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Abstract—Due to the diversity of edge devices (EDs) and
applications, edge systems are heterogeneous and have been
applied in artificial intelligence fields, such as smart factories
and intelligent transportation, which is called heterogeneous
edge intelligence. Many studies employ computation offloading to
transfer processing data from resource-scarce EDs to resource-
rich edge servers. These studies primarily focus on the overall
resource consumption of homogeneous edge systems, neglecting
the system heterogeneity and the details of resource consumption.
In this article, we construct a system model from a parallel
perspective for the heterogeneous edge system with different
processors, memory, and applications, which perceives the cost
of energy and delay from three levels: system, application, and
component. A hybrid metaheuristic algorithm combined with a
greedy rule, hybrid mutation, and whale optimization algorithm
(GHMWOA) is proposed to realize partial computation offload-
ing. A partial offloading architecture of heterogeneous edge
intelligence is proposed to validate our model and algorithm with
real-world hardware and software. Experiment results not only
show GHMWOA outperforms multiple classical optimization
algorithms in minimizing energy consumption, but also discover
on which system component energy consumption depends, and
how properties of application and system influence the cost of
energy.

Index Terms—Heterogeneous edge intelligence, multilevel
energy analysis, parallel processing, partial computation
offloading.

Received 25 September 2024; revised 17 December 2024; accepted
30 December 2024. Date of publication 13 January 2025; date of current
version 23 May 2025. This work was supported by the Shanghai Municipal
Science and Technology Major Project under Grant 2021SHZDZX0103.
(Corresponding authors: Lihua Zhang; Xiaoyang Kang.)

Baoyu Xu is with the Academy for Engineering and Technology, Fudan
University, Shanghai 200433, China, and also with the School of Computer
Engineering and Science, Shanghai University, Shanghai 200444, China
(e-mail: byxu@shu.edu.cn).

Yancheng Ruan and Chenghu Qiu are with the School of Computer
Engineering and Science, Shanghai University, Shanghai 200444, China
(e-mail: 18918694350@shu.edu.cn; 2532725615@shu.edu.cn).

Shuibing He is with the College of Computer Science and
Technology, Zhejiang University, Hangzhou 310027, China (e-mail:
heshuibing@zju.edu.cn).

Feng Shu is with the School of Electrical and Information
Engineering, University of Sydney, Sydney, NSW 2050, Australia (e-mail:
feng.shu@outlook.com).

Xiaoyang Kang is with the Laboratory for Neural Interface and Brain
Computer Interface, MOE Frontiers Center for Brain Science, Academy for
Engineering and Technology, Fudan University, Shanghai 200433, China
(e-mail: xiaoyang_kang@fudan.edu.cn).

Lihua Zhang is with the Academy for Engineering and Technology, Fudan
University, Shanghai 200433, China (e-mail: lihuazhang@fudan.edu.cn).

Digital Object Identifier 10.1109/JIOT.2025.3529185

I. INTRODUCTION

EDGE intelligence leverages artificial intelligence (AI)
for edge inference or edge training on edge systems,

enhancing the capabilities of edge systems in data processing
and privacy protection, etc. [1] However, AI applications are
often data-intensive, latency-sensitive, or energy-consuming,
posing challenges for resource-constrained edge devices (EDs)
with low computing power and short battery time, which
cannot support the resource demands of AI applications. An
effective approach to mitigate the issue is to offload data
or tasks from resource-scarce EDs to resource-rich edges or
clouds, which is called computation offloading.

In general, the edge system is heterogeneous. Heterogeneity
is not only embodied in network architecture [2], [3], but
also exists in hardware [4], such as processors and memory,
as well as in software [5], including applications and
operating systems. Most research related to computation
offloading mainly focuses on the differences in network
architectures and rarely takes that of hardware and soft-
ware into account. The general approach adopted by these
studies is to only use the CPU as the processor, while the
latency and energy consumption of applications are calcu-
lated based on CPU cycles [6], [7], [8], [9]. In practical
edge systems, however, processors are not limited to CPUs
and include GPUs, ARM processors (which are commonly
used in mobile devices), and other types of accelerators or
coprocessors. As a result, neglecting the heterogeneity of
edge systems will construct impractical models for those
systems.

In addition, ignoring the heterogeneity of edge systems
in computation offloading often results in unfeasible offload-
ing schemes based on energy consumption or delay. This
phenomenon stems from the uncertain sources of energy
and delay in heterogeneous systems. In terms of the delay,
when an edge system processes applications, it performs
both computing and memory operations. Since the fact that
the transmission rate of memory is often slower than the
computation rate of the processor, the latency of memory
operations can be significantly lower than that of computing
operations. Therefore, it is unreasonable to calculate the delay
of the computing operations alone. Considering the energy
consumption, when processors are in an idle state, a system
still consumes a certain amount of energy (called static energy
in our work). Therefore, identifying the sources of delay and
energy consumption is crucial for designing a more accurate
offloading scheme for the heterogeneous edge system.
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In this article, we attempt to build a more practical and
accurate system model and design an offloading algorithm
to minimize energy consumption for heterogeneous edge
intelligence. Here are some difficulties. The energy and delay
are consumed by different components of the edge system,
such as processor, memory, and network, but these components
often interact with each other, which makes the calculation of
energy consumption and delay more complex. For example,
the actual computing capability of the processor often depends
on the transmission performance of memory. Therefore, it is
inaccurate to calculate the delay based solely on the proces-
sor’s computing capability. Furthermore, it is challenging to
design a partial offloading architecture for heterogeneous edge
intelligence and obtain real-time data on energy consumption
from real-world components during the offloading process.
The objective function of offloading optimization is usually
nonlinear or discontinuous, which leads to high complexity
and requires effective optimization algorithms. In our work,
contributions to address these difficulties as follows.

1) The roofline method is adopted to analyze the actual
computing ability of heterogeneous EDs. Based on this,
we design a heterogeneous edge system model (HESM)
from a parallel perspective. The model takes into account
the energy and delay consumed in processors, memory,
network, and other components and addresses the inde-
pendence of these components. Ultimately, the model
can perceive the cost of energy and delay from three
levels: system, application, and component.

2) A partial offloading algorithm greedy rule, hybrid
mutation (HM), and whale optimization algorithm
(GHMWOA) based on the whale optimization algorithm
(WOA) is designed to obtain an optimal offloading
decision. The algorithm leverages the excellent search
performance of WOA, adopts penalty functions to elim-
inate constraints, and utilizes a greedy rule and HM to
further enhance the offloading performance.

3) A partial offloading architecture for heterogeneous edge
intelligence is proposed. For EDs, an energy profiling
method is designed to acquire energy parameters and has
been implemented on NVIDIA Jetson devices. The work
provides theoretical and practical foundations for the
application of HESM and GHMWOA in heterogeneous
edge intelligence.

4) The test data comes from diverse deep learning (DL)
models and heterogeneous EDs in the real world.
Through comparisons with multiple classical algorithms,
GHMWOA achieves better performance in minimizing
system energy (SE) consumption and maintaining the
stability of optimal values. In addition, the data from
three-level energy consumption and delay facilitate the
design and improvement of the system.

The remainder of this article is organized as follows.
Section II introduces related work. Section III gives the
HESM in detail. Section IV proposes the GHMWOA.
Section V presents a partial offloading architecture for hetero-
geneous edge intelligence. Experimental results are shown in
Section VI. Finally, conclusions are provided.

II. RELATED WORK

A. Computation Offloading in Heterogeneous Edge

Due to the diversity of EDs, edge servers (ESs), appli-
cations, and networks, edge computing systems are often
heterogeneous. Edge intelligence adopting AI applications
is a special scenario of edge computing. Currently, most
work related to computation offloading in edge computing is
based on a homogeneous software and hardware environment.
Next, we will introduce the related work in edge computing,
including edge intelligence.

In [5], [6], [7], [8], [9], [10], [11], [12], [13], and [14],
computation offloading is studied within a given terminal-
edge-cloud or terminal-edge network structure. These works
either do not focus on processor components or treat them
as homogeneous devices. Typically, the CPU is considered
the sole processing unit (PU), and the cost of computation
offloading is calculated based on CPU cycles. In addition,
Ren et al. [2] focused on the time-varying characteristics of
the network and construct a system model for hybrid networks.
Yu et al. [3] considered the heterogeneous network of aerial
edge computing (AEC).

In literature [15], general-purpose servers and field-
programmable gate arrays (FPGAs) are adopted at the edge
to provide computing resources for edge services. This work
designs offloading models and algorithms for servers and
FPGAs to achieve offloading. The work does not take into
account the differences of EDs, and FPGAs are often designed
for specific applications. Works of [13] and [16] abstract the
processor performance as the ability to process frames per
unit time and determine the energy consumption based on
the number of frames. The method can build a unified math-
ematical model for heterogeneous processors, but it is only
applicable to frame-based edge computing scenarios and does
not address the interference between different components in
heterogeneous edge systems. Consequently, the method can
not discover the sources of energy consumption in general
heterogeneous edge systems.

Some studies focus on heterogeneous applications.
Lin et al. [5] considered that tasks from different applications
have diverse resource demands, particularly storage needs, and
proposes an application-aware offloading algorithm to achieve
minimal latency. In [12], tasks are classified into dedicated
tasks and generic tasks. Dedicated tasks are urgent tasks that
can not be offloaded and must be executed by the mobile
devices, while other tasks are considered general tasks that
can be offloaded to ESs/data center. Xue et al. [17] classified
tasks into delay-sensitive and delay-tolerant categories, and
builds models, respectively, employing different offloading
algorithms. Notably, some studies focus on applications based
on AI [8], [13], [16], [18]. In [16], the researcher focuses
on the convolutional neural network (CNN) and proposes an
analytics accuracy model by considering the resolution and
sampling rate of the CNN model. To achieve higher accuracy,
the work also designs an offloading strategy. However, the
heterogeneity of edge systems is not considered in these
works.
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TABLE I
SUMMARY OF RELATED WORK ON COMPUTATION OFFLOADING IN EDGE COMPUTING SYSTEM

B. Computation Offloading Algorithm

In edge computing, offloading algorithms include meta-
heuristic algorithm, reinforcement learning, and their variants.
Additionally, some classical algorithms are also used in the
offloading process, such as branch and bound, dynamic pro-
gramming, etc. Our work pays more attention to meta-heuristic
algorithms. A brief summary of related works is as follows.

Combining greedy algorithm and simulated annealing (SA),
in [13], a meta-heuristic offloading algorithm is designed
to improve the monitoring frame rate and reduce detection
latency for real-time power monitoring. In [19], a hybrid
meta-heuristic algorithm is employed to minimize energy
consumption. In [9] ant colony optimization (ACO) is adopted
to find optimal offloading decisions that achieve multiobjective
optimization values for latency, energy consumption, and
load balancing. In [20], a genetic-inspired meta-heuristic
algorithm (GIMA) is utilized to schedule workflow tasks
into resource-sufficient MEC servers. In [21], gray wolf
optimization (GWO) is adopted to achieve optimization of
energy consumption and latency in edge systems. In [22], a
privacy-preserving computation offloading scheme based on
the WOA is proposed. In [23], an SA offloading algorithm
based on deep Q-network (DQN) and IoB is adopted in
the medical Internet, which can significantly increase system
utilization, and reduce latency and energy consumption.

Table I summarizes the related work on computation
offloading in edge computing systems, with a particular
focus on heterogeneous system, optimization methods, and
optimization objectives. Meanwhile, we investigate AI in
edge computing, aiming to validate the model and algorithms
proposed in this article within a heterogeneous edge intelli-
gence that integrates AI and heterogeneous edge systems.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section describes how to build a system model for a
heterogeneous edge system, and formalizes edge offloading as
an optimization problem.

TABLE II
SUMMARY OF NOTATIONS

A. System Architecture

We consider an edge system that consists of N EDs and
an edge cluster. The edge cluster is composed of H ESs that
are interconnected through high-speed networks and provide
computing and storage resources for EDs through an access
point (AP). Data are transferred between EDs and ESs via a
wireless network. The architecture of the system is shown in
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Fig. 1. Architecture of edge system. In the system, the processors
and memories of EDs and ESs are heterogeneous, and EDs run different
applications.

Fig. 1, where xPU is a generic term for different PUs, such
as CPU and GPU.

In the system, EDs are heterogeneous in processor and
memory. The energy and delay costs of their single operation
are different. Each ED has five attributes and is defined
as EDi = {ci, bi, ρ

f
i , ρ

m
i , pstatic

i }, i ∈ {1..N}. Let ci and bi

denote peak floating-point performance (flops/second) and
peak memory bandwidth (bytes/second). Let ρ

f
i and ρm

i rep-
resent energy cost of a single float-point operation (flop) and
memory operation (mop), respectively. pstatic

i denotes a fixed
constant power regardless of whether ED i is idle or not. ESs
are heterogeneous. Let ce

j and be
j (j ∈ {1..H}) denote the peak

floating-point performance and peak memory bandwidth of
ES j.

B. Application Model

In our system, applications are heterogeneous. The applica-
tion from ED i is defined as APPi = {Fi, Mi}, i ∈ {1..N}. Let
Fi and Mi represent the number of flop and mop, respectively,
that application i performs to process a unit of data (e.g., one
frame), where Mi are equal to the total number of transferred
words. To take advantage of the parallelism of EDs and ESs,
all applications are data partition oriented and submitted in
EDs.

Let OIi (Flops/Bytes) denotes the operational intensity (OI)
of application i, which is obtained by

OIi = Fi

Mi
. (1)

Note OI is an intrinsic property of the application. For some
applications, OI is not a constant and depends on problem
size, such as FFT [24].

Let ca
i denotes attainable performance of application i

executed in the ED. According to Roofline model [24], ca
i

depends on the memory bandwidth and OI and is no higher

than the peak Floating-Point performance of ED i. Therefore,
ca

i is given by

ca
i = min{ci, bi × OIi}. (2)

C. Delay Model

1) Transmission Delay: In the edge system, the network
adopts a frequency-division duplex mode. Let S denotes the
total number of network channels, W denotes the bandwidth
of the channel, respectively. The transmission rate of ED i
is defined as Ri. According to the paper [19], it is given as
follows:

Ri = SμiW log2

(
1+ Pt

id
−v
i | γ |2

N0

)
(3)

where di denotes a distance from ED i to its serving wireless
AP. v and d−v

i denote pass loss exponent and path loss
between ED i and its serving AP. γ denotes the channel
fading coefficients. N0 denotes white Gaussian noise power.
Pt

i is transmit power of ED i. μi denotes the proportion of
bandwidth in channels for ED i.

In time slot t, let si and λi denote the speed of sampling
data and the ratio of the amount offloaded to its total amount,
respectively. For ED i, the amount of downlink data is often
ignored since it is much less than the amount of uplink
data [25]. The amount of data uploaded is β1λisitri, where β1
is the overhead in data transmission in an uplink channel and
ri is the size of the unit data. Therefore, transmission delay is
defined as Tt

i , as follows:

Tt
i =

β1λisitri

Ri
. (4)

2) Local Delay: While application i is executed, flops,
mops, and network transmission overlap maximally in the best
case. Suppose Tf

i and Tm
i are times to execute the flops and

mops of application i locally, that is, on the ED, respectively.
The local delay in the best case, call Tl

i , is

Tl
i = max{Tf

i , Tm
i , Tt

i }. (5)

Tf
i and Tm

i are given by the following equations:

Tf
i =

(1− λi)sitFi

ca
i

(6)

Tm
i =

(1− λi)sitMi

bi
. (7)

Substituting (4), (6), and (7) into formula (5), local delay
can be calculated.

3) Remote Delay: When applications are offloaded to het-
erogeneous ESs, they should be scheduled to appropriate
ESs to reduce remote delay (RD). Heterogeneity existing in
ESs implies that applications exhibit different performance
while they are executed in different ESs. Let ca

i,j denotes the
attainable performance of the application i in the ES j. Similar
to the ED, ca

i,j is given by the following equation:

ca
i,j = min{ce

j , be
j × OIi}. (8)

During the scheduling process of applications, using a pol-
icy of fastest-execution (FE) ES priority, ES j with the highest

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:27:28 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: MULTILEVEL AND ENERGY-EFFICIENT PARTIAL COMPUTATION OFFLOADING 14997

ca
i,j is first chosen for application i to decrease RD as much

as possible. With the amount of offloaded data increasing, a
single ES may face overload. To maintain load balance among
ESs, a method based on the greedy algorithm in the knapsack
problem [26] is designed for migrating applications between
ESs and is outlined as follows.

Step 1: Sort the applications on the overloaded server in
descending order based on the amount of offloading data, and
further sort the applications in ascending order based on the
execution time per unit data.

Step 2: According to the arranged order, migrate the
application that caused the ES overload, called the overloaded
application, to another ES that offers the best computing
performance among those capable of meeting the resource
requirement of the application.

The above scheduling strategy is referred to as FEG-HES.
Given application i is scheduled to ES j with FEG-HES. Let
Tr

i denotes the RD of application i in the best case. Tr
i can be

obtained by

Tr
i = max{Tf

i,j, Tm
i,j} (9)

where Tf
i,j and Tm

i,j are times to execute flops and mops of
application i on ES j, respectively

Tf
i,j =

λisitFi

ca
i,j

(10)

Tm
i,j =

λisitMi

be
j

. (11)

Considering the parallel execution of the ED and ES, the
delay of application i is defined as Ti, as follows:

Ti = max{Tl
i , Tr

i + Tt
i }. (12)

In addition, during the offloading process, the floating-point
operations offloaded to the edge cannot exceed the processing
capability of the edge per unit time. Let Cmax denotes the peak
floating-point performance of the edge cluster. The following
constraints need to be met:

N∑
i=1

Fi min
(
λisi, Ri

/
ri

) ≤ Cmax. (13)

D. Energy Model

Different from the ES, the battery life of the EDs often
is low. Therefore, we pay more attention to the energy
consumption of the ED. Energy consumption of EDs mainly
consists of three parts: 1) data transmission energy; 2) data
processing energy; and 3) static energy. The middle is mainly
generated by the two basic operations of data processing: flop
and mop.

Suppose the static energy is linear in Tl
i . For all EDs, The

total energy of data processing in slot t is defined as ep, as
follows:

ep =
N∑

i=1

ep
i =

N∑
i=1

tsi(1− λi)
(
ρ

f
i Fi + ρm

i Mi

)
+ Tl

i P
static
i .

(14)

The total energy of transmission for all EDs is

etran =
N∑

i=1

(
P0

i + kt
iSμiP

t
i

)
Tt

i (15)

where P0
i and kt

i denote idle power and amplifier coefficient
for the network module, respectively. Submitting (4) into (15),
the total energy of transmission can be obtained.

Let E denotes the total energy consumed in all EDs, called
SE. It is as follows:

E = ep + etran. (16)

E. Problem Formulation

According above models, the optimization problem is for-
mulated as

P1 : arg min
λ,μ

E

λ = {λ1, . . . , λ, . . . , λN}
μ = {μ1, . . . , μi, . . . , μN}

(17)

s.t.

C1 : 0 ≤ λi ≤ 1, i = 1, 2, . . . , N (18)

C2 : 0 ≤ μi ≤ 1, i = 1, 2, . . . , N (19)

C3 :
N∑

i=1

μi ≤ 1 (20)

C4 :
N∑

i=1

Fi min
(
λisi, Ri

/
ri

) ≤ Cmax (21)

C5 : Ti ≤ Tmax, i = 1, 2, . . . , N. (22)

For each ED, constraints 18 and 19 restrict the offload-
ing ratio of data and the proportion of bandwidth to be
variables between 0 and 1. Constraint 20 guarantees that
the sum of the proportion of bandwidth of all EDs does
not exceed 1, meaning that the total network bandwidth of
all EDs does not exceed the system’s network bandwidth.
Constraint 21 ensures that the flops required for the data
offloaded to the edge do not exceed the peak floating-point
performance of the edge cluster. Constraint 22 ensures the
delay of application i does not exceed an upper bound Tmax
which can be adjusted without affecting the optimization of
energy consumption. According to (14)–(16), E is nonlinear
with respect to λ and μ so the optimization problem (17)
is a nonlinear programming (NLP) problem that is NP-hard
in nature [27]. Based on (5), (14), and (16), E is often
discontinuous, especially at the boundary of the domain, which
implies that some gradient-based optimization methods may
struggle to achieve optimal solutions. Therefore, we propose
a hybrid metaheuristic method based on WOA to address the
problem in the following section.

IV. OPTIMAL SOLUTION

Since P1 is a constrained optimal program, a penalty
function method [28] is adopted to convert the constrained
optimization into an unconstrained optimization.
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Let x denotes a solution which is a vector of decision
variables (μ and λ). G(x) is defined as the total penalty of all
constraints if they are not met. G(x) is given as follows:

G(x) =
π �=∑
i=1

[
max{0,−gi(x)}

]γ1 +
π=∑
j=1

| hj(x) |γ2 (23)

where gi(x) and hj(x) denote inequality and equality con-
straints in P1. π�= and π= denote the number of inequality and
equality constraints. The values of γ1 and γ2 are two positive
constants and set as 1 or 2 in general. In detail, each equality
constraint is converted into hj(x) = 0, while each inequality
constraint is converted into gi(x) ≥ 0. For example, constraint
C3 is transformed into 1−∑N

i=1 μi ≥ 0.
Let F(x) denotes a modified object function as follows:

F(x) = E + ϕG(x) (24)

where ϕ is a large positive penalty parameter. If all constraints
are met, ϕG(x) is equal to zero. Until now, an unconstrained
optimization that transformed from P1 is expressed as follows:

P2 : arg min
λ,μ
{F(x) = E + ϕG(x)}. (25)

A. Whale Optimization Algorithm

The WOA was proposed by Mirjalili and Lewis [29]. The
algorithm seeks to find the optimal solution to a problem by
simulating the hunting behaviors of whales in the ocean, such
as encircling prey and bubble-net attacking. Below is a detailed
introduction to the WOA.

In WOA, the position of each whale represents a solution
(x) and is iteratively updated to search for the globally optimal
solution (xbest). The actions in the search process include
encircling prey, bubble-net attacking, and searching for prey.

In encircling prey, the position of each whale in iteration
n+ 1 is updated as follows:

x(n+ 1) = xbest(n)− A ∗ |C ∗ xbest(n)− x(n)|. (26)

A and C are calculated by following equations:

A = (2α1 − 1) ∗ 2
(
1− n

/
M

)
(27)

C = 2α2 (28)

where α1 and α2 are random numbers between [0, 1], and M
is the maximum number of iterations.

In bubble-net attacking, the position of each whale in
iteration n+ 1 is expressed as follows:

x(n+ 1) = |xbest(n)− x(n)| exp(bl) cos(2π l)+ xbest(n) (29)

where b is the logarithmic spiral shape parameter and l is a
random number in the range of [−1, 1].

When |A| > 1, the whale commences searching for prey.
The action can be described by the following model:

x(n+ 1) = xrand(n)− A ∗ |C ∗ xrand(n)− x(n)| (30)

where xrand denotes a random whale selected from the
population.

Algorithm 1 PRIBG
Input:

populization size: P
the number of EDs: N
EDi, APPi, i ∈ [1, N]

Output:
Populization(pop)

1: for i = 1 to N do
2: computing ep

i with (14) under λi = 0
3: end for
4: EDorder← Sort EDs according to their ep

i
5: for k = 1 to P do
6: for j = 1 to N − 1 do
7: randNum[j]← rand(0, 1)

8: end for
9: Sort(randNum)

10: tmp← 0
11: for i = 1 to N − 1 do
12: randVal[i]← randNum[i]− tmp
13: tmp = randNum[i]
14: end for
15: randVal[N] = 1.0− randNum[N − 1]
16: Sort(randVal)
17: for i = 1 to N do
18: pop[k].μEDorder[i] ← randVal[EDorder[i]]
19: pop[k].λEDorder[i] ← rand(0, 1)

20: end for
21: end for
22: return pop

Algorithm 2 HM
Input:

current iteration cout: n
maximum number of iteration: M
switching factor of mutations: sf

Output:
new position: x

1: if n/M ≤ sf then
2: xSBX_p, xr ← two random positions in the population
3: xSBX_o ← SBX(xSBX_p, xr) with (31)
4: x← xSBX_o

5: else
6: xDE_p, xr1, xr2 ← three random positions in the popu-

lation
7: xDE_o ← DE(xDE_p, xr1, xr2) with (33) and crossover
8: x← xDE_o

9: end if
10: return x

B. Position Random Initialization Based on the Greedy Rule

To improve the convergence speed, each whale is initialized
with a feasible solution generated by a position random
initialization algorithm based on a greedy rule (PRIBG).

In PRIBG, a simple greedy rule is to enable the ED
with high energy consumption to offload as much data as
possible to reduce the total energy consumption. Since the
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Algorithm 3 GHMWOA
Input:

current iteration cout: n
maximum number of iterations: M
switching factor of mutations: sf

Output:
optimal solution: xbest

1: Initialize population with PRIBG
2: while n ≤M do
3: for k = 1 to P do
4: if rand(0, 1) < 0.5 then
5: Get a new solution with HM
6: else
7: p← rand(0, 1)

8: if p < 0.5 then
9: if |A| ≤ 1 then

10: Calculate a new solution with (26)
11: else
12: Calculate a new solution with (30)
13: end if
14: else
15: Calculate a new solution with (29)
16: end if
17: end if
18: end for
19: Evaluate the E of all solutions according to (16)
20: Update xbest with optimal solution in iteration n
21: n← n+ 1
22: end while
23: return xbest

amount of offloaded data depends on the proportion of network
bandwidth for ED, PRIBG generates a set of random values
within [0, 1] and ensures that their sum equals 1. Then, the
larger random value is assigned to the ED with higher energy
consumption. The PRIBG is shown in Algorithm 1.

In Algorithm 1, lines 1 and 2 calculate the energy con-
sumption of each ED without offloading. Line 4 sorts all
EDs in ascending order based on their energy consumption.
Lines 6–15 generate N uniformly distributed random values
whose sum equals 1. Line 16 sorts the values in ascending
order. Line 18 assigns values to the decision variable μ of
individual k using the greedy rule.

C. Hybrid Mutation

To enhance search performance by improving the diversity
of solutions, We adopt simulated binary crossover (SBX) and
differential evolution (DE) based on mutation to generate
new solutions. A periodic switching mechanism is employed
between the two mutations. How to implement the two
perturbation strategies is introduced in the following.

In the SBX, two whale positions are selected randomly from
the population, denoted as xSBX_p (parent solution) and xr.
The offspring solution xSBX_o of xSBX_p is generated using the
following equation:

xSBX_o
i = 0.5×

[
(1+ β)xSBX_p

i + (1− β)xr
i

]
(31)

Fig. 2. Crossover with a random Gene position in DE. where xDE_o is a child
solution derived from xDE_p, and the gene position i is randomly selected.

where β is obtained from (32). The constant dis represents the
distribution factor and is set to 2 in this article

β =
{

(2× rand(0, 1))1/(1+dis), rand(0, 1) ≤ 0.5(
1
/
(2− 2× rand(0, 1))

)1/(1+dis)
, otherwise.

(32)

In the DE, three whale positions first are selected randomly
from the populations, denoted as xDE_p (parent solution), xr1,
and xr2. The offspring solution xDE_o of xDE_p is generated
according to the following formula:

xDE_o
i = xDE_p

i + F ×
(

xr1
i − xr2

i

)
. (33)

Here, F represents the scaling factor. Then, randomly select
a gene from the offspring solution xDE_o and replace its value
with the value at the corresponding position in its parent
solution xDE_p, ensuring that the offspring solution retains
genetic information from the parent solution. The process is
called as the crossover operation and is shown in Fig. 2.

In optimization problems, adopting a constant mutation
cannot guarantee the acquisition of the optimal solution, while
adaptive selection of mutation requires significant time to
search for the best mutation. Therefore, this article adopts
an HM, which utilizes a parameter called a switching factor
(sf ) [30] ranging from 0 to 1 to determine the execution
frequency for SBX and DE. HM is shown in Algorithm 2.

Combining PRIBG and HM, an improved WOA
(GHMWOA) is presented in Algorithm 3. In the algorithm,
line 1 initializes the position of each whale using PRIBG.
During the search process, the position of each whale is
updated with WOA or HM. Lines 10, 12, and 15 represent the
actions of the whales performing encircling prey, searching
for prey, and bubble-net attacking, respectively. After updating
the position of each whale, Lines 19 and 20 search for
the optimal position (optimal solution) of all whales in the
current iteration based on their E. After M iterations, the
algorithm obtains the optimal solution xbest. Next, we analyze
the computational complexity of GHMWOA. In each iteration,
HM requires O(N) time, lines 10 or 15 consume O(N)

time, and lines 19 and 20 require O(P) time. Thus, the
complexity of one iteration is O(PN). Since the PRIBG is
based on the greedy rule, its complexity is O(PN log2 N).
Therefore, the computational complexity of the GHMWOA is
O(PN log2 N +PM N).
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Fig. 3. Partial offloading architecture on edge intelligence with heterogeneous
EDs which run DL models to perform inference on data from sensor.

V. PARTIAL OFFLOADING ARCHITECTURE FOR

HETEROGENEOUS EDGE INTELLIGENCE

To apply HESM and GHMWOA to heterogeneous edge
intelligence, we summarize the applications in edge intel-
ligence scenarios, propose a partial offloading architecture
of heterogeneous edge intelligence, and design an energy
profiling method for EDs.

Edge intelligence is an edge computing system that lever-
ages AI to enhance the capabilities of data processing,
data protection, task scheduling, etc. and it has experienced
explosive growth in recent years. Like most edge computing
systems, edge intelligence is heterogeneous.

Machine learning (ML) is a typical method for achieving
AI [1], and it overcomes the limitation of early AI approaches,
such as the knowledge-base approach, where it is difficult
for humans to identify all the tacit knowledge required to
perform complex tasks. ML aids in generating reliable and
repeatable decisions by learning from previous computations
and extracting patterns from massive databases. DL is an
ML method based on artificial neural networks (ANNs).
Compared to simple ANNs, deep learning networks consist
of multiple hidden layers and utilize advanced neurons with
special operations, such as convolution. The characteristics
enable deep learning networks to accept raw input data and
spontaneously complete corresponding learning tasks, which
often makes DL models outperform shallow ML models and
traditional data analysis methods [31]. Currently, there are
various deep learning architectures, including CNNs, recurrent
neural networks (RNNs), and generative adversarial networks
(GANs). CNNs and GANs are typically applied to image and
video processing, while RNNs are often used for time series
forecasting [32]. The data they collect are usually in the form
of frames or time steps (FTs). We adopt the models of the
three networks as the main applications in our work.

Combining the system architecture of edge computing and
the DL model, a brief overview of the partial offloading
architecture for heterogeneous edge intelligence is provided
in Fig. 3. In the architecture, the sensor of ED captures data
at a specific rate, called FTs per second (FTPS) in our work.
The offloading scheduler and controller execute an offloading
optimization algorithm to determine the offloading ratio (λ)

of the sampled data and the proportion of network bandwidth
(μ) for all EDs. Local data are processed by the ED, while the

Algorithm 4 Energy Profiling
Input:

APPi: the {Fi, Mi} of the model runing in ED i
Output:

ρ
f
i , ρ

m
i , Pstatic

i of EDi

1: Start the power monitoring tool and obtain
Pstatic

i , Pstatic
pro , Pstatic

mem
2: Record the instantaneous power of the processor (Ppro

k )

and memory (Pmem
k ) in time point k

3: t1 ← the system time
4: Run one frame or time step by the model
5: t2 ← the system time
6: Stop the power monitoring tool.
7: Calculate the average processor power (Pave

pro) and average
memory power (Pave

mem) with (34) and (35)
8: Ef

total ← (Pave
pro − Pstatic

pro ) ∗ (t2 − t1)
9: Em

total ← (Pave
mem − Pstatic

mem ) ∗ (t2 − t1)

10: ρ
f
i ← Ef

total/Fi

11: ρm
i ← Em

total/Mi

remaining data are offloaded to ESs for processing. A profiler
in ES obtains the APPi according to [33], ρ

f
i , ρm

i , and Pstatic
i

of EDi is real-time acquired by an energy profiling method as
shown in Algorithm 4.

In the algorithm, the static power (Pstatic
i ) includes the

static power of the processor (Pstatic
pro ) and the static power

of the memory (Pstatic
mem ). Ppro

k and Pmem
k record the processor

power and memory power at time point k, called instantaneous
powers. When the ED is idle, Ppro

k and Pmem
k (k = 1, 2, . . .)

are equal to Pstatic
pro and Pstatic

mem , respectively. When the ED
executes an application, Ppro

k and Pmem
k will momentarily surge.

Considering that the power monitoring tool can not record the
instantaneous power at every moment but can only capture a
power value at a fixed time interval, the average power Pave

pro
and Pave

mem of processor and memory are used as a substitute
for instantaneous powers to calculate energy consumption. The
equations are as follows:

Pave
pro =

tp∑
k=1

Ppro
k /tp (34)

Pave
mem =

tp∑
k=1

Pmem
k /tp (35)

where tp denotes the number of time points between t1 and t2.
In DL models, Fi and Mi represent the number of flops and
mops required to process one frame or time step. Therefore,
energy consumption information for single flop and mop is
obtained by executing one frame or time step in line 4.
If the application programming interface (API) provided by
certain devices can not capture the instantaneous power of the
processor and memory, it is necessary to develop specific test
cases. For instance, a memory copy case is utilized to analyze
the energy consumption of a single mop.

The energy profiling method has already been implemented
on the NVIDIA Jetson device, and the power monitoring tool
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TABLE III
PARAMETERS OF EDS AND ESS, WHERE PROCESSOR PEAK AND MEMORY BANDWIDTH (MEM. BW.) IS VENDOR’S CLAIMED PEAK. ρf AND ρm ARE

THE ENERGY COST OF A SINGLE FLOP AND MOP, RESPECTIVELY. Pstatic IS THE STATIC POWER

TABLE IV
FLOPS AND MOPS OF DL MODELS

TABLE V
COMPARISON OF SE (J) IN THREE ES SCHEDULING STRATEGIES UNDER

H = 4, FTPS = 30, AND NETDIS = 100 (M)

was developed based on the command “jtop.” The method can
be integrated into the profiler in EDs.

VI. PERFORMANCE EVALUATION

A. System, Application, and Algorithm Setting

In this section, we adopt real-world processers and DL
models.

EDs are configured with Cortex-A15 (A15), Intel Core I3-
3217U (I3), and Mali T-604 (T-604). ESs are equipped with
Nvidia GF100, Nvidia GK140, and Intel 5110P, respectively.
The processors are listed in [34]. In addition, we obtain
energy consumption per flop and mop and static power in
NVIDIA Jetson TX2 configured with ARM cortex-A57 (A57)
as follows. The energy cost per flop, energy cost per mop,
and static power are 36.6 (pJ), 612.3 (pJ), and 1.9 (W),
respectively. Table III enumerates the parameters of all EDs
and ESs.

Fifteen DL models, listed in Table IV, are utilized to
validate the offloading strategy. Among them, Models 1 to
10 are CNNs [35], Models 11 to 13 are RNNs [36], [37],

Fig. 4. Comparison of SE in five algorithms as the number of EDs increases
under FTPS = 30 and netdis = 100 (m).

Fig. 5. Comparison of SE in five algorithms as network distance increases
under N = 20 and FTPS = 30.

Models 14 and 15 are GANs [38], [39], and Model 15 also
incorporates a transformer network.

The models have different network depths and structural
characteristics, making them suitable for various task require-
ments. Densenet161 adopts a network structure with 161 layers
of dense connections, enabling efficient feature reuse. Caffenet
and Squeezenet1-0 focus on lightweight design, making them
suitable for resource-constrained environments. Vgg-vd-19
uses small convolution kernels and a deep structure (19
layers) to extract features in depth. Resnet50 and Resnet-101,
with their residual structures, alleviate the vanishing gradient
problem. They have 50 and 101 layers, respectively, and are
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Fig. 6. Comparison of SE in five algorithms as FTPS increases under N =
20 and netdis = 100 (m).

Fig. 7. Total execution time of models in five algorithms as the number of
EDs increases under FTPS = 30 and netdis = 100 (m).

suitable for complex tasks. Mcn-mobilenet employs depth-
wise separable convolutions to reduce computational load
and model size significantly. Googlenet, through its inception
module, combines multiscale convolutions to achieve efficient
feature extraction. SE-BN-Inception and Senet further incorpo-
rate attention mechanisms to enhance the model’s focus on key
features. For sequential data, Mbed-ANT combines the atten-
tion mechanism with gated recurrent units (GRU) to extract
features. ST-long short-term memory (LSTM) optimizes
performance by replacing dense weights with sparse ones,
while ISS-LSTM requires first training an over-parameterized
dense model, then gradually pruning and reallocating weights
to obtain a sparse LSTM model. Swin-GAN and Trans-GAN
combine GANs with Transformer architectures, demonstrating
strong performance in image generation tasks. Swin-GAN,
based on the Swin-Transformer block, uses a shifted window
self-attention mechanism to capture both contextual semantics
and low-level texture features. Trans-GAN introduces a novel
grid self-attention mechanism to mitigate memory bottlenecks
in high-resolution generation tasks.

According to [40], network parameters can be set as follows.
W = 10 MHz, γ = 0.98, N0 = 1.6 × 10−11, v = 4, β1 = 1,
Pt

i = 0.1W, P0
i = 0.4W, and kt

i = 18. The time slot is equal
to one second. In GHMWOA, sf = 0.7, dis = 2, and F = 0.4.

Fig. 8. Average execution time of models optimized with five algorithms
under the three most resource-intensive cases, respectively.

Fig. 9. Penalty of GHMWOA as the number of EDs increases under FTPS
= 30 and netdis = 100(m).

Fig. 10. Penalty of GHMWOA as network distance increases under N = 20
and FTPS = 30.

B. Comparison of Algorithm Performance

In the experiment, fifteen different models are invoked by
several heterogeneous EDs with equal opportunity. The tests
focus on the characteristics of the EDs, including the number
of EDs (N), the network distance (netdis) from ED to AP, and
the FTPS of EDs. The benchmark algorithms for comparison
include random search (RS) [41], particle swarm optimization
(PSO) [42] based on population evolution, DE [43] based
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TABLE VI
COMPONENT ENERGY(J) UNDER N = 15, FTPS = 30, AND NETDIS = 100 (M)

TABLE VII
COMPONENT DELAY(s) UNDER N = 15, FTPS = 30, AND NETDIS = 100 (M)

Fig. 11. Penalty of GHMWOA as FTPS increases under N = 20 and netdis
= 100 (m).

on genetic evolution, and WOA [29]. During the testing
process, we not only focus on the amount of SE consumed
but also consider the stability of its value. To more accurately
compare the performance of algorithms, the four benchmark
algorithms do not adopt the PRIBG method, but use a set of
the proportions of network bandwidth identical to those of
GHMWOA to initialize the solutions. P = 50 and M = 200
in all algorithms.

Fig. 4 illustrates the changes in SE consumption as the
number of EDs increases from 10 to 40, with five different

algorithms for offloading. Overall, all algorithms are capa-
ble of implementing the offloading process. However, the
GHMWOA achieves the lowest SE consumption, with its value
showing a relatively stable increase as the number of EDs
increases. In contrast, notable fluctuations are observed in the
values obtained by the RS, DE, and WOA. Furthermore, the
RS, which adopts a random solution generation approach, fails
to achieve minimal energy consumption.

Fig. 5 demonstrates the changes in SE consumption with the
increase in netdis among the five algorithms. Fig. 6 shows the
changes in SE consumption with the increase in FTPS across
the five algorithms. Similar to Fig. 3, GHMWOA consistently
achieves better performance. Specifically, GHMWOA (an
improved version of WOA) significantly outperforms WOA.
For instance, compared to WOA, GHMWOA achieves a 59%
reduction in the cost of SE when the number of EDs equals 40.

Fig. 7 illustrates the changes in the total execution
time (TET) of models within the system after offloading
optimization with five different algorithms, as the number of
EDs increases from 10 to 40. The figure shows that GHMWOA
achieves the lowest TET and maintains a stable growth trend
as the number of EDs increases.

Fig. 8 presents the average execution time (AET) of models
in the system after offloading optimization with five different
algorithms for the most resource-intensive cases in our exper-
iments. By comparison, it can be observed that GHMWOA
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(a) (b)

Fig. 12. Application-level energy and delay under N = 15, FTPS = 30, and netdis = 100 (m). (a) Application energy (AE) comparison between nonoffloading
and offloading cases. (b) Application delay (AD) comparison between nonoffloading and offloading cases.

Fig. 13. Component energy in models under N = 15, FTPS = 30 and netdis
= 100 (m).

consistently achieves shorter AET. Notably, the AET is below
1 s with GHMWOA, which indicates that the EDs are capable
of processing sampled data within a short period despite the
cases demanding more system resources. Therefore, the edge
system optimized by GHMWOA demonstrates better real-time
performance.

Figs. 9–11 show the SE and penalty of GHMWOA as the
number of EDs, netdis, and FTPS vary. They indicate that the
penalty of GHMWOA is always 0, which demonstrates that
the solutions found by GHMWOA satisfy all the constraints.

To validate the performance of FEG-HES, it is compared
with a random scheduling strategy (R-HES) and a scheduling
strategy of FE ES priority (FE-HES) under heterogeneous ESs.
In R-HES, the ES for applications is selected randomly. If
an ES becomes overloaded, the overloaded applications in
the ES are randomly migrated to another ES that meets the
resource requirements of the applications. In FE-HES, appli-
cations are preferentially scheduled to the ES with the highest
performance. If an ES becomes overloaded, its overloaded

Fig. 14. Component energy in edge system as FTPS increases under N =
20 and netdis = 100(m).

Fig. 15. Comparison of SE as the number of ESs increases under N = 20
and netdis = 100 (m).

applications are migrated to another server that not only meets
the resource requirements of the overloaded applications but
also offers optimal performance for the applications. Table V
shows that the SE of FEG-HES is lower than that of R-HES
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Fig. 16. Comparison of SE as the number of network channels increases
under N = 20 and netdis = 100 (m).

and FE-HES as EDs increase from 10 to 40 under GHMWOA
algorithm.

C. Evaluations at the Application and Component Levels

Although the optimization goal of this article is to achieve
the minimal cost of SE, we can obtain energy and delay
costs at the application and component by analyzing the flops,
mops, and network transmissions. The three-level details of
energy consumption and delay facilitate an understanding of
the sources of energy and delay.

Fig. 12 presents the cost of application-level energy and
delay when the number of EDs is 15, the FTPS is 30, and the
netdis is 100 (m). “No-off,” “off,” and “ROD” represent the
energy or latency without offloading, the energy or delay with
offloading, and the reduction ratio between them, respectively.
The figure shows that GHMWOA can generally reduce the
energy consumption of applications. In particular, when an
application has more fops and mops, the ROD is greater. On
the contrary, the effect of offloading is not obvious. The reason
is that executing models with more fops and mops on the
EDs will consume more energy, so the models have more
opportunities for offloading to achieve a lower cost of SE.

Fig. 13 illustrates the energy consumption of various
components during the offloading process of DL models.
Specifically, FE and ME represent the energy costs associ-
ated with performing flops and mops, respectively, on the
processors and memories of EDs. NE denotes the energy
cost in network transmission, while STE signifies static
energy. TE stands for the total energy consumption of each
model. The figure reveals that, apart from FE, other energy
consumptions occupy a substantial proportion. For instance,
in the ResNet series of models, including ResNet50 and
ResNet-101, STE constitutes the primary energy cost. In
CaffeNet and MCN-MobileNet, ME exceeds FE, particularly
pronounced in CaffeNet. Consequently, considering only the
energy consumption of processor components, such as CPUs,
would be inaccurate.

Table VI enumerates the detailed energy consumption of
components from Fig. 13. Similarly, Table VII lists the delays
incurred in each component, including flop delay (FD), mop

delay (MD), static delay (STD), network delay (ND), edge
delay (ED), and total delay (TD). The notation “-N” indicates
the energy consumption and delay when offloading does not
occur. These data discover on which energy consumption of
system components depends. For instance, Table VI shows
that the energy consumption of densenet161 and CaffeNet
primarily comes from STE. Since STE is proportional to
local delay, Table VII indicates that the STE of densenet161
depends on ND, while that of CaffeNet depends on FD, which
refers to the delay of the processor component.

Fig. 14 illustrates the variation in component energies as
the FTPS increases when the number of EDs is set to 20.
The component energy is calculated as the sum of energy
consumption from its corresponding component across all
EDs. The figure indicates that STE accounts for more than
65% of the SE. Additionally, the value of ME is approximate
to FE when FTPS equals 10. These phenomena underscore the
inaccuracy of analyzing energy consumption based solely on
the processor component in practical scenarios. Furthermore,
it highlights the significance of multilevel energy consumption
modeling and analysis in edge systems.

D. Effects of Edge Servers and Network Channels

The computing capability at the edge is provided by ESs.
Fig. 15 presents SE with respect to the number of ESs. By
turning up FTPS in tests, the demand for computing power
is increased to evaluate the effect of ESs. As shown in the
figure, SE reduces as the number of ESs increases. The reason
is that more data need to be executed in ED locally when
fewer ESs can not provide enough computing resources. In
addition, the SE consumption tends to stabilize as the number
of ESs exceeds 3. The reason is SE does not depend on the
computing resource but on other resources, such as network
resources when the number of ESs increases to a certain level
and is sufficient.

Further, we evaluate the effects of network channels on
SE. Fig. 16 shows SE falls with the channel rising. The
reason is that the transmission rate is proportional to the
number of network channels. Increasing the network channel
facilitates to transmission of more data to the ES so that energy
consumption for solving data in EDs decreases. Similar to
Fig. 15, the cost of SE tends to stabilize when the network
channels are sufficient, for example, the test in FTPS = 30.
The evaluation provides valuable data for constructing a
practical edge system.

VII. CONCLUSION

In this article, we propose a system model (HESM) for
the heterogeneous edge system and design GHMWOA to
obtain optimal offloading decisions for minimizing SE con-
sumption, which combines the characteristics of application
and edge, covering the application complexity (flop and mop),
FTPS, network, processor, memory, etc. A partial offloading
architecture for heterogeneous edge intelligence, including an
energy profiling method, provides theoretical and practical
foundations for the application of HESM and GHMWOA in
heterogeneous edge intelligence. The offloading mechanism
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can analyze the details of energy consumption and delay at
three levels: system, application, and component.

Real-world DL models, EDs, and ESs are employed in
experiments. The results show that the GHMWOA outper-
forms four classic benchmark algorithms. Compared with
WOA, for example, the GHMWOA reduces the cost of the
SE by 59% when the number of EDs is 40. Meanwhile,
the results also demonstrate the significance of multilevel
energy analysis. System-level energy analysis can determine
the merits of offloading methods, as well as the impact of
system networks and computing capabilities on offloading.
Application-level energy analysis reveals that applications with
fewer flops and mops have fewer opportunities for offloading.
Component-level analysis of energy and delay can identify the
sources and causes of application and SE consumption. These
analysis results provide valuable insights for the improvement
and design of energy-efficient systems. Despite the adoption of
computation offloading, it is difficult to balance the workload
between the ED and ES because of limited network resources
when the amount of data increases sharply. In the future, data
compression and edge caching should be adopted to optimize
the offloading process.
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