
35

Fixed-Priority Scheduling for Two-Phase Mixed-Criticality

Systems

ZHENG LI, Western Illinois University

SHUIBING HE, Wuhan University

In this article, a two-phase execution model is proposed for mixed-criticality (MC) tasks. Different from tra-

ditional MC tasks with a computation phase only, the two-phase execution model requires a memory-access

phase first to fetch the instructions and data, and then computation. Theoretical foundations are first es-

tablished for a schedulability test under given memory-access and computation priority assignment. Based

on the established theoretical conclusions, a two-stage priority assignment algorithm, which can find the

best priority assignment for both memory-access and computation phases under fixed-priority scheduling,

is further developed. Extensive experiments have been conducted and the experimental results validate the

effectiveness of our proposed approach.

CCS Concepts: • Computer systems organization → Real-time system specification;

Additional Key Words and Phrases: Real-time, embedded system, mixed-criticality, memory-access

ACM Reference format:

Zheng Li and Shuibing He. 2017. Fixed-Priority Scheduling for Two-Phase Mixed-Criticality Systems. ACM

Trans. Embed. Comput. Syst. 17, 2, Article 35 (November 2017), 20 pages.

https://doi.org/10.1145/3105921

1 INTRODUCTION

When designing complex embedded systems, in addition to the safety requirement, more and
more non-functional requirements such as production cost, power consumption, and weight are
enforced on the system design. Therefore, mixed-criticality (MC) design, which integrates tasks
of different criticality levels on shared hardware platforms, is deemed to be the trend for future
real-time and embedded systems (Burns and Davis 2013), especially in the automotive and avionics
industry. Examples involve the unmanned aerial vehicle (UAV), which integrates the HI-criticality
functionalities, such as flight-control tasks, and LO-criticality tasks, such as photo-capturing tasks,
on the same platform (Barhorst et al. 2009).

MC design can achieve higher cost efficiency; the potential resource competition on the shared
platform may cause the deployed tasks to miss their deadlines. HI-criticality tasks, such as flight-
control tasks in the UAV system, are crucial in the entire system and a deadline miss will result
in catastrophic consequences. To ensure system safety and guarantee HI-criticality tasks always
meet their deadlines, two worst-case execution times, that is, worst-case execution time by design

Authors’ addresses: Z. Li, School of Computer Sciences, Western Illinois University, 1 university cricle, Macomb, IL, USA;

email: z-li2@wiu.edu; S. He, School of Computing, Wuhan University, LuoJiaShan Wuchang District, Wuhan, Hubei, China;

email: heshuibing@whu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 ACM 1539-9087/2017/11-ART35 $15.00

https://doi.org/10.1145/3105921

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 35. Publication date: November 2017.

https://doi.org/10.1145/3105921
https://doi.org/10.1145/3105921
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3105921&domain=pdf&date_stamp=2017-11-21

35:2 Z. Li and S. He

and a more pessimistic one, worst-case execution time by certification, are set for a HI-criticality
task (Baruah et al. 2011). Initially, an MC system is considered to be operated under the LO-
mode; when any task executes over the designed worst-case execution time, the system changes
to the HI-mode immediately and LO-criticality tasks may sacrifice their executions to guarantee
HI-criticality task deadlines. Due to the safety and efficiency requirements, a MC system is schedu-
lable if both of the following conditions are satisfied (Ekberg and Yi 2012): 1) both LO-criticality
and HI-criticality tasks meet their deadlines under the LO-mode, and 2) HI-criticality tasks meet
their deadlines under the HI-mode. Determining whether a given MC system is schedulable has
been proven to be NP-hard (Baruah et al. 2011).

Extensive research has been conducted to address the MC schedulability issue and some well-
known earliest deadline first (EDF)- and fixed-priority (FP)-based approaches have been published
in the literature (Li et al. 2014; Baruah et al. 2011; Ekberg and Yi 2012, 2014; Su and Zhu 2013). To
the best of our knowledge, the existing research work mainly focuses on computation intensive
MC systems, that is, the tasks are assumed to be computation only.

Due to technology scaling, tens to hundreds of cores are being integrated on the same die
to provide ever-increasing computing capacity (Villa et al. 2008). However, many-core chips are
commonly equipped with shared physical memory for all the processing units and the poten-
tial memory-access competition may become the bottleneck. Though typical real-time tasks are
computation intensive, their memory-access time to pre-fetch the instructions and required data
cannot be ignored anymore on many-core platforms (Melani et al. 2015). Memory and processing
units are isolated physical resources, and hence memory-access and computation phases are free
of contention. Therefore, different tasks’ memory-access and computation phases can be executed
in parallel. Because of this property, the existing scheduling approaches cannot be directly applied
to the MC tasks with both memory-access and computation phases.

With the above observations, our preliminary study on memory-aware MC scheduler was pre-
sented in Li and Wang (2016). We extend the topic in this article and address it more thoroughly.
The major contributions made in this article are fourfold:

—Propose a new two-phase execution model for MC tasks.
—Establish new schedulability test theories to determine if a given two-phase MC task set is

schedulable.
—Develop a two-stage priority assignment strategy to assign tasks’ memory-access and com-

putation priorities under fixed-priority scheduling.
—Set up experiments to validate the performance of our proposed approach under varied

system configurations.

The rest of the article is organized as follows. Related work is summarized in Section 2. The
system models and our target problem are defined in Section 3. The theoretical foundations for
schedulability tests are established in Section 4, and our proposed two-stage priority assignment
approach is presented in Section 5. In Section 6, we describe our experiment settings and discuss
the experimental results. Finally, the conclusion and future research direction are pointed out in
Section 7.

2 RELATED WORK

The research on MC scheduler started in recent years. In Baruah and Vestal (2008), Baruah dis-
cussed how to apply EDF algorithms in scheduling MC task sets. To ensure the schedulability
of a MC task set, the EDF with virtual deadline (EDF-VD) scheduling algorithm, which assigns
HI-criticality tasks reduced deadlines to ensure that HI-criticality tasks’ deadline guarantee, was
proposed in Baruah et al. (2012b). Later, Ekberg (Ekberg and Yi 2014) utilized demand-bound

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 35. Publication date: November 2017.

Fixed-Priority Scheduling for Two-Phase Mixed-Criticality Systems 35:3

function analysis and proposed a greedy approach to further improve the schedulability over EDF-
VD algorithm. With Baruah’s EDF-VD and Ekberg’s greedy algorithm, LO-criticality task execu-
tion will be terminated when the system enters into the HI-mode, and hence the performance of
LO-criticality tasks will be severely degraded. To provide some service guarantee of LO-criticality
tasks under HI-mode, Liu (Liu et al. 2016) studied the imprecise MC model and proposed a suffi-
cient test applied to this model. Gu (Zhao et al. 2015) further implemented preemption threshold
in an EDF-VD algorithm for resource-constrained systems.

To improve the system’s QoS when the system operates in HI-mode, Su (Su and Zhu 2013) pro-
posed elastic task models (Buttazzo et al. 1998) and developed a strategy to increase LO-criticality
task periods to reduce their competition against HI-criticality tasks. Lipari (Lipari and Buttazzo
2013) introduced a server-based approach that intellectually adjusted HI-criticality task deadlines
to maximize the amount of capacity reclaimable by LO-criticality tasks. By noticing that postpon-
ing HI-criticality job execution can promote early execution of LO-criticality tasks, Park (Park and
Kim 2011) developed a scheme called criticality based EDF (CBEDF), which delayed the execution
of HI-criticality tasks as much as possible. In addition, Niz (de Niz et al. 2009) characterized the criti-
cality inversion problem and presented a zero-slack scheduling scheme. They further combined the
zero-slack schedule approach with the rate monotonic (RM) scheduling algorithm and developed
the ZERO-SLACK-RM scheduling algorithm to maximize the execution of LO-criticality tasks. To
further improve the quality-of-service of LO-criticality tasks, dynamic resource reservation-based
approach was also studied in Li et al. (2014).

In addition to the EDF based scheduling algorithms, FP-based algorithms have also been studied
extensively. Audsley’s algorithm was proposed in Audsley (2001) as an optimal fixed-priority as-
signment, Vestal (Vestal 2007) later extended the algorithm to schedule multi-criticality tasks, and
Baruah (Baruah and Chattopadhyay 2013) further applied Audsley’s algorithm to schedule tasks
in MC tasks with computation phase only.

However, all the above research focuses on computation-intensive tasks only. Since many-core
technology is emerging, slow memory-access is becoming the bottleneck, and real-time commu-
nity just started to look into this issue. Considering memory-access time is not ignorable, under
the assumption that both memory-access and computation of the same task will be assigned at
the same priority level, Melani et al. [2015] gave the response-time analysis for single criticality
tasks with both memory-access and computation demand. In Melani et al. (2016), they further
extended the discussion to improve the schedulability by assigning different priorities to each
task’s memory-access and computation phase. Different from the existing work presented
in Melani et al. (2015, 2016) with focus on single criticality task set, that is, all tasks are of the
same criticality, in this article, we are to address how to model and schedule MC tasks, that is,
tasks are of different criticalites, with both memory-access and computation phases. Since the
task models are different, the scheduling theories and algorithms developed for single criticality
tasks cannot be directly applied to MC tasks. Therefore, new theories and algorithms have to be
investigated for two-phase MC tasks.

3 MODELS AND PROBLEM FORMULATION

3.1 System Models

In this article, we focus on MC systems (Baruah et al. 2012a; de Niz et al. 2009) with tasks at
two different criticality levels. In particular, for a given MC task set Γ = {τ1,τ2, . . . ,τn }, ∀τk :
τk = (χk ,Ek ,Mk ,Ck ,Tk ,Dk), where χk ∈ {LO,HI } indicates a task’s criticality level. A MC system
will run into either the LO-mode or the HI-mode execution. Ek is a pair (Ek (LO),Ek (HI)) where
Ek (χ) is the worst-case execution time of τk under χ mode execution. For HI-criticality tasks,

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 35. Publication date: November 2017.

35:4 Z. Li and S. He

Ek (HI) ≥ Ek (LO), while for LO-criticality tasks, Ek (HI) = Ek (LO). The system starts at LO-mode,
when any task τk executes up to Ek (LO) time limit without signaling completion, the system will
change to HI-mode immediately. After the switch point, HI-criticality tasks are still required even
when they execute up to Ek (HI). However, LO-criticality tasks are not required to meet any dead-
line under the HI-mode (Baruah et al. 2012a; de Niz et al. 2009; Ekberg and Yi 2014) and hence they
will be suspended from further execution if competing for resources with HI-criticality tasks.

Different from the traditional MC tasks that are assumed to be computation only (Park and Kim
2011; Baruah et al. 2012b; Ekberg and Yi 2014; Su and Zhu 2013), we model each MC task as a
two-phase execution: memory-access, which is to fetch the required instructions and data, and
then computation. Though the model itself is simple, typical real-time tasks, such as image and
signal processing tasks without data written back, fits this model well (Melani et al. 2015). Among
which, Mk = (Mk (LO),Mk (HI)) and Mk (χ) indicates the worst-case memory access time under
χ -mode. Similarly,Ck is a also pair (Ck (LO),Ck (HI)) andCk (χ) is χ -mode worst-case computation
time. Ek is the total execution time including memory-access and computation, that is, Ek (χ) =
Mk (χ) +Ck (χ). A task τi generates potentially an infinite number of instances with at least Tk

time units apart from each other. Dk is the relative deadline and tasks are assumed to have implicit
deadlines. In addition, we assume a task’s memory-access time remains the same under both the
LO-mode and HI-mode execution, that is, Mk (LO) = Mk (HI).

To satisfy the safety and efficiency requirements, a task set is defined to be MC schedulable if
the following conditions are both satisfied (Baruah et al. 2012b):

(1) Both the HI-criticality and LO-criticality tasks meet their deadlines under LO-mode exe-
cution.

(2) HI-criticality tasks also meet their deadlines under HI-mode execution.

3.2 Problem Formulation

Before formulating the problem to be addressed, we first define the following notations to simplify
the representation:
QM : task set memory access priority order.
QM (τi): the memory access priority of task τi in priority order QM .
QC : task set computation priority order.
QC (τi): the computation priority of task τi in priority order QC .
hpm(τi): the set of tasks with memory access priority higher than QM (τi).
hpc (τi): the set of tasks with computation priority higher than QC (τi).
hpmc (τi): the set of tasks with memory access priority higher than QM (τi) and computation pri-
ority higher than QC (τi).
hpcH (τi): the set of HI-criticality tasks with computation priority higher than QC (τi).
RL

M (τi): worst-case response time of task τi in memory access phase under LO-mode.

RL
C (τi): worst-case response time of task τi in computation phase under LO-mode.

RL (τi): the worst-case response time of task τi under LO-mode including both memory access and
computation phases.
RH (τi): worst-case response time of task τi under HI-mode including both memory access and
computation phases.

uL (τi): task τi LO-mode utilization, where uL (τi) = Ei (LO)
Ti

.

uH (τi): task τi HI-mode utilization, where uH (τi) = Ei (HO)
Ti

.

ΓL : LO-criticality task subset that consists of all the LO-criticality tasks, that is, ΓL = {τk |τk ∈ Γ ∧
χk = LO }.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 35. Publication date: November 2017.

Fixed-Priority Scheduling for Two-Phase Mixed-Criticality Systems 35:5

ΓH : HI-criticality task subset that consists of all the HI-criticality tasks, that is, ΓH = {τk |τk ∈ Γ ∧
χk = HI }.
Uχ (ΓL): LO-criticality task set χ -mode utilization, whereUχ (ΓL) =

∑
τi ∈ΓL

uχ (τi) and χ ∈ {HI, LO}.
Uχ (ΓH): HI-criticality task set χ -mode utilization, where Uχ (ΓH) =

∑
τi ∈ΓH

uχ (τi) and χ ∈
{HI, LO}.

With the above notations, the problem we are to address in this article can be formulated as
follows:

Problem 1. Given a mixed-criticality task set Γ = {ΓLO , ΓH I } with tasks that are of two-phase

execution, that is, memory access first and then computation, develop a fixed-priority scheduler under

which the mixed-criticality task set Γ is guaranteed to be schedulable.

As mentioned above, a task set Γ is MC schedulable if (1) the worst case response time of both
LO-criticality and HI-criticality tasks should not exceed their deadlines under LO-mode, and (2)
the worst-case response time of HI-criticality tasks also should not exceed their deadlines under
HI-mode. In other words, the following inequations must be satisfied:

∀τi ∈ Γ : RL (τi) ≤ Di (1)

and

∀τi ∈ ΓH : RH (τi) ≤ Di . (2)

To design a fixed-priority scheduler for a two-phase MC task set, the key is to determine
the memory-access priorities QM and computation priorities QC . In the following sections, we
are to address the problem in two steps: (1) assuming QM and QC are given as a priori, de-
velop schedulability test theories which determine whether a given MC task set is schedulable;
(2) develop a priority strategy to determine the bestQM andQC . It is worth pointing out that both
the memory and computation phases are assumed to be preemptable (Li et al. 2012; Kaneko et al.
2003).

4 THEORETICAL FOUNDATION

GivenQM andQC , Equations (1) and (2) can be used to determine if an MC task set is schedulable.
In this section, before discussing how to calculate RL (τi) and RH (τi) in Equations (1) and (2), we
give the following definitions first:

Definition 4.1 (Phase-Transition Instant). The time instant at which the task is transited from
memory-access phase to computation phase.

Definition 4.2 (Mode-Transition Instant). The time instant at which the task is transited from
LO-mode execution to HI-mode execution.

Definition 4.3 (Memory-Interfering Task Instance). Suppose Jk is a task instance of τk . If Jk ’s
memory-access is interfered by some task instanceJi ’s memory-access, then Ji is said to be a
memory-interfering task instance of Jk .

Definition 4.4 (Computation-Interfering Task Instance). Suppose Jk is a task instance of τk . If
Jk ’s computation is interfered by some task instance Ji ’s computation, then Ji is said to be a
computation-interfering task instance of Jk .

Definition 4.5 (Dual-Interfering Task Instance). Suppose Jk is a task instance released by τk . If
some task instance Ji is both the memory-interfering task instance and computation-interfering
task instance of Jk , then Ji is said to be a dual-interfering task instance of Jk .

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 35. Publication date: November 2017.

35:6 Z. Li and S. He

Fig. 1. Worst Case Response Time Scenario.

With the above definitions, now we discuss how to calculate a task’s worst-case response time
under LO-mode RL (τk). Since a two-phase task’s execution consists of both memory access and
computation phases, RL (τk) can be expressed as:

RL (τk) = RL
M (τk) + RL

C (τk), (3)

where RL
M (τk) and RL

C (τk) are the worst-case response time of memory-access phase and compu-
tation phase, respectively.

For single criticality task set, that is, all the tasks are of the same criticality, Melani et al.
(2016) proposed the critical instance theory to calculate tasks’ worst-case execution time. For self-
containment, we include the theory as follows:

Lemma 4.6. Assuming tasks are of the same criticality, but each task’s memory-access and com-

putation phases may be at different priority levels, the worst-case response time of a task instance Jk
released by task τk can be achieved when

(1) Dual-interfering task instances complete their memory-access phases an infinitely small

amount of time earlier than the phase-transition instant of Jk .

(2) Memory-interfering-only task instances complete their memory-access phases an infinitely

small amount of time earlier than the phase-transition instance of Jk .

(3) Computation-interfering-only task instances complete their memory-access phases an infin-

itely small amount of time after the phase-transition instance of Jk .

(4) All computation-interfering task instances released after the phase-transition instance of Jk
are with null memory-access phases.

Proof. The scenario having the conditions (1)–(4) is illustrated in Figure 1, where QM =

{QM (τ1),QM (τ2), . . . ,QM (τk),QM (τk+1)}, and QC = {QC (τk+1),QC (τ1),QC (τ2), . . . ,QC (τk)}, that
is, tasks τ1, . . . ,τk−1 have both higher memory-access and computation priority than τk , while
task τk+1 has higher computation but lower memory-access priority than τk . We prove that under
this scenario both RL

M (τk) and RL
C (τk) of task instance Jk are maximized.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 35. Publication date: November 2017.

Fixed-Priority Scheduling for Two-Phase Mixed-Criticality Systems 35:7

Conditions (1) and (2) indicate that all the tasks τi with higher memory-access priority, that is,
QM (τi) > QM (τk) complete their memory-access phases at the same time. To prove the RL

M (τk)
value is maximized under this scenario, we analogize the synchronous periodic release pattern
which results in the maximum response time (Liu and Layland 1973), that is, shift right all higher
memory-access phases until they complete an infinitely small amount of time ahead of Jk ’s phase-
transition instant (Melani et al. 2015). Under such a scenario, all memory-interfering task instances’
phase-transition instants are aligned with Jk ’s, which will result in the longest memory-access
blocking time and hence RL

M (τk) is maximized.

According to standard response time analysis (Joseph and Pandya 1986), RL
C (τk) value is max-

imized when Jk and all the tasks τi with QC (τi) > QC (τk) release their computation phases syn-
chronously, which is stated as condition (3). In addition, condition (4) ensures the computation in-
terfering task instances have null memory-access phases, which reveals that computation phases
will be released as soon as possible and hence results in the longest blocking time of Jk ’s compu-
tation. All these conclude the proof. �

When an MC system executes under LO-mode, both LO-criticality and HI-criticality tasks are
required to meet their deadlines; hence, we can treat all of these tasks at the same criticality level
under LO-mode execution.

Based on these observations, similar with the Theorem 9 in Melani et al. (2016), task’s worst
case response time RL

M (τk) and RL
C (τk) can be derived using the following lemma.

Lemma 4.7. Given an MC task set Γ = {ΓL, ΓH }, the memory access priority order QM and compu-

tation priority order QC , when a system executes under LO-mode, ∀τk ∈ Γ, the worst-case response

time of memory-access phase and computation phase can be calculated as

RL
M (τk) = Mk (LO) +

∑

τi ∈hpm (τk)

⎡⎢⎢⎢⎢⎢

RL
M (τk)

Ti

⎤⎥⎥⎥⎥⎥
Mi (LO) (4)

and

RL
C (τk) = Ck (LO) +

∑

τi ∈hpc (τk)

⎡⎢⎢⎢⎢⎢

RL
C (τk) + RL

M (τi)

Ti

⎤⎥⎥⎥⎥⎥
Ci (LO), (5)

respectively.

Proof. With the standard response time analysis (Joseph and Pandya 1986), for a task instance
Jk released by task τk , if its memory-access response time is RL

M (τk), then the task with higher

memory access priority, that is,τi ∈ hpm(τk) will contribute �RL

M
(τk)

Ti
�Mi (LO) blocking time. Hence,

RL
M (τk) can be calculated by fixed-point iteration of the following equation:

RL
M (τk) = Mk (LO) +

∑

τi ∈hpm (τk)

⎡⎢⎢⎢⎢⎢

RL
M (τk)

Ti

⎤⎥⎥⎥⎥⎥
Mi (LO).

Next, we present how to calculate Jk ’s worst-case computation response. According to
Lemma 4.6, RL

C (τk) is maximized when Jk and all tasks τi ∈ hpc (τk) release their computation
phases synchronously. Under such a scenario, ∀τi ∈ hpc (τk), the total number of interfering task
instances to be completed will be

⎡⎢⎢⎢⎢⎢

RL
C (τk) − (Ti − RL

M (τi))

Ti

⎤⎥⎥⎥⎥⎥
+ 1,

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 35. Publication date: November 2017.

35:8 Z. Li and S. He

where RL
M (τi) is τi ’s memory-access response time and it is treated as the release jitter of τi ’s

computation phase. As τi can be executed up to Ci (LO) under LO-mode, the total blocking time
should be

⎡⎢⎢⎢⎢⎢

RL
C (τk) + RL

M (τi)

Ti

⎤⎥⎥⎥⎥⎥
·Ci (LO).

These conclude the proof of Lemma 4.7. �

As mentioned above, if any HI-criticality task executes over Ei (LO) time, then the system will
be switched to HI-mode. Therefore, the system’s mode change could be triggered by (1) a certain
HI-criticality task τk itself or (2) some HI-criticality task other than τk . In the following, we present
how to calculate a task’s worst-case response time under HI-mode [i.e., RH

α (τk)]. More specifically,
Lemmas 4.8 and 4.9 are to calculate RH

α (τk) in the first case, and are demonstrated in detail through
Lemmas 4.10–4.13 in the second case.

Lemma 4.8. Given an MC task set Γ = {ΓL, ΓH }, the memory access priority order QM , and compu-

tation priority order QC , if the task τk triggers the system mode change from LO-mode to HI-mode,

then its worst-case response time, that is, RH
α (τk) can be expressed as

RH
α (τk) = max

x ∈{Ek (LO),RL (τk) }
RH

α (τk ,x), (6)

where RH
α (τk ,x) represents the worst-case response time under HI-mode when the mode-transition

instant happens at time x and it can be calculated by fixed-point iteration of the following equation:

RH
α (τk ,x) = Ck (HI) −Ck (LO) + x

+
∑

τi ∈hpcH (τk)

⎡⎢⎢⎢⎢⎢

RH
α (τk ,x) − x + RL

M (τi)

Ti

⎤⎥⎥⎥⎥⎥
Ci (HI), (7)

among which, hpcH (τk) indicates the set of HI-criticality tasks with computation priority higher

than τk .

Proof. When a HI-criticality task τk runs over Ek (LO), the system will change to HI-mode.
Since τk ’s worst-case response time under LO-mode is RL (τk), the system mode could occur at
any time x between Ek (LO) and RL (τk), that is, Ek (LO) ≤ x ≤ RL (τk). With standard response
time analysis, task τk ’s worst-case response time under HI-mode when system mode changes at x
can be obtained as

RH
α (τk ,x) = Ek (LO) + BL

k (x) +Ck (HI) −Ck (LO)

+ BH
k (RH

α (τk ,x) − x), (8)

where BL
k

(x) denotes the blocking time from tasks with higher priority before τk ’s mode transition

instant,Ck (HI) −Ck (LO) is task overrun under the HI-mode, and BH
k

(RH
α (τk ,x) − x) is the block-

ing time from tasks with higher computation priority. Suppose system changes mode at time x ,
then we have

x = Ek (LO) + BL
k (x). (9)

Since Ek (LO) ≥ Mk (HI), which indicates that the task has completed its memory-access phase
under the LO-mode, the whole HI-mode execution is to finish the computation overrun. Task
τk ’s blocking time under HI-mode is contributed by HI-criticality tasks with higher computation
priority. Similar to the proof given in Lemma 4.6, the longest blocking time will be achieved if the
following conditions are satisfied:

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 35. Publication date: November 2017.

Fixed-Priority Scheduling for Two-Phase Mixed-Criticality Systems 35:9

(1) ∀τi ∈ hpcH (τk) releases the computation phase at τk ’s mode transition instant x .
(2) ∀τi ∈ hpcH (τk) has null memory access phase after τk ’s mode transition instant x .
(3) ∀τi ∈ hpcH (τk)’s computation executes up to Ci (HI) time units.

With condition (1), by analogy with the response-time analysis for classic sporadic tasks with
release jitter (Melani et al. 2015), RL

M (τi) can be treated as the release jitter and we have

BH
k (RH

α (τk ,x) − x)

=
∑

τi ∈hpcH (τk)

�
�

⎡⎢⎢⎢⎢⎢

RH
α (τk ,x) − x − (Ti − RL

M (τi))

Ti

⎤⎥⎥⎥⎥⎥
+ 1�

	
Ci (HI). (10)

With Equations (9) and (10), Equation (8) can be rewritten as

RH
α (τk ,x) = Ck (HI) −Ck (LO) + x

+
∑

τi ∈hpcH (τk)

⎡⎢⎢⎢⎢⎢

RH
α (τk ,x) − x + RL

M (τi)

Ti

⎤⎥⎥⎥⎥⎥
Ci (HI). (11)

Since x could be any time between Ek (LO) andRL (τk), the task’s worst-case response time under
HI-mode can be calculated as

RH
α (τk) = max

x ∈{Ek (LO),RL (τk) }
RH

α (τk ,x).

These conclude the proof of Lemma 4.8. �

With Lemma 4.8, RH
α (τk) can be obtained to determine if the task is schedulable under the

HI-mode. However, to obtain RH
α (τk), fixed-point iteration of Equation (7) for every possible

x ∈ {Ek (LO),RL (τk)} must be calculated, which is time consuming. Next, we present Lemma 4.9
to simplify the above calculation.

Lemma 4.9. Given an MC task set Γ = {ΓL, ΓH }, the memory access priority order QM and compu-

tation priority order QC , if the task τk triggers the system mode change from LO-mode to HI-mode,

then its worst-case response time under HI-mode, that is, RH
α (τk) can be expressed as:

RH
α (τk) = λ + RL (τk), (12)

where λ is calculated by fixed-point iteration of the following equation:

λ = Ck (HI) −Ck (LO) +
∑

τi ∈hpcH (τk)

⎡⎢⎢⎢⎢⎢

λ + RL
M (τi)

Ti

⎤⎥⎥⎥⎥⎥
Ci (HI). (13)

Proof. We prove this Lemma by simplifying Equation (6) to Equation (12). By setting

λ = RH
α (τk ,x) − x ,

then Equation (11) can be rewritten as Equation (13).
By applying fixed-point iteration of Equation (13), we can obtain the value of λ, which is inde-

pendent of the value of x . Since RH
α (τk ,x) = λ + x and Ek (LO) ≤ x ≤ RL (τk), we have

max
x ∈{Ek (LO),RL (τk) }

RH
α (τk ,x) = λ + RL (τk).

According to Equation (6), we can further get:

RH
α (τk) = λ + RL (τk).

These conclude the proof. �

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 35. Publication date: November 2017.

35:10 Z. Li and S. He

It is not hard to find that, with Lemma 4.9, RH
α (τk) can be obtained by applying fixed-point

iteration of Equation (13) only once. Comparing with Lemma 4.8, the time cost is greatly reduced.
As stated above, Lemmas 4.8 and 4.9 are only applied for such τk , which triggers the system

mode change. If some other HI-criticality task but not τk initiates the system mode switch, then at
the mode transition instant, τk could be within (a) memory-access phase or (b) computation phase.

Lemma 4.10. Given an MC task set Γ = {ΓL, ΓH }, the memory access priority orderQM and compu-

tation priority order QC , if the task τk is within memory-access phase at the mode transition instant,

then its worst-case response time under HI-mode, that is, RH
β

(τk) can be expressed as

RH
β (τk) = RL

M (τk) + RH
C (τk), (14)

where RH
C (τk) can be calculated by fixed-point iteration of the following equation:

RH
C (τk) = Ck (HI) +

∑

τi ∈hpcH (τk)

⎡⎢⎢⎢⎢⎢

RH
C (τk) + RL

M (τi)

Ti

⎤⎥⎥⎥⎥⎥
Ci (HI). (15)

Proof. After the mode transition instant x , all the LO-criticality tasks are suspended from fur-
ther execution. If the task τk is still in memory-access phase at time x , suppose the memory-access
phase response time of the task τk under HI-mode is RH

M (τk), then we should have RH
M (τk) ≤

RL
M (τk). This is because ML (τk) = MH (τk), but less memory-access interference under HI-mode

due to the suspension of LO-criticality tasks.
In addition, the computation phase will start after the memory-access and the worst-case re-

sponse time of τk ’s computation phase should be RH
C (τk):

RH
C (τk) = Ck (HI) +

∑

τi ∈hpcH (τk)

�
�

⎡⎢⎢⎢⎢⎢

RH
C (τk) − (Ti − RH

M (τk))

Ti

⎤⎥⎥⎥⎥⎥
+ 1�

	
Ci (HI)

= Ck (HI) +
∑

τi ∈hpcH (τk)

⎡⎢⎢⎢⎢⎢

RH
C (τk) + RH

M (τi)

Ti

⎤⎥⎥⎥⎥⎥
Ci (HI),

where RH
M (τk) is treated as the release time of the computation phase.

Since the total response time of task τk under HI-mode (RH
β

(τk)) includes memory-access and

computation, it should be RH
β

(τk) = RH
M (τk) + RH

C (τk). As RH
M (τk) ≤ RL

M (τk), RH
β

(τk) achieves the

maximum value at RH
M (τk) = RL

M (τk). �

Lemma 4.11. Given an MC task set Γ = {ΓL, ΓH }, the memory access priority order QM and com-

putation priority order QC , if the task τk has finished memory-access phase but not yet started the

computation phase at the mode transition instant x , then its worst-case response time under HI-mode,

that is, RH
γ (τk) can be calculated as:

RH
γ (τk) = max

x ∈[Mk (LO),RL (τk)−Ck (LO)]
(RH

γ (τk ,x)), (16)

where RH
γ (τk ,x) represents the worst-case response time under HI-mode when the mode-transition

instant happens at time x , and it can be calculated by fixed-point iteration of the following equation:

RH
γ (τk ,x) = x +Ck (HI) +

∑

τi ∈hpcH (τk)

⎡⎢⎢⎢⎢⎢

RH
γ (τk ,x) − x + RL

M (τi)

Ti

⎤⎥⎥⎥⎥⎥
Ci (HI). (17)

Proof. We follow the similar proof as used for lemma 4.8.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 35. Publication date: November 2017.

Fixed-Priority Scheduling for Two-Phase Mixed-Criticality Systems 35:11

If task τk has finished memory-access phase but not yet starts the computation at mode transi-
tion instant x , then we have Mk (LO) ≤ x ≤ RL (τk) −Ck (LO).

Since task τk ’s computation phase is not started, RH
γ (τk ,x) should be at least x +Ck (HI). In ad-

dition, within the HI-mode duration RH
γ (τk ,x) − x , the inference from higher computation phases

can be expressed as :

BH
k (RH

γ (τk ,x) − x) =
∑

τi ∈hpcH (τk)

�
�

⎡⎢⎢⎢⎢⎢

RH
γ (τk ,x) − x − (Ti − RL

M (τi))

Ti

⎤⎥⎥⎥⎥⎥
+ 1�

	
Ci (HI)

=
∑

τi ∈hpcH (τk)

⎡⎢⎢⎢⎢⎢

RH
γ (τk ,x) − x + RL

M (τi)

Ti

⎤⎥⎥⎥⎥⎥
Ci (HI)

Based on the above analysis, RH
γ (τk ,x) can be calculated as:

RH
γ (τk ,x) = x +Ck (HI) + BH

k (RH
γ (τk ,x) − x).

All the above concludes the proof. �

Lemma 4.12 is proposed to simplify the calculation of Lemma 4.11.

Lemma 4.12. Given an MC task set Γ = {ΓL, ΓH }, the memory access priority order QM and com-

putation priority order QC , if the task τk has finished memory-access phase but not yet started the

computation phase at the mode transition instant x , then its worst-case response time under HI-mode,

that is, RH
γ (τk) can be calculated as:

RH
γ (τk) = λ + RL (τk) −Ck (LO), (18)

where λ is calculated by fixed-point iteration of the following equation:

λ = Ck (HI) +
∑

τi ∈hpcH (τk)

⎡⎢⎢⎢⎢⎢

λ + RL
M (τi)

Ti

⎤⎥⎥⎥⎥⎥
Ci (HI). (19)

Proof. Following the analogous proof given in Lemma 4.9, Lemma 4.12 can be proved by setting
λ = RH

γ (τk ,x) − x . As x ≤ RL (τk) −Ck (LO), the maximum of RH
γ (τk) will be achieved when x =

RL (τk) −Ck (LO). �

Lemma 4.13. Given an MC task set Γ = {ΓL, ΓH }, the memory access priority order QM and com-

putation priority order QC , if the task τk is within computation phase at the mode transition instant,

then its worst-case response time under HI-mode, that is, RH
δ

(τk) can be calculated as

RH
δ (τk) = Ck (HI) + RL (τk) −Ck (LO)

+
∑

τi ∈hpcH (τk)

⎡⎢⎢⎢⎢⎢

RH
δ

(τk) − (RL (τk) −Ck (LO)) + RL
M (τi)

Ti

⎤⎥⎥⎥⎥⎥
Ci (HI). (20)

Proof. When the task τk is within computation phase at the mode transition instant x , theoret-
ically, we could have Mk (LO) < x ≤ RL (τk). However, under the worst-case scenario, the execu-
tion of computation phase could be delayed until x = RL (τk) −Ck (LO). Therefore, we only focus
on RL (τk) −Ck (LO) ≤ x ≤ RL (τk) and hence we have

RH
δ (τk) = max

x ∈{RL (τk)−Ck (LO),RL (τk) }
RH

δ (τk ,x). (21)

At the mode transition instant x , there must be at most RL (τk) − x computation supposed to
be completed under LO-mode but not yet finished. Hence, after system changes to HI-mode, the

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 35. Publication date: November 2017.

35:12 Z. Li and S. He

computation phase to be finished is at most ∇ = Ck (HI) −Ck (LO) + RL (τk) − x . Therefore, the
worst-case response time of task τk can be calculated as

RH
δ (τk ,x) = ∇ + x +

∑

τi ∈hpcH (τk)

⎡⎢⎢⎢⎢⎢

RH
δ

(τk ,x) − x + RL
M (τi)

Ti

⎤⎥⎥⎥⎥⎥
Ci (HI)

= Ck (HI) −Ck (LO) + RL (τk) +
∑

τi ∈hpcH (τk)

⎡⎢⎢⎢⎢⎢

RH
δ

(τk ,x) − x + RL
M (τi)

Ti

⎤⎥⎥⎥⎥⎥
Ci (HI). (22)

Since RL (τk) −Ck (LO) ≤ x ≤ RL (τk), RH
δ

(τk ,x) achieves the maximum value when x = RL (τk) −
Ck (LO).

All the above conclude the proof. �

To consolidate the above-mentioned cases together and give a uniform formula to calculate the
HI-mode worst case response time of the task τk , we have

RH (τk) = max {RH
α (τk),RH

β (τk),RH
γ (τk),RH

δ (τk)}

Lemma 4.14. Given an MC task set Γ = {ΓL, ΓH }, the memory access priority order QM and com-

putation priority orderQC , ∀τk ∈ ΓH , its worst-case response time under HI-mode, that is, RH (τk) can

be obtained by fixed-point iteration of the following equation:

RH (τk) = Ck (HI) + RL (τk) −Ck (LO)

+
∑

τi ∈hpcH (τk)

⎡⎢⎢⎢⎢⎢

RH (τk) − (RL (τk) −Ck (LO)) + RL
M (τi)

Ti

⎤⎥⎥⎥⎥⎥
Ci (HI). (23)

Proof. Since the Equations (23) and (20) are the same, in the following we prove that RH (τk) =
max{RH

α (τk),RH
β

(τk),RH
γ (τk),RH

δ
(τk)} = RH

δ
(τk).

1) RH
α (τk) ≤ RH

δ
(τk): According to Equation (12), RH

α (τk) = λ + RL (τk) where λ is calculated by

Equation (13). Plugging λ = RH
α (τk) − RL (τk) in Equation (13), we have

RH
α (τk) = Ck (HI) + RL (τk) −Ck (LO) +

∑

τi ∈hpcH (τk)

⎡⎢⎢⎢⎢⎢

RH
α (τk) − RL (τk) + RL

M (τi)

Ti

⎤⎥⎥⎥⎥⎥
Ci (HI)

≤ Ck (HI) + RL (τk) −Ck (LO) +
∑

τi ∈hpcH (τk)

⎡⎢⎢⎢⎢⎢

RH
α (τk) − (RL (τk) −Ck (LO)) + RL

M (τi)

Ti

⎤⎥⎥⎥⎥⎥
Ci (HI).

Since RH
δ

(τk) is calculated using Equation (20), it is not hard to find that RH
α (τk) ≤ RH

δ
(τk).

2) RH
β

(τk) ≤ RH
γ (τk): Comparing with Equations (15) and (19), the RH

C (τk) obtained from Equa-

tion (15) and λ calculated from Equation (19) should have the same value. Since RL (τk) −Ck (LO) ≥
RL

M (τk), according to Equations (14) and (18), we have RH
β

(τk) ≤ RH
γ (τk).

3) RH
γ (τk) = RH

δ
(τk): Based on Equation (18), by plugging λ = RH

γ (τk) − (RL (τk) −Ck (LO)) into

Equation (19), we can get

RH
γ (τk) = Ck (HI) + (RL (τk) −Ck (LO))

+
∑

τi ∈hpcH (τk)

⎡⎢⎢⎢⎢⎢

RH
γ (τk) − (RL (τk) −Ck (LO)) + RL

M (τi)

Ti

⎤⎥⎥⎥⎥⎥
Ci (HI),

which is the same formula used to calculate RH
δ

(τk), hence RH
γ (τk) = RH

δ
(τk).

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 35. Publication date: November 2017.

Fixed-Priority Scheduling for Two-Phase Mixed-Criticality Systems 35:13

Table 1. Task Parameters

τi χi Mi Ci (LO) Ci (HI) Ei (LO) Ei (HI) Ti

τ1 HI 2 1 2 3 4 5
τ2 HI 1 4 7 5 8 10
τ3 LO 1 5 5 6 6 20

Fig. 2. Task schedule with QM (τ1) > QM (τ2) and QC (τ1) > QC (τ2).

With the above analysis, we have RH (τk) = max{RH
α (τk),RH

β
(τk),RH

γ (τk),RH
δ

(τk)} = RH
δ

(τk ,x).
�

5 MEMORY-PROCESSOR PRIORITY CO-ASSIGNMENT FOR MIXED-CRITICALITY

TASK SET

We have established the theories to decide whether an MC task set is schedulable, assuming QM

and QC are known a priori. In this section, we discuss how to determine QM and QC .

Example 5.1. Consider an MC task set Γ = {ΓL, ΓH }, where ΓH = {τ1,τ2}, ΓL = {τ3}, and the pa-
rameters are listed in Table 1.

For traditional MC tasks with computation only, adaptive MC (AMC) scheduling algorithm
(Baruah et al. 2011), which assigns each task a single fixed priority, has been proved to be the
optimal one regarding to the schedulability. However, for MC tasks having both memory-access
and computation phases, any single priority assignment, that is, each task has the memory-access
and computation phases assigned at the same priority level, will not be the optimal one and a
counter-example is given as follows:

Considering the following scenario: τ1 runs two time units for memory access and two time
units for computation, task τ2 executes one time unit for memory access and seven time units for
computation. It is not hard to find that the system will operate under HI-mode and task τ3 will be
suspended. Hence, we focus on the scheduling of HI-criticality tasks τ1 and τ2 only.

By using single priority assignment, that is, a task’s memory-access and computation phases will
be assigned at the same priority level, there will be only two possible options: 1)QM (τ1) > QM (τ2)
andQC (τ1) > QC (τ2), and 2)QM (τ1) < QM (τ2) andQC (τ1) < QC (τ2). The task set scheduling order
under options 1 and 2 are depicted in Figure 2 and Figure 3, respectively. From which, it is not hard
to find that the MC task set is unschedulable under either option 1 or 2. Therefore, we can conclude
that this task set is unschedulable under any single priority assignment.

However, this MC task set is actually schedulable if the memory-access and computation phases
are assigned at different priority levels. As illustrated in Figure 4 , both tasks meet their deadlines
if QM (τ1) > QM (τ2) and QC (τ1) < QC (τ2).

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 35. Publication date: November 2017.

35:14 Z. Li and S. He

Fig. 3. Task schedule with QM (τ1) < QM (τ2) and QC (τ1) < QC (τ2).

Fig. 4. Task schedule with QM (τ1) < QM (τ2) and QC (τ1) > QC (τ2).

Inspired by Example 5.1, instead of single priority assignment, in the following we present our
two-stage priority assignment algorithm, which may assign task’s memory-access and computa-
tion at different priority levels to improve the schedulability performance.

According to Equation (5), to calculate the task τk ’s computation response time RL
C (τk), the

memory access response time of all such task τi ∈ hpc (τk) must be known a priori. Therefore,
in our proposed approach, we first assign the memory-access priorities and then computation
priorities.

Two new terms are defined to simplify the following representation:

(1) DM (τi): memory-access deadline, where DM (τi) = Di −Ci (HI).
(2) SM (τi): memory-access slack time, where SM (τi) = DM (τi) − RL

M (τi).

For a task τi , its memory access phase must be finished at least Ci (HI) time ahead of its dead-
line; otherwise, it is impossible to finish the computation phase before the deadline. Hence, the
deadline of its memory-access phase is set as DM (τi) = Di −Ci (HI). In addition, SM (τi) indicates
the tightness of τi ’s memory-access deadline and a larger SM (τi) implies the task τi ’s computation
phase is more likely to be completed before its deadline. Based on the above analysis, our memory
priority assignment (MPA) approach can be highlighted as follows:

(1) Memory-access priorities are assigned from lowest to highest order; if the current lowest
priority is assigned, the next higher one becomes the lowest available one.

(2) Assign the lowest available memory-access priority to the task with RL
M (τi) ≤ DM (τi).

Under such assignment, ties are broken by giving priority to the one with largest SM (τi).
(3) Repeat the above steps until all tasks’ memory-access phases are assigned.

With MPA algorithm, the memory-access prioritiesQM can be determined, and hence each task
τi ’s memory-access response time RL

M (τi) can be calculated using Equation (4).

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 35. Publication date: November 2017.

Fixed-Priority Scheduling for Two-Phase Mixed-Criticality Systems 35:15

The next step is to assign the computation prioritiesQC . If a task’s computation phase can meet
deadline under both LO-mode and HI-mode, this task is schedulable. With the above observation,
our proposed computation priority assignment (CPA) algorithm can be summarized in the follow-
ing steps:

(1) Computation priorities are assigned from lowest to highest order; if the current lowest
priority is assigned, the next higher one becomes the lowest available one.

(2) Assign the lowest available computation priority to a task that has the LO-mode and HI-
mode response time, that is, RL (τi) and RH (τi) satisfy Equations (1) and (2), respectively;
ties are broken arbitrarily.

(3) Repeat the above steps until all tasks’ computation phases are assigned.

With the above analysis, the details of our proposed memory-access and computation priority
assignment (MCPA) algorithm are illustrated in Algorithm 1. Among which, lines 2–11 are for the
MPA and 12–19 are for the CPA. The algorithm will return failure (line 9 and line 17) if either MPA
or CPA is not able to find a valid priority assignment.

ALGORITHM 1: MCPA(Γ = {ΓL, ΓH })
1 set QC = ∅, QM = ∅;
2 formp := 0;mp < |Γ |;mp++ do

3 find the task subset ΩM where τi ∈ ΩM with RL
M (τi) ≤ DM (τi) if QM (τi) =mp;

4 if ΩM � ∅ then

5 find the task τk ∈ ΩM with the largest SM (τk);

6 set QM (τk) =mp;

7 end

8 else

9 return FAILURE;

10 end

11 end

12 for cp := 0; cp < |Γ |; cp++ do

13 if ∃τk ∈ ΓL : RL (τk) ≤ Dk or ∃τk ∈ ΓH : RL (τk) ≤ Dk and RH (τk) ≤ Dk with QC (τk) = cp

then

14 set QC (τk) = cp;

15 end

16 else

17 return FAILURE;

18 end

19 end

20 return Q = {QM ,QC }.

6 EVALUATION

In this section, we conduct a set of experiments to evaluate the schedulability performance of
proposed MCPA algorithm and the following approaches are set as the baselines:

(1) 2BF: two-stage brute-force search, that is, brute-force searching the best among all the
possible memory-access and computation priority assignments.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 35. Publication date: November 2017.

35:16 Z. Li and S. He

(2) HEUR-DP-LO: heuristic priority assignment proposed in Melani et al. (2016) by setting
Ck (LO) as the computation time for priority assignment.

(3) HEUR-DP-HI: similar with HEUR-dp-LO, but using Ck (HI) as the computation time for
priority assignment.

In addition, AMC (Baruah et al. 2011) algorithm is also added in the comparisons. As AMC only can
schedule single-phase MC tasks, we execute memory-access and computation phases sequentially
when applying AMC.

It is worth pointing out that 2BF algorithm always returns the optimal solution, but it is time
unafforable. If there are N tasks, 2BF has to traverse all the possible N! × N! different assignment
options. However, the search space of AMC and our proposed MCPA algorithm will only beO (N 2),
which is much smaller than that of 2BF.

6.1 Experimental Setting

In the following experiments, HI- and LO-criticality tasks are generated using UUniFast algo-
rithm (Bini and Buttazzo 2005), which can create an unbiased task set in the sense that the
utilizations of the tasks are uniformly distributed. In particular, the following steps are used to
generate a valid task set:

—The utilization of a HI-criticality and LO-criticality task set are UH (ΓH) and UL (ΓL), re-
spectively. The individual task utilizations uH (τi) and uL (τi) are uniformly distributed in
[0,UH (ΓH)] and [0,UL (ΓL)], respectively;

—Task’s period Ti is randomly selected from [50, 200];
—HO-criticality task’s execution time Ei (HI) is set as Ti · uH (τi) and Ei (LO) = λ · Ei (HI),

where λ is a random value within the range [0.4, 0.8];
—LO-criticality task’s execution time Ei (HI) is set as Ti · uL (τi) and Ei (LO) = Ei (HI);
—Task’s memory-access time Mi (HI) = Mi (LO) = γ · Ei (LO), whereγ ≤ 1 is called the mem-

ory access ratio;
—Task’s computation time Ci (χ) = Ei (χ) −Mi (χ).

We define a metric called schedulability ratio, that is, the number of task sets passing the schedu-
lability test over the total number of generated task sets, to quantify the performance of the
compared algorithms. In addition, the comparisons will be made through the following different
aspects:

(1) Impact of HI-mode utilization UH (ΓH)
(2) Impact of LO-mode utilization UL (ΓL)
(3) Sensitivity to memory access ratio r
(4) Sensitivity to the task set size |Γ |

6.2 Experiment Results and Discussions

In the following experiments, except the last one, six tasks are generated in each task set. Among
which, three are of HI-criticality and the other three are of LO-criticality. The impact of task set
size will be evaluated as the last set of experiments. The results shown in the following figures are
the average values of repeating the experiments with 100 different task sets.

6.2.1 Impact of HI-Mode UtilizationUH (ΓH). In the first set of experiments, we set the memory
access ratio r = 0.6, LO-criticality task set utilization UL (ΓL) = 0.5, and change HI-criticality task
set utilization UH (ΓH) from 0.4 to 1.0.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 35. Publication date: November 2017.

Fixed-Priority Scheduling for Two-Phase Mixed-Criticality Systems 35:17

Fig. 5. Schedulability ratio comparison under varied UH (H) with UL (L) = 0.5.

Fig. 6. Schedulability ratio comparison under varied UL (L) with UH (H) = 0.5.

The results depicted in Figure 5 reveal that higher UH (ΓH) results in lower schedulability ratio
for all compared algorithms. Among them, AMC has the worst schedulability performance—this is
because AMC assumes memory-access and computation phases to be executed sequentially. Our
proposed MCPA algorithms always perform better than HEUR-DP-LO and HEUR-DP-HI under
varied UH (ΓH). When UH (ΓH) = 0.8, the schedulability ratio of MCPA is over 50% higher than
that of HEUR-DP-HI. These are due to the fact that MC tasks have two execution times, that
is, LO-mode and HI-mode execution times, but only one is counted in the priority assignment of
HEUR-DP-HI/HEUR-DP-LO algorithm. 2BF performs the best, which can achieve up to 15% higher
schedulability ratio than MCPA, but it has to exhaustively search all the possible options, which
is time unaffordable.

6.2.2 Impact of LO-Mode UtilizationUL (ΓL). In this set of experiments, we set r = 0.6,UH (ΓH) =
0.5, and vary the LO-mode utilization UL (ΓL) from 0.4 to 1.0 to evaluate the impact of UL (ΓL).

The experiment results are shown in Figure 6. Analogous to the trend shown in Figure 5,
2BF is the best, as it can find the optimal solution. Our proposed MCPA algorithm has better

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 35. Publication date: November 2017.

35:18 Z. Li and S. He

Fig. 7. Schedulability ratio comparison under varied memory-access ratio.

schedulability performance than both HEUR-DP-LO and HEUR-DP-HI algorithms, especially un-
der higherUL (ΓL). WhenUL (ΓL) = 0.8, schedulability ratio of MCPA algorithm is over 30% higher
than that of HEUR-DP-HI. AMC algorithm is almost unable to schedule any task set when
UL (ΓL) > 0.7.

6.2.3 Sensitivity to Memory Access Ratio r . The impact of memory-access ratio is investigated
by varying γ from 0.0 to 1.0. In addition, we set UH (ΓH) = 0.5, UL (ΓL) = 0.5. The results are il-
lustrated in Figure 7. AMC algorithm is insensitive to the memory-access ratio as AMC schedules
the memory-access and computation phases sequentially, hence the schedulability ratio will not be
impacted as long as the total workload remains unchanged. However, HEUR-DP-LO, HEUR-DP-HI
and our proposed MCPA have higher schedulability ratio under more “balanced” memory-access
and computation phases, this is because these three algorithms can take advantage of the parallel
execution of different tasks’ memory-access and computation phases.

However, when r = 0 and hence the tasks are memory-access only, both HEUR-DP-LO and
HEUR-DP-HI are worse than our proposed MCPA; when r = 1, all the tasks are computation only,
all the HEUR-DP-LO, HEUR-DP-HI, and our MCPA approaches are degraded to deadline mono-
tonic algorithm, therefore, their performances converge to the same point.

6.2.4 Sensitivity to the Task Set Size |Γ |. In this set of experiments, we set UH (ΓH) = 0.7,
UL (ΓL) = 0.6, and the memory access ratio r = 0.6. As 2BF is time unaffordable under large task
set, we exclude it in this set of comparisons. The experimental results are illustrated in Figure 8.
AMC still performs the worst, which is almost useless. HEUR-DP-LO, HEUR-DP-HI, and our pro-
posed MCPA algorithms have higher schedulability ratio under larger task set—this is due to the
following reason: under the same total utilization, larger task set implies that the same workload
will be divided into more chunks and the priorities can be assigned at smaller granularity, and
hence it is more apt to be schedulable.

7 CONCLUSION

In this article, we developed our approach for two-phase MC task set under fixed-priority sched-
uling. Different from traditional MC tasks having computation phase only, a new two-phase MC
task model consisting of both memory-access and computation phases was proposed. Upon the

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 35. Publication date: November 2017.

Fixed-Priority Scheduling for Two-Phase Mixed-Criticality Systems 35:19

Fig. 8. Schedulability ratio comparison under varied task set size.

new task model, a fixed priority scheduling algorithm was developed in the following two steps:
we first established the schedulability test under the given memory-access and computation pri-
orities, and then devised a two-phase priority assignment strategy to find the best memory-access
and computation priorities regarding to schedulability ratio. The experiment results revealed that
existing scheduling theories could not be applied to the newly developed task model and our pro-
posed two-phase priority assignment approach, which is not the optimal but performs much better
than any existing algorithm.

In this article, the MC tasks were modeled with one memory-access phase and one computa-
tion phase, our immediate future work is to extend the current work for MC tasks with multi-
ple memory-access and computation phases. In addition, we are building a many-core computing
platform and plan to further evaluate the proposed models and approaches under real hardware
platforms.

REFERENCES

N. C. Audsley. 2001. On priority assignment in fixed priority scheduling. Inf. Process. Lett. 79, 1 (May 2001), 39–44.

James Barhorst, Todd Belote, Pam Binns, Jon Hoffman, James Paunicka, Prakash Sarathy, John Scoredos, Peter Stanfill,

Douglas Stuart, and Russel Urzi. 2009. Mcar white paper: A research agenda for mixed-criticality systems. In CPS Week

2009 Workshop on Mixed Criticality: Roadmap to Evolving UAV Certification 2009.

S. Baruah, V. Bonifaci, G. D’Angelo, Haohan Li, A. Marchetti-Spaccamela, N. Megow, and L. Stougie. 2012a. Scheduling

real-time mixed-criticality jobs. IEEE Trans. Comput. 61, 8 (2012), 1140–1152.

S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, S. Van der Ster, and L. Stougie. 2012b. The preemptive

uniprocessor scheduling of mixed-criticality implicit-deadline sporadic task systems. In Proceedings of the 24th Euromi-

cro Conference on Real-Time Systems (ECRTS’12). 145–154.

S. K. Baruah, A. Burns, and R. I. Davis. 2011. Response-time analysis for mixed criticality systems. In Proceedings of the IEEE

32nd Real-Time Systems Symposium (RTSS’11). 34–43.

S. Baruah and B. Chattopadhyay. 2013. Response-time analysis of mixed criticality systems with pessimistic frequency

specification. In Proceedings of the IEEE 19th International Conference on Embedded and Real-Time Computing Systems

and Applications (RTCSA’13). 237–246.

S. Baruah and S. Vestal. 2008. Schedulability analysis of sporadic tasks with multiple criticality specifications. In Proceedings

of the Euromicro 2008 Conference on Real-Time Systems (ECRTS’08). 147–155.

Enrico Bini and Giorgio C. Buttazzo. 2005. Measuring the performance of schedulability tests. Real-Time Systems 30, 1–2

(2005), 129–154.

A. Burns and R. I. Davis. 2013. Mixed Criticality Systems: A Review. Technical Report MCC-1(b). Department of Computer

Science, University of York, East Lansing, MI.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 35. Publication date: November 2017.

35:20 Z. Li and S. He

G. C. Buttazzo, G. Lipari, and L. Abeni. 1998. Elastic task model for adaptive rate control. In Proceedings of the 19th IEEE

Real-Time Systems Symposium (RTSS’98). 286–295.

D. de Niz, K. Lakshmanan, and R. Rajkumar. 2009. On the scheduling of mixed-criticality real-time task sets. In Proceedings

of the 30th IEEE Real-Time Systems Symposium (RTSS’09). 291–300.

P. Ekberg and Wang Yi. 2012. Bounding and shaping the demand of mixed-criticality sporadic tasks. In Proceedings of the

2012 24th Euromicro Conference on Real-Time Systems (ECRTS’12). 135–144.

Pontus Ekberg and Wang Yi. 2014. Bounding and shaping the demand of generalized mixed-criticality sporadic task sys-

tems. Real-Time Systems 50, 1 (2014), 48–86.

Mathai Joseph and Paritosh K. Pandya. 1986. Finding response times in a real-time system. Comput. J. 29, 5 (1986), 390–395.

Wataru Kaneko, Kenji Kono, and Kentaro Shimizu. 2003. Preemptive resource management: Defending against resource

monopolizing dos. Applied Informatics, vol 21, 662–669.

Z. Li, S. Ren, and G. Quan. 2014. Dynamic reservation-based mixed-criticality task set scheduling. In High Performance

Computing and Communications, Proceedings of the IEEE 6th International Symposium on Cyberspace Safety and Security,

2014 IEEE 11th International Conference on Embedded Software and Systems (HPCC, CSS, ICESS’14). 603–610.

Zheng Li and Li Wang. 2016. Memory-aware scheduling for mixed-criticality systems. In Proceedings of the 16th Interna-

tional Conference on Computational Science and Its Applications (ICCSA’16). Springer International.

Z. Li, N. Wu, and M. Zhou. 2012. Deadlock control of automated manufacturing systems based on petri nets;a literature

review. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42, 4 (July 2012), 437–462.

G. Lipari and G. C. Buttazzo. 2013. Resource reservation for mixed criticality systems. In Proceedings of the Workshop on

Real-Time Systems: The Past, the Present, and the Future. 60–74.

C. L. Liu and James W. Layland. 1973. Scheduling algorithms for multiprogramming in a hard-real-time environment. J.

ACM 20, 1 (Jan. 1973), 46–61.

D. Liu, J. Spasic, N. Guan, G. Chen, S. Liu, T. Stefanov, and W. Yi. 2016. EDF-VD scheduling of mixed-criticality systems

with degraded quality guarantees. In Proceedings of the 2016 IEEE Real-Time Systems Symposium (RTSS’16). 35–46.

Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and Giorgio Buttazzo. 2015.

Memory-processor co-scheduling in fixed priority systems. In Proceedings of the 23rd International Conference on Real

Time and Networks Systems (RTNS’15). ACM, New York, NY, 87–96.

A. Melani, M. Bertogna, R. Davis, V. Bonifaci, A. Marchetti-Spaccamela, and G. Buttazzo. 2016. Exact response time analysis

for fixed priority memory-processor co-scheduling. IEEE Trans. Comput. PP, 99 (2016), 1.

Taeju Park and Soontae Kim. 2011. Dynamic scheduling algorithm and its schedulability analysis for certifiable dual-

criticality systems. In Proceedings of the 9th ACM International Conference on Embedded Software (EMSOFT’11). ACM,

New York, NY, 253–262.

Hang Su and Dakai Zhu. 2013. An elastic mixed-criticality task model and its scheduling algorithm. In Proceedings of the

2013 Design, Automation Test in Europe Conference Exhibition (DATE’13). 147–152.

Steve Vestal. 2007. Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance.

In Proceedings of the 28th IEEE International Real-Time Systems Symposium (RTSS’07). 239–243.

Oreste Villa, Gianluca Palermo, and Cristina Silvano. 2008. Efficiency and scalability of barrier synchronization on NoC

based many-core architectures. In Proceedings of the 2008 International Conference on Compilers, Architectures and Syn-

thesis for Embedded Systems (CASES’08). ACM, New York, NY, 81–90.

Qingling Zhao, Zonghua Gu, and Haibo Zeng. 2015. Resource synchronization and preemption thresholds within mixed-

criticality scheduling. ACM Trans. Embed. Comput. Syst. 14, 4 (2015), 81.

Received September 2016; revised May 2017; accepted May 2017

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 35. Publication date: November 2017.

