheme and the block-centric scheme, respec-
tively. Our research shows that the naive approach is insufficient
to balance the loads among GPU SMs for the MBE problem
because the parallel GPU tasks created at line #8 in Algorithm 3
are highly unbalanced and their loads are determined by the var-
ious sizes of the enumeration trees assigned to the tasks. Specifi-
cally, the slowest tasks running in a warp or a block frequently
block other tasks, resulting in up to 97.8% performance

degradation on the EuAll dataset. More results can be found in
Fig. 13 in Section VI-B.

To address this issue, we propose a load-aware task-centric
scheme for MBE using the persistent thread (PT) [31] program-
ming model for GPUs. Specifically, we create thread groups, each
of which consists of multiple warps. Each thread group is mapped
to a GPU SM. We denote the number of warps on each SM as
WarpPerSM and will discuss its impact on system performance in
Section VI-D. We develop a GPU kernel to create load-aware
tasks. Any tasks of processing larger enumeration trees are divided
into smaller tasks recursively at runtime. The load-aware tasks are
then added to a global structure SM_task_queue for each SM.
When a task is finished, the software scheduler of PT dequeues a
task from SM_task_queue and executes iter_search() on its
corresponding SM.We denote it as the task-centric scheme.

The key question to answer is how to detect tasks having
heavier loads than others. We use the tree heights and the total
number of nodes in a tree. Specifically, the height of an enumer-
ation tree with the root node ðL,R,CÞ is minfjLj, jCjg. The num-
ber of nodes of the tree can be estimated as minfjLj, jCjg � jCj,
where |C| indicates the maximum number of child nodes for
each node in the enumeration tree. We empirically set two
thresholds including bound_height and bound_size. Only when
minfjLj, jCjg is larger than bound_height and minfjLj, jCjg �
jCj is larger than bound_size, we divide the task into multiple
subtasks to achieve better load balance.
Putting them together. Algorithm 4 describes GMBEþ, which
is a load-aware task-centric algorithm for GPUs. When
SM_task_queue is not empty, it obtains a node from the queue
(lines #3-4). If the size of the enumeration tree generated from
the node is within bounds (line #16), GMBEþ directly launches
a GPU task (line #27). If the size of the enumeration tree is
larger than the bounds, it enqueues the root node of sub-trees to
be enumerated (lines #17-25). These nodes will be processed
later when they are dequeued. If SM_task_queue is empty, it
will use processing_v to obtain the current vs that needs to be
processed (line #6). Then, it generates a node (L, R, C) (lines
#9-14) and launches its corresponding tree onto GPUs.

2) Warp-Wide IP-Based Set Union Approach: Compared to
Algorithm 1, Algorithm 4 necessitates the computation of 2-hop
neighbors of vertices (line #10), which can be done using
set unions since N2ðuÞ ¼ [v2NðuÞNðvÞ− fug. To accelerate set
unions, inspired by intersect-path(IP)-based set intersection on
GPUs [25], we introduce a warp-wide IP-based set union on
GPUs. The key idea is to give each thread its own assignment,
allowing us to use many threads at the same time to speed up
set unions.

Specifically, given two ordered sets A and B, we consider the
IP as a traversal of a 2D grid of size jAj � jBj. IP always starts at
the coordinate ð0, 0Þ. Suppose IP is at ðx,yÞ, IP can move to
ðxþ 1,yÞ (when A½x�< B½y�), ðx,yþ 1Þ (when A½x�> B½y�), or
ðxþ 1,yþ 1Þ (when A½x� ¼ B½y�) until IP reaches ðjAj, jBjÞ. IP is
a visual approach to parallelizing the computation. To parallel-
ize the set union operation, we assign each thread i to find an IP
segment independently. Subsequently, we merge all the results
generated by these IP segments to obtain the final result of
A[B. Each thread i checks all pairs of ðA½x�,B½y�Þ such that xþ

Fig. 7. Illustration of GMBEþ with bitmap-based set intersections.

Algorithm 3: Naive task scheduling on GPUs.
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y¼ i using binary search. After that, thread i can output B[y]
(when the IP segment is horizontal) or A[x] (when the IP seg-
ment is vertical or the upper half of a diagonal, i.e., A½x� ¼ B½y�).
Thread i does not output when the IP segment is the bottom half
of a diagonal, i.e., A½x− 1� ¼ B½y�. Further elaboration is pro-
vided in Example 4.3. In view of GPU architectures, we use
shared memory and warp-level primitives to implement warp-
wide IP-based set unions on GPUs. We traverse IP using a w�
w sliding window in parallel. In each window, we always fetch
w consecutive elements from either array A or B into shared
memory to coalesce global memory. Then, each thread conducts
a binary search to find an IP segment using shared memory.
Threads in a warp synchronize partial results using __balloc_
sync and __popc primitives. Finally, the last thread (i.e., thread
#ðw− 1Þ) computes the position of the next sliding window and
broadcasts such position to all other threads in a warp using the
__shfl_sync primitive. We use an example to clarify our design.

Example 4.3: To begin with, we illustrate how to obtain
the IP for sets A and B. In Fig. 8, IP begins from the top left
corner at ð0, 0Þ. IP firstly moves to the right to ð0, 1Þ because
A½0�> B½0�. IP then moves diagonally to ð1, 2Þ because A½0� ¼

B½1�. After that IP moves downwards to ð2, 2Þ because A½1�<
B½2�. Continuing this processing, we can iteratively track IP
until IP reaches the bottom right corner at ð6, 6Þ.

Fig. 8 depicts the procedure of warp-wide IP-based set
union for sets A and B using three threads in a warp. At
step(1), thread i checks all pairs ðA½x�,B½y�Þ such that xþ y¼ i
using binary search. Thread #0 checks ðA½0�,B½0�Þ and knows
that A½0�> B½0�. Then thread #0 knows that the IP segment
is horizontal and outputs B½0� ¼ v1. Thread #1 first checks
ðA½0�,B½1�Þ and knows that A½0� ¼ B½1�. Then thread #1 knows
that the IP segment is the upper half of a diagonal and outputs
A½0� ¼ v2. Based on the binary search, thread #2 first checks
ðA½1�,B½1�Þ and knows that A½1�> B½1�. Then thread #2 checks
ðA½0�,B½2�Þ and knows that A½0�< B½2�. After checking ðA½1�,
B½1�Þ and ðA½0�,B½2�Þ, thread #2 knows that the IP segment is
the bottom half of a diagonal because two minimum vertices of
two pairs are the same (i.e., A½0� ¼ B½1�). Finally, the last thread
(i.e., thread #2) keeps two maximum indices of two last-checked
pairs(i.e., A[1], B[2]), selects their indices ði:e:, ð1, 2ÞÞ as the
position of the next sliding window, and broadcasts such position
to other threads. Continuing this processing, the procedure will
finally obtain the results of the set union for sets A and B.

Lemma 4.1: Given a warp with w threads, the warp-wide

IP-based set union for sets A and B runs in O ðjAjþjBjÞlogðwÞ
w

� �
.

Proof: In each sliding window, w threads execute simulta-
neously. Using the binary search, each thread takes OðlogðwÞÞ.
The number of sliding windows is equal to jAjþjBj

w because each
sliding window processes w independent assignments indepen-
dently and the number of such assignments is up to jAj þ jBj.
Thus, such approach runs inO ðjAjþjBjÞlogðwÞ

w

� �
. w

Our efficient set union method is significant as it provides
a more effective GPU-based solution for computing 2-hop

Fig. 8. Warp-wide IP-based set union approach. When computing A[B with
three threads in a warp, this approach traverses IP via four 3� 3 sliding windows
as shown in Fig. 8(1)-(4). Each thread independently finds an IP segment in a
region of different colors, producing partial results in each window.

Algorithm 4: Load-aware scheduling in GMBEþ.
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neighbors [7], [9], [16], component merging [32], and other
graph mining problems [33], [34].

D. Algorithm Analysis

Time Complexity. Given a bipartite graph G¼ ðU,V ,EÞ with
B maximal bicliques, GMBEþ runs in O jEjD2ðVÞB

p

� �
, where p is

the parallel ratio. Processing each enumeration node takes
OðjEjÞ, as both node generation and checking only require
accessing each edge in E once. The number of nodes is bounded
by OðD2ðVÞBÞ, as each node with a maximal biclique has at
most D2ðVÞ child nodes. The parallel ratio p is the product of
the number of GPUs, the number of SMs per GPU, and the
number of warps per SM.

Recent MBE algorithms express time complexity differently.
OOMBEA [9] takes OðjEj1ðVÞBÞ, where 1ðVÞ is the unilateral
order defined by OOMBEA. MBET [10] takes OðBD3logðD2ÞÞ.
cuMBE [16] takes at least O jUjjVjD2ðVÞB

p

� �
by parallelizing MBEA

[4] p times. While comparing time complexities is not trivial and
the upper bound cannot fully capture the real performance,
GMBEþ is much more scalable with a large parallel ratio p.
Space Complexity. GMBEþ requires OðpðDðVÞ þD2ðVÞÞþ
jGjÞ space, as it concurrently runs p independent tasks, each
needing OðDðVÞ þD2ðVÞÞ space, as detailed in Section IV-A.
In contrast, OOMBEA uses Oð1ðVÞjUj þ jGjÞ, MBET needs
OðRðjVðBÞjÞ þ jGjÞ, and cuMBE requires OðpðjUj þ jVjÞ þ
jGjÞ space. Since DðVÞ þD2ðVÞ is much smaller than 1ðVÞjUj,
RðjVðBÞjÞ, or jUj þ jVj, GMBEþ benefits from node reuse,
enabling superior performance with a large parallel ratio p.
Discussion. The high performance of GMBEþ is driven by its
significant parallelism. OOMBEA, MBET, and cuMBE require
massive storage for intermediate results, such as batch pivoting,
prefix trees, and the full vertex set. These large storage demands
limit the number of parallel computation units that can be used.
Additionally, graph computation irregularities [18] cause thread
divergence, which is exacerbated by OOMBEA’s 2-hop DFS,
MBET’s prefix tree maintenance, and cuMBE’s frequent swap
operations. Our techniques, including neighborhood size-based
pruning, bitmap-based set intersection, and warp-wide IP-based
Set Union, effectively mitigate these issues.

V. IMPLEMENTATION ISSUES

Pre-processing. We represent the input bipartite graph G in the
compressed sparse row (CSR) format. We first load graph G into
CPU memory and quickly extract important characteristics from
G, such as |U|, |V|, |E|, DðVÞ, and D2ðVÞ. Since U and V are sym-
metrical in the bipartite graph, we always select the vertex set
with fewer vertices as V similar to [9]. We then pre-process G by
sorting all vertices in V using the increasing order of their degrees
[3], [4] and sorting neighbor lists of each vertex using increasing
order of vertex IDs similar to most of the related works [19], [30].
We transfer the whole bipartite graph G to the global memory of
the GPU and enumerate all maximal bicliques on GPUs without
transferring any extra data from hosts.
Lock-free task queue. To reduce the synchronization overhead,
we manage the task queue in a lock-free manner using the

atomicCAS primitive [26] in CUDA. We apply a two-level task
queuing mechanism to further improve load balance. Specifi-
cally, we devise a local task queue for each block so that all
warps in the block can balance workloads by accessing the local
task queue. In addition, we implement a global task queue to
balance workloads between different blocks. Each block only
allows one proxy warp to manage tasks between the local task
queue and the global task queue. We implement the local task
queues using the shared memory and implement the global
task queue in the global memory because atomic operations on
shared memory are faster than atomic operations on the global
memory.
MBE on multiple GPUs. A high-performance machine may
consist of multiple GPUs to accelerate application execution
performance. To support this scenario, we extend GMBEþ
algorithm to multi-GPU machines. The main idea is sharing
the global variable processing_v in Algorithm 4 on all GPU
devices and replacing the atomicInc primitive in line #6 with
atomicInc_system [20]. Consequently, the MBE problem is
divided into multiple independent sub-problems, and each GPU
independently processes these sub-problems. The overall run-
ning time is determined by the GPU with the longest execution
time. Fig. 18 shows that GMBEþ is efficient on multiple GPUs
because each warp on multiple GPUs can automatically balance
workloads using atomic primitives with little synchronization
overhead.

VI. EVALUATION

In this section, we conduct experiments to evaluate the perfor-
mance of GMBEþ and the proposed techniques.

A. Experimental Setup

Platform. By default, we evaluate our GPU implementations on
an NVIDIA A100 GPU [27] with 108 streaming multiproces-
sors (SMs) and 40 GB of global memory. For comparison, we
run the other CPU-based MBE algorithms on a Linux server
with 96 Xeon(R) Gold 5318Y CPU @ 2.10GHz CPU cores.
The operating system is Linux kernel-5.4.0.
Datasets. We use 13 real-world datasets, including a large one
with 19 billion maximal bicliques, to justify the performance of
GMBEþ as shown in Table I. It’s worth noting that for datasets
that allow multiple edges between two vertices, such as Movie-
Lens (Mti), we only retain one unique edge between each vertex
pair for MBE analysis. The number of these unique edges is
denoted by |E|. Since U and V are symmetrical in the bipartite
graph, we always denote the vertex set with fewer vertices as V,
i.e., jUj> jVj. We obtain datasets Amazon and EuAll from the
SNAP repository [35] and the other datasets from the KONECT
repository [29]. Since the MBE time mainly depends on the
number of maximal bicliques of the dataset, we sort all datasets
in ascending order of their maximal biclique count. Datasets
with more than two million maximal bicliques are referred to as
large datasets in subsequent sections.
Compared algorithms. We compare GMBEþ to the CPU-
oriented MBE algorithms, including the recent serial versions,
i.e., OOMBEA [9] and MBET [10], the cutting-edge parallel
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MBE algorithm, i.e., ParMBE [7], and the GPU-oriented MBE
algorithms, i.e., GMBE [15] (the conference version) and cuMBE
[16]. For fair comparisons, we obtain well-optimized codes of all
competitors from the authors and run them on the same platform.
We run ParMBE with 96 threads because our machine contains
96 CPU cores.
Measures. We measure the running time of each algorithm
excluding the time spent reading the graph from the disk. With-
out specification, GMBEþ leverages all proposed techniques in
Section IV. By default, GMBEþ sets threshold s for bitmaps to
32, sets the thresholds for bound_height and bound_size to 20
and 1,500 respectively, sets WarpPerSM to 16, and sorts V in
ascending order based on the vertex degree before the enumer-
ation. We also implement other variants to further evaluate
proposed techniques. We will detail those variants in the corre-
sponding experiments. The reported running time is the aver-
age of five trials per configuration.

B. Overall Evaluation

Evaluation on general datasets. Fig. 9 compares the running
time of GMBEþ to state-of-the-art MBE algorithms on real-
world datasets. The experimental results show that GMBEþ is
1.2� faster than GMBE on average and surpasses any other
next-best competitor by 1.5�–32.8� across all datasets, with an
average improvement of 9.0�. The only exception is the Stack-
Overflow dataset, where MBET’s prefix tree approach is highly
efficient due to its complex control flow. However, this com-
plexity exacerbates thread divergence on GPUs, making it diffi-
cult to integrate into GMBEþ. The Analysis of Variance
(ANOVA) further demonstrates that GMBEþ runs consistently
across all datasets, with variances below 0.1 in each of the five
repetitions, and running times vary significantly across datasets.

This is because GMBEþ efficiently uses GPU resources. Specifi-
cally, GMBEþ speeds up GMBE by 1.8� on the BookCrossing
dataset, thanks to its utilization of bitmap-based intersections and
advanced set unions. In addition, we conduct a performance anal-
ysis of GMBEþ using the NVIDIA Nsight Compute software
[36]. The profiling results indicate that the average warp execu-
tion efficiency is 64%, and the memory utilization is 12% across
all real-world datasets. These results can be attributed to the inher-
ent irregularity present in the MBE problem [18]. In our experi-
ments, a 24-core CPU consumes 165W, while an A100 GPU
consumes 300W. With an average performance improvement of
9.0�, the energy efficiency improves by 9.0� 165 / 300¼ 5.0�.
Although GPUs are more expensive than CPUs, GMBEþ utilizes
the GPU’s parallel scalability to meet high-performance demands,
a capability that CPUs may not provide.
Evaluation on the large dataset. We further evaluate GMBEþ
on the large TVTropes dataset, which contains 19 billion
maximal bicliques. Fig. 11 shows the change in the number of
bicliques over time, with the red line representing the total num-
ber in the dataset. We present results for GMBEþ and MBETM,
the space-optimized version of MBET, as other competitors fail
to generate 10% of bicliques within 48 hours. GMBEþ produ-
ces 98% of the maximal bicliques in 18 hours, while MBETM
only produces 58% in 48 hours, thanks to GMBEþ’s efficient
parallelization.

C. Effect of Optimizations

To verify the effect of proposed optimizations, we compare
the runtime of GMBEþ with various variants, each disabling a
single optimization, as depicted in Fig. 10.
Effect of the node reuse approach. To study the impact of the
node reuse approach in Section IV-A, we design a variant

Fig. 9. Overall evaluation on general datasets (log scaled).

TABLE I
DATASET STATISTICS

Datasets |U| |V| |E| DðUÞ D2ðUÞ DðVÞ D2ðVÞ Max. bicliques
MovieLens (Mti) 16,528 7,601 71,154 640 5,817 146 3,217 140,266
Amazon (WA) 265,934 264,148 925,873 168 635 546 903 461,274
Teams (TM) 901,130 34,461 1,366,466 17 18,516 2,671 2,838 517,943

ActorMovies (AM) 383,640 127,823 1,470,404 646 3,956 294 7,798 1,075,444
Wikipedia (WC) 1,853,493 182,947 3,795,796 54 47,190 11,593 4,629 1,677,522
YouTube (YG) 94,238 30,087 293,360 1,035 37,513 7,591 7,356 1,826,587

StackOverflow (SO) 545,195 96,680 1,301,942 4,917 146,089 6,119 31,636 3,320,824
DBLP (Pa) 5,624,219 1,953,085 12,282,059 287 7,519 1,386 2,119 4,899,032
IMDB (IM) 896,302 303,617 3,782,463 1,590 15,451 1,334 15,233 5,160,061
EuAll (EE) 225,409 74,661 420,046 930 135,045 7,631 23,844 12,306,755

BookCrossing (BX) 340,523 105,278 1,149,739 2,502 151,645 13,601 53,915 54,458,953
Github (GH) 120,867 59,519 440,237 3,675 29,649 884 15,994 55,346,398

TVTropes (DBT) 87,678 64,415 3,232,134 12,400 37,493 6,507 47,459 19,636,996,096
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GMBEþW/O_REUSE that pre-allocates memory on GPUs
according to Section III-A. We estimate the memory require-
ment allocated by the cudaMalloc primitive for GMBEþ with
and without the node reuse approach. This memory requirement
includes the pre-allocated memory for the input bipartite graph
and the runtime subtrees. Fig. 12 shows that the node reuse
approach significantly reduces the memory requirement by
49�–4,819� on all testing datasets while GMBEþW/O_REUSE
is impractical because its memory requirement exceeds the
memory capacity of the A100 GPU on multiple datasets.
Effect of the pruning approach. To evaluate the local-
neighborhood-size-based pruning approach in Section IV-A2, we
design a variant GMBEþW/O_PRUNE that disables the pruning
function of GMBEþ. Fig. 10 shows that GMBEþ constantly out-
performs GMBEþW/O_PRUNE, because the pruning approach
prunes enumeration space for MBE at runtime. To further explore
the pruning efficiency, we use a to represent the number of maxi-
mal bicliques and d to represent the number of non-maximal
bicliques removed by node checking (line #14 in Algorithm 2).
Since a remains constant for each dataset, we use the ratio d=a to
indicate the pruning efficiency for both approaches in Table II.
This analysis reveals that the proposed pruning approach can
avoid 48.7%-92.8% non-maximal biclique checks among all test-
ing datasets. This pruning technique plays a crucial role, particu-
larly for larger datasets where the enumeration space grows with
an increasing number of maximal bicliques. Consequently, it sig-
nificantly reduces the running time on Github from 475 seconds
to 80 seconds.

Effect of the bitmap-based set intersection. To study the
impact of the bitmap-based set intersection approach in Sec-
tion IV-B, we design a variant GMBEþW/O_BITMAP, which
disables this bitmap-based optimization in GMBEþ. Fig. 10
shows that GMBEþ outperforms GMBEþW/O_BITMAP in
most cases, achieving a performance improvement of 1.80�
and 1.58� on the BookCrossing and Github datasets, respec-
tively. This improvement is attributed to the efficient set inter-
sections facilitated by bitmaps during enumeration. However,
GMBEþ exhibits slightly slower performance compared to
GMBEþW/O_BITMAP on the MovieLens, Amazon, StackO-
verflow, and IMDB datasets, primarily due to the overhead asso-
ciated with creating multiple bitmaps, which offsets the benefits
of bitmap-based set intersection.
Effect of the task scheduling approach. To study the effect of
the load-aware task-centric scheme in Section IV-C, we design
two variants GMBEþWARP and GMBEþBLOCK that apply
warp-centric and block-centric schemes respectively. Fig. 10
shows that GMBEþ surpasses both variants, with a 4.88�
improvement over GMBEþWARP and 2.07� over GMBEþ
BLOCK. Notably, on the EuAll dataset, GMBEþ is 31.5� and
8� faster than GMBEþWARP and GMBEþBLOCK, respec-
tively. This superior performance of GMBEþ is due to its
dynamic task detection and workload rebalancing using lock-free
task queues. However, in some cases with balanced workloads,
like the Wikipedia dataset, GMBEþ lags behind GMBEþWARP
or GMBEþBLOCK since the task-centric scheme still needs to
rebalance workloads, incurring overhead even when not needed.

To further explore the load imbalance problem for MBE on
GPUs, we record the number of active SMs while running
GMBEþ, GMBEþWARP, and GMBEþBLOCK. Fig. 13
reports the comparison of runtime loads on SMs on the Book-
Crossing and EuAll datasets. Because of the imbalanced work-
loads, SMs with light workloads may finish early and wait for the
SM with the heaviest workload, which is costly. GMBEþWARP
gains the worst performance because the number of active SMs
decreases rapidly due to the load imbalance. GMBEþBLOCK

Fig. 11. Overall evaluation on the TVTropes dataset.

Fig. 10. Effect of optimizations, including pruning, bitmap-based set intersection, task scheduling, and set union approaches (log scaled).

Fig. 12. Effect of the node reuse approach (log scaled). The red line indicates
the GPU memory capacity of NVIDIA A100.

TABLE II
COMPARISON OF THE RATIO OF GENERATED NON-MAXIMAL BICLIQUES TO

MAXIMAL BICLIQUES BETWEEN GMBE+ AND GMBE+W/O_PRUNE

Datasets Mti WA TM AM WC YG
GMBEþ 9.04 0.734 1.63 12.9 0.71 2.11

GMBEþW/O_PRUNE 66.0 3.68 3.88 53.0 2.89 20.1

Datasets SO Pa IM EE BX GH

GMBEþ 89.4 0.362 15.5 4.04 3.40 11.1
GMBEþW/O_PRUNE 174 1.43 74.4 56.0 27.3 51.4
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obtains better performance than GMBEþWARP because
GMBEþBLOCK could spend more resources on each workload
than GMBEþWARP (i.e., a block vs. a warp) which reduces the
time waiting for the SM with the heaviest workload. However,
GMBEþBLOCK is insufficient because the workloads for the
MBE problem could be severely imbalanced. For instance, over
80% of SMs (86 SMs / 108 SMs) waste over 85% of running
time (47 seconds / 55 seconds) waiting for the slowest SM on
EuALL. GMBEþ always achieves the best performance because
GMBEþ works in the finest granularity and each SM finishes its
work roughly at the same time. GMBEþ completes even before
the number of active SMs of GMBEþBLOCK starts to decrease
on BookCrossing because GMBEþ activates all warps in each
SM while GMBEþBLOCK may use only use a small portion of
warps in each SM at runtime.
Effect of the set union approach. To study the effect of the
intersect-path-based set union approach in Section IV-C, we
design a variant GMBEþW/O_UNION that executes the set
union operation using only one thread in a warp. Fig. 10 shows
that GMBEþ constantly beats GMBEþW/O_UNION since our
proposed approach fully utilizes parallel computational resour-
ces on GPUs. As a result, GMBEþ speeds up GMBEþW/
O_UNION by 6.6� on YouTube.

D. Sensitivity Analysis

Impact of threshold s for bitmap-based set intersections. To
determine the threshold s in the bitmap-based set intersection
approach in Section IV-B. We assess the performance of
GMBEþ with s values of 8, 16, 32, 64, and 128, respectively.
Fig. 14 shows that GMBEþ achieves peak performance when s
is set to 32. Thus, GMBEþ sets s to 32.

Impact of thresholds for task scheduling. To explore the effi-
cient configuration for thresholds bound_height and bound_
size in Section IV-C, we design multiple variants GMBEþ
ðm,nÞ, where m and n represent bound_height and bound_size
respectively. We always set m larger than n2 because jLj � jCj
is always greater or equal to ðminfjLj,jCjgÞ2. The selection of

thresholds is a trade-off between the parallel granularity and
synchronization overhead. We require smaller thresholds to bal-
ance workloads in finer granularity. However, the thresholds
should not be too small. Otherwise, we have to manage more
tasks with the huge synchronization overhead. Fig. 15 shows
that the variant GMBEþ(20, 1500) is empirically better than the
others in most cases. Thus, GMBEþ applies this configuration
by default.
Impact of the number of warps in each SM. To determine the
parameter WarpPerSM in the PT model in Section IV-C, we
design variants that set WarpPerSM to 8, 16, 24, and 32, respec-
tively. The selection of WarpPerSM is a trade-off between paral-
lelism and the resources for each warp. Intuitively, we expect
WarpPerSM to be larger so that we can run more MBE tasks in
parallel. However, WarpPerSM should not be too large since the
computational resources (e.g., registers) in each SM are limited.
A larger WarpPerSM may decrease the performance of GMBEþ
because each warp will have fewer resources to run MBE tasks.
Fig. 16 shows that the variant GMBEþ(16) outperforms the
other variants by up to 2.8� on most large datasets, such
as BookCrossing, IMDB, DBLP, and EuAll. In addition,
GMBEþ(16) is 0.66� slower than GMBEþ(24) on Github due
to its extensive enumeration space that requires more warps to
enumerate maximal bicliques in parallel. Considering its effi-
ciency in most cases, GMBEþ sets WarpPerSM to 16 by default.
Adaptability on different GPUs. To explore the adaptability of
GMBEþ, we evaluate GMBEþ on an NVIDIA A100 GPU
(108 SMs, 40 GB memory), a V100 GPU (80 SMs, 32 GB
memory) [37], a 2080Ti GPU (68 SMs, 11 GB memory), and a
4090 GPU (128 SMs, 24 GB memory) [38], respectively.

Fig. 13. Comparison of runtime loads on SMs among GMBEþ,
GMBEþWARP, and GMBEþBLOCK.

Fig. 14. Impact of threshold s for bitmap-based set intersections (log scaled).

Fig. 15. Impact of thresholds bound_height and bound_size for load-aware
task scheduling (log scaled).

Fig. 16. Impact of the parameter WarpPerSM (log scaled).

PAN et al.: ADVANCED MAXIMAL BICLIQUE ENUMERATION ON GPUS USING BITMAPS 2563

Authorized licensed use limited to: Zhejiang Lab. Downloaded on July 27,2025 at 14:48:35 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 17 shows that GMBEþ is adaptive on all four GPUs.
GMBE þ 4090 is faster than the others because a 4090 GPU
contains more SMs than other GPUs.
Scalability on multi-GPU. To explore the scalability of
GMBEþ on multi-GPU, we conduct experiments on a machine
with 8 NVIDIA A30 GPUs [39]. To optimize GMBEþ for
multi-GPU configurations, we divide the problem into multiple
independent sub-problems, and the total execution time is deter-
mined by the longest-running sub-problem. Fig. 18 shows that
GMBEþ scales out linearly on Github and BookCrossing data-
sets as we increase the number of GPUs because each GPU fin-
ishes its execution almost at the same time. With the help of
multiple GPUs, GMBEþ can enumerate over 55 million maxi-
mal bicliques on the Github dataset within 22 seconds. It
achieves speedups of 110� and 1.41� respectively compared to
the state-of-the-art CPU-based parallel MBE algorithm ParMBE
on a 96-core CPU machine (i.e., 2,411 seconds) and the state-
of-the-art GPU-based MBE algorithm GMBE (i.e., 31 seconds).

VII. RELATED WORK

Maximal Biclique Enumeration on CPUs. The most efficient
class of MBE algorithms [3], [4], [6], [7], [8], [9], [10], [40] is
based on backtracking with recursions on CPUs. Most of the
research efforts [3], [4], [8], [9], [10] applied various sorting,
pruning techniques, and the prefix tree on a serial MBE algo-
rithm to reduce the search space for the MBE problem. Some
other works [6], [7] improved the efficiency of MBE by

parallelizing MBE algorithms on multicore CPUs or distributed
architectures. However, the existing MBE algorithms do not
work on GPUs due to the challenges in Section III, and thus
achieve limited performance with limited computational resour-
ces on CPUs.
Related Problems on GPUs. Although GPUs are widely used
to accelerate related graph algorithms, such as maximal clique
enumeration (MCE) [21], [41], [42] and graph pattern mining
(GPM) [19], [30], [43], it is still challenging for MBE on GPUs.
Specifically, MCE on GPUs suffers from similar performance
issues as MBE described in Section III. As a result, the latest
GPU-based MCE algorithm GBK [21] only obtained a compa-
rable performance to a single-thread sequence algorithm on the
CPU. Because the enumerated subgraphs (i.e., maximal bicli-
ques) for MBE generally contain more vertices than those for
other GPM problems, optimizations in the latest GPU-based
GPM framework G2Miner [19] cannot address the memory issue
and severe load imbalance for MBE on GPUs. Recent GPU-
based MBE algorithms [15, 16] are suboptimal as they suffer
from thread divergence when dealing with vertex neighbors of
different sizes and fail to balance extensive workloads.

VIII. CONCLUSION

In this paper, we present GMBEþ, an advanced GPU solu-
tion for the MBE problem. MBE on GPUs faces serious chal-
lenges, including large memory requirement, thread divergence,
and severe load imbalance. To address these problems, we
design a node-reuse approach to reduce GPU memory usage
with advanced node pruning, a bitmap-based set intersection
approach to minimize thread divergence, and a load-aware task
scheduling framework to achieve load balance among threads
within GPU warps facilitated by a novel set union approach. We
conduct comprehensive evaluations using 13 real-world datasets
and three different GPUs. Our experimental results show that
GMBEþ outperforms the state-of-the-art GPU-based parallel
MBE algorithm GMBE by 1.2� on average.

DATA AVAILABILITY STATEMENT

The code of GMBEþ is available at https://github.com/
fhxu00/MBE-GPU.
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