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through performance and space-aware
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Abstract
Hybrid parallel file systems (PFSs), which consist of solid-state drive servers (SServer) and hard disk drive servers
(HServer), have recently attracted growing attention. Compared to a traditional HServer, an SServer consistently pro-
vides improved storage performance but lacks storage space. However, most current data layout schemes do not con-
sider the differences in performance and space between heterogeneous servers and may significantly degrade the
performance of the hybrid PFSs. In this article, we propose performance and space-aware (PSA) scheme, a novel data
layout scheme, which maximizes the hybrid PFSs’ performance by applying adaptive varied-size file stripes. PSA dis-
patches data on heterogeneous file servers not only based on storage performance but also storage space. We have
implemented PSA within OrangeFS, a popular PFS in the high-performance computing domain. Our extensive experi-
ments with representative benchmarks, including IOR, HPIO, MPI-TILE-IO, and BTIO, show that PSA provides superior
I/O throughput than the default and performance-aware file data layout schemes.
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I. Introduction

Many large-scale applications in science and engineer-
ing have become more and more data intensive
(Kandemir et al., 2008). For example, Table 1 shows
the data requirements of a few representative applica-
tions at Argonne National Laboratory in 2012 (Latham
et al., 2013). The generated data of these applications
reach several terabytes per year. Such large data
requirements are putting unprecedented pressure on
computer input/output (I/O) systems to store data
effectively. In the meanwhile, storage devices have a
slower performance improvement than central process-
ing units during the past three decades. While processor
speeds have increased nearly by 50% each year, the
access latency of a single hard disk drive (HDD) has
only reduced by roughly 7% (Hennessy and Patterson,
2011). As a result, I/O system has become the major
performance bottleneck for many applications in high-
performance computing (HPC) domain.

To accommodate growing volumes of data, parallel
file systems (PFS), such as PVFS (Carns et al., 2000),
OrangeFS (Orange File System), Lustre (Microsystems,
2007), and GPFS (Schmuck and Haskin, 2002), have
been developed to achieve high aggregate I/O

throughput by leveraging the parallelism of multiple
HDD-based file servers. However, due to the diversity
of data access patterns, it is not always enough to
improve I/O performance by simply adding more stor-
age servers. For example, in the face of noncontiguous
small requests, PFSs still perform poorly (He et al.,
2014b) because of the low degree of server parallelism
as well as the frequent disk head movements on each
server due to random accesses (Song et al., 2011b).
Hence, fully utilizing the underlying file servers is still a
challenging task.
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New emerging storage technologies, such as flash-
based solid-state drives (SSDs), have received wide-
spread attention in revolutionizing I/O system design
(Ou et al., 2014). SSDs have orders of magnitude
higher performance, lower power consumption, and a
smaller thermal footprint over traditional HDDs (Chen
et al., 2009). While SSDs are ideal storage media for
PFSs in terms of performance, it is not an economical
option to completely deploy SSDs in a large-scale sys-
tem due to the high costs of SSDs. Furthermore,
HDDs still have several benefits in HPC domains, such
as high capacity and decent peak bandwidth for large
sequential requests. Therefore, hybrid storage systems,
which consist of HDD-based file servers (HServer) and
SSD-based file servers (SServer), provide practical solu-
tions for data-intensive applications (He et al., 2013,
2014a, 2014b, 2014c; Zhu et al., 2013).

These hybrid systems are a cost-effective way to
deliver capacity and bandwidth, which is important to
nearly all classes of systems. Generally SServers can be
used as a cache tier (He et al., 2014b) or a regular stor-
age tier (He et al., 2014c; Zhu et al., 2013) in a hybrid
storage system. The caching architecture and the one-
tiered architecture are suitable for different system
configurations and application access patterns. For
example, the caching architecture performs well for
small random requests and high-end SServers, but fail
to fully utilize of I/O parallelism from multiple servers
for large accesses and ordinary SServers. Detailed com-
parison of these architectures is out of the scope of this
article. In this work, we focus on the one-tiered archi-
tecture, where both SServers and HServers work as
storage servers of a hybrid PFS.

The effectiveness of a hybrid PFS relies on the effec-
tiveness of its data layout scheme. In existing PFSs, the
stripe-based data layout approach is commonly used to
distribute data among available file servers. This tradi-
tional scheme dispatches a large file across multiple

servers with a fixed-size stripe in a round-robin fashion.
While resulting in even data placement on servers, this
scheme will lead to decreased I/O performance because
of the nonuniform access distribution in the workloads
(Leung et al., 2008). To alleviate this issue, numerous
strategies have been studied on data layout optimiza-
tion, such as adjusting the file stripe sizes to rearrange
loads among servers (Song et al., 2011b, 2012) or opti-
mizing the file stripe distribution method according to
the data access patterns (Song et al., 2011a). However,
these approaches mainly focus on homogeneous PFSs
with identical HServers, and may not work well in
hybrid PFSs due to the following reasons.

First, the storage performance of each file server is
not differentiated in existing layout schemes. HServer
and SServer can have different storage performance
behaviors due to their distinct internal structure (Chen
et al., 2009). A high-speed SServer can finish storing
data in a local SSD faster than a low-speed HServer;
thus, HServer is often the straggler in the service of a
large file request in a parallel environment. When
directly applied to the hybrid PFSs, existing layout
schemes will result in severe load imbalance among file
servers even under uniform workloads, which can sig-
nificantly degrade the performance of the hybrid I/O
system.

Second, traditional layout schemes have an assump-
tion that each file server has an identical, sufficient
storage space to accommodate file data. However, most
current SSDs have relatively smaller capacities than
HDDs because they are more expensive (Kim et al.,
2014). Existing data layout schemes focus on promoting
the performance balance among servers with little atten-
tions paid on the storage space balance (He et al.,
2014c). Consequently, SSDs may quickly run out of
their limited space when more data are dispatched on
them. These one-sided designs may have hidden flaws
that may impair their potential effectiveness for improv-
ing the overall I/O performance for prolonged time.

In this article we propose performance and space-
aware (PSA) scheme, a performance and space-aware
data layout scheme that carefully arranges data layout to
improve the hybrid PFS performance. Unlike traditional
schemes, PSA distributes file data on different types of
servers using adaptive stripe sizes. Additionally, PSA dis-
patches large file stripes on HServers than SServers, so
that more file requests are allowed to be served by both
HServers and SServers rather than only HServers within
a given SSD capacity. Since the two types of servers
working together are likely to provide better I/O perfor-
mance than HServers, PSA leads to substantial perfor-
mance improvement for all file requests. The proposed
data layout scheme creates a better balance between stor-
age performance and space of heterogeneous file servers
and can be extended to systems with various types of file
servers, system configuration, and I/O patterns.

Table 1. Data requirements for select 2012 INCITE
applications at Argonne Leadership Computing Facility of ANL
(Latham et al., 2013).

Project Online
(TBytes)

Off-line
(TBytes)

Supernovae Astrophysics 100 400
Combustion in Reactive Gases 1 17
CO2 Absorption 5 15
Seismic Hazard Analysis 600 100
Climate Science 200 750
Energy Storage Materials 10 10
Stress Corrosion Cracking 12 72
Nuclear Structure and Reactions 6 30
Reactor Thermal Hydraulic Modeling 100 100
Laser-Plasma Interactions 60 60
Vaporizing Droplets in a Turbulent Flow 2 4
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Specifically, we make the following contributions.

� We find that performance-aware data layout policy
can only obtain suboptimal performance of hybrid
PFSs with low-capacity SServers.

� We introduce a cost model to evaluate file request
completion time on heterogeneous HServers and
SServers and file request completion time only on
homogeneous HServers.

� Based on the proposed cost model, we propose a
PSA algorithm to determine the appropriate file
stripe sizes for HServer and SServers in a hybrid
PFS.

� We implement the prototype of the PSA scheme
under OrangeFS and have conducted extensive
tests to verify the benefits of the PSA scheme. We
evaluate PSA with representative benchmarks,
including IOR, HPIO, MPI-TILE-IO, and BTIO.
Experiment results illustrate that PSA can signifi-
cantly improve the hybrid I/O system performance.

The rest of this article is organized as follows.
Background and motivation are presented in Section II.
The design and implementation of PSA are described in
Section III. Section IV presents the performance eva-
luation. Section V discusses the related work, and
Section VI concludes the article.

2. Background and motivation

We first introduce our target environment for the pro-
posed layout scheme. Next, we introduce the traditional
layout policies and the corresponding problems when
they are applied to hybrid PFSs.

2.1. The hybrid PFS architecture

A PFS mainly includes three components: clients, ser-
vers, and metadata servers (MDSs). A client provides a
file interface for users to access data, a server serve data
to the rest of the cluster, and a MDS contains informa-
tion about the data distribution on the servers. Upon a
file operation, a file client first contacts MDS to get the
file metadata information, then interacts with file ser-
vers directly. A PFS can have one or multiple MDSs
and each MDS can locate either on the same physical
node as file server or on a separate node.

Figure 1 shows the system architecture of a typical
hybrid PFS (the MDSs are not depicted), which
includes two kinds of file servers: HServers and
SServers. Generally, SServers have relatively higher
storage performance than HServers. This hybrid archi-
tecture provides promising solutions for cost-
constrained storage systems. However, the potential
benefits cannot be realized unless we carefully consider
the file data layout in the hybrid PFSs.

2.2. Traditional fixed-size striping data layout schemes

In order to keep pace with the processing capabilities in
HPC clusters, PFSs such as PVFS (Latham et al., 2013)
and Lustre (Hennessy and Patterson, 2011) are
designed to improve I/O performance. In PFSs, data
layout schemes are responsible for defining the way a
file’s data are distributed on the underlying servers.
Files in PFSs are often organized in fixed-sized stripes,
and they are dispatched onto the underlying servers in
a round-robin fashion.

Figure 2 illustrates the idea of the traditional data
layout in PFSs. In this example, a file’s data are placed
on the three server with a fixed-size stripe. This policy
can provide an even data placement in each file server
as well as good I/O performance for many data access
patterns in tradition PFSs. As this layout scheme is rel-
atively simple and effective, it is widely used in many
PFSs. For example, in OrangeFS, this scheme is the
default layout method named ‘‘simple striping’’.

2.3. Motivation example

Although traditional data layout strategies are suitable
for homogeneous PFSs, they may significantly degrade
the overall I/O performance of hybrid PFSs. Figure 2

Figure 1. The architecture of a hybrid PFS. PFS: parallel file
system.

Figure 2. Traditional data layout scheme with fixed-size stripe
on file servers.
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demonstrates a representative example of a typical file
access pattern in current HPC systems with the fixed-
size file striping data layout. For simplicity, we assume
to have three processes (P0-2), six file requests (R0-5),
and each process has two requests. We also assume that
there are two HServers and one SServer. To be specific,
we assume each request size is three times the file stripe
size, so that all servers can contribute to the overall I/O
performance.

By the default fixed-size layout method, each request
is divided into three sub-requests. For example, R0 is
served by sub-request #0-2 and R1 by sub-request #3-
5, as shown in Figure 2. While each sub-request has the
same size, their I/O completion time is significantly dif-
ferent due to the existing performance disparity
between HServers and SServers. For example, I/O time
of sub-request #2 is smaller than that of sub-request
#0, as shown in Figure 3. Because I/O completion time

of a request is determined by the slowest sub-request,
each request time equals that of the sub-request’s time
on HServer. As we can see, due to the existing file strip-
ing assignment, each SServer continues to stay idle in
the service of file requests, which results in severe I/O
performance degradation.

There exists a possible solution to overcome this
problem by taking the file server performance into
account when deciding the stripe size of each file server
(He et al., 2014c). As illustrated in Figure 4, by assign-
ing SServer with a larger stripe than HServers, all ser-
vers can finish their sub-requests simultaneously and
the load imbalance is alleviated. However, some SSDs
often have relatively smaller storage space than HDDs.
The one-sided design will make SSDs quickly run out
of their limited space; thus all the remaining requests
are only served by the low-speed HServers, which can
provide relatively low I/O performance. To show the
difference of underlying servers carrying out the
requests, we categorize all file requests in a hybrid file
system into two types: heterogeneous and homogeneous.
A heterogeneous request refers to the case where the
request is served by both HServers and SServers; a
homogeneous request refers to the one served only by
the slow HServers. Generally, heterogeneous requests
have better I/O performance than homogeneous requests
because they are involved in more storage servers.
Therefore, if we can increase the ratio of heterogeneous
requests over all file requests through optimized data
layouts, the overall file system performance can be
largely improved.

3. Design and implementation

In this section, we first introduce the basic idea of the
proposed data layout scheme. Then we describe the
cost model and algorithm used to determine the opti-
mal stripe size for each server. Finally, we present the
implementation of PSA.

3.1. The basic idea of PSA

The proposed data layout scheme (PSA) aims to
improve hybrid PFSs with performance and space-
aware adaptive file stripes. Instead of assigning
SServers with larger file stripes as performance-aware
strategy (He et al., 2014c), the basic idea of PSA is to
assign HServer with larger file stripes and SServers with
smaller stripes. Since the storage space of SServer is
consumed more gradually, this layout scheme can lead
to more heterogeneous requests from the given client’s
data accesses. As a result, we can get the globally opti-
mized I/O performance for all file requests rather than
the local optimization for certain requests.

As explained previously, we assume that HServer
has enough space to accommodate data and SServer

Figure 3. The I/O times of sub-requests on different file
servers. With fixed-size file stripe, SServer will finish their sub-
requests faster than HServer, leading to significant load
imbalance among file servers. I/O: input/output; SServer: solid-
state drive server.

Figure 4. Performance-aware data layout scheme. High-speed
HServers are assigned with larger stripes, so that all servers
finish their sub-requests almost simultaneously. However,
SServers run out their limited space quickly and the remaining
requests will be served only by HServers. SServer: solid-state
drive server; HServer: hard disk drive server.
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only has limited space for file requests. Figure 5 illus-
trates the file data distribution on the underlying ser-
vers after we assign the stripe sizes for HServers and
SServers using our strategy. To show the performance
comparison, we assume that there are 20 file requests
from clients. For performance-aware data layout
scheme (PA), we assume each SServer has space for six
sub-requests, as shown in Figure 4. Thus, there are six
heterogeneous requests and 14 homogeneous requests
among all requests. For the proposed PSA scheme, we
assume each SServer can absorb 20 sub-requests as
each SServer is allocated with smaller stripe size. In this
case, all file requests belong to heterogeneous requests.
While the performance of heterogeneous file requests in
PSA layout cannot be better than that of PA, PSA
leads to a large number of heterogeneous file requests.
We assume the I/O time for heterogeneous requests
under PA and PSA strategy is 2T and 4T , respectively,
and the I/O time for homogeneous requests in PA is
8T , then the overall I/O time for all requests under PA
and PSA strategy is 2T 3 6+ 8T 3 14= 124T and
4T 3 20= 80T , respectively. This validates that PSA
can improve the overall file system performance.

It is worth noting that in our strategy, it is not neces-
sary to require all file requests to be served by both
HServers and SServers. We only attempt to increase
the number of heterogeneous requests, when there is a
possibility of performance optimization.

In practice, determining the appropriate file stripe
sizes based on storage performance and space is not
easy for several reasons. First, the performance of each
file server can be impacted significantly by both I/O
patterns and storage media. Even under the same I/O
patterns, HServer and SServer can have different per-
formance behaviors. Second, for given file requests and
storage space on each SServer, different stripe sizes will

result in various heterogeneous request and homoge-
neous request ratios, which can largely impact the over-
all PFS performance.

3.2. An analytic data access cost model

To identify the optimal data layout with appropriate
stripe sizes for HServers and SServers, we built an ana-
lytical cost model to evaluate the data access time in a
parallel computing environment. The critical para-
meters are listed in Table 2. Since SServers and
HServers have distinct storage media, they exhibit dif-
ferent storage characteristics. First, Ts for SServer is
much smaller than that for HServer. Second, bs is sev-
eral times smaller than bh, which means SServers have
a performance advantage over HServers for large
requests, but not as significant for small requests.
Finally, write performance of SServer is lower than
read performance because write operations on SSDs
lead to numerous background activities, including gar-
bage collection and wear leveling. Due to these device-
aware critical parameters, the cost model can effectively
reflect the performance of requests on various types of
file servers.

The cost is defined as the I/O completion time of a
file request in a hybrid PFS, which mainly includes two
parts: the network transmission time, TNET , and the
storage access time, TSTO. Generally, TNET consists of
TE, which is the network connection for data transmis-
sion, and TX , which is the data transferring time on net-
work. TSTO consists of TS and TT , the former is the
startup time on server, and the latter is the actual data
read/write time on storage media.

Since both heterogeneous requests and homogeneous
requests may exist in hybrid PFSs due to the limited
space of SServers, we calculate their I/O costs, respec-
tively. For heterogeneous file requests, we use a previ-
ous cost model (He et al., 2014c) to evaluate the data

Figure 5. PSA data layout scheme. SServers are assigned with
smaller stripes, so that there are more requests served by .
With a given SSD capacity, the overall I/O performance of file
requests can be improved. SServer: solid-state drive server;
SSD: solid-state drive; I/O: input/output; PSA: performance and
space-aware.

Table 2. Parameters in cost analysis model.

Symbol Meaning

p Number of client processes
c Number of processes on one I/O client node
m Number of HServers
n Number of SServers
h Stripe size on HServer
s Stripe size on SServer
S Data size of one request
e Cost of single network connection establishing
t Network transmission cost of one unit of data
ah Startup time of one I/O operation on HServer
bh HDD transfer time per unit data
as Startup time of one I/O operation on HServer
bs SSD transfer time per unit data

SServer: solid-state drive server; HServer: hard disk drive server; SSD:

solid-state drive; I/O: input/output.
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access cost. In this model, we assume the requests are
fully distributed on all HServers and Servers as Figure
5, namely m 3 h+ n 3 s= S, then the cost model can
be calculated as in Table 3. More details about con-
structing the data access cost can be found in our previ-
ous research (He et al., 2014c).

For homogeneous file requests, since the previous
model (He et al., 2014c) does not work for them, we
introduce a new cost model to calculate their data
access times. In this case, we assume these requests are
distributed only on all HServers with a stripe size of
S=m. We choose this stripe configuration because it
leads to good load balance among file servers as well as
optimal overall I/O performance. With these assump-
tions, the corresponding cost is defined as the formulas
in Table 4. Hence, our model considers the space lim-
itation of SServer and can accommodate diverse file
requests.

3.3. Optimal stripe size for file servers

Based on the proposed cost model, we devise a heuris-
tic iterative algorithm to determine the appropriate
stripe sizes for HServers and SServers, as displayed in
Algorithm 3.3. Starting from sh equaling S= M +Nð Þ,
the loop iterates sh in ‘step’ increments while sh is less
than S=M . Different from previous work (He et al.,
2014c) where SServer serves larger sub-requests, this
configuration intends to make SServer serves smaller
sub-requests so that SServer can contribute more file
requests to improve the overall I/O performance. The
extreme configuration we do consider is where h is
S=M , which means dispatching file request data only
on HServers may obtain better I/O performance. For
each stripe size pair for HServers and SServers, namely
sh, ssh i, the loop iterates to calculate the total access
cost of all file requests, either with formulas in Table 3

if they are distributed on both HServers and SServers,
or with formulas in Table 4 to calculate if they are dis-
tributed only on HServers. Finally, the stripe size pair
that leads to minimal total data access cost is chosen.
The ‘step’ value, as shown in line 3 of Algorithm 1, is
4 KB. The user can choose finer ‘step’ values resulting
in more precise Sh and Ss values, but with increased
cost calculation overhead. However, computational
overhead for executing this algorithm is acceptable
because the calculations are simply arithmetic opera-
tions and run off-line.

Once the optimal stripe sizes for HServers and
SServers are determined, PFSs can distribute file data
with the optimal data layout to improve the hybrid
PFSs performance.

3.4. Implementation

The proposed stripe size optimization requires a prior
knowledge of applications’ access characteristics.
Fortunately, many HPC applications access their files
with predictable I/O patterns and they often run multi-
ple times (Liu et al., 2014; Wang and Kaeli, 2003;
Zhang and Jiang, 2010). For instance, BTIO (The NAS
parallel benchmarks, 2016), an I/O kernel responsible
for solving block-tridiagonal (BT) matrices on a three
dimensional array, is one of these applications. For
BTIO, once the size of the array, the number of time
steps, the write interval, and the number of processes
are given, the I/O accesses can be accurately predicted
before the program executes. This feature provides an
opportunity to achieve the PSA data layout based on I/
O trace analysis.

Based on the above observation, we implemented
the proposed PSA data layout scheme in OrangeFS
(Orange File System) with I/O access analysis.
OrangeFs is a new branch of the PVFS2 file system

Table 3. Data access cost for heterogeneous requests on both HServers and Sservers.

Condition Network cost TNET Storage cost TSTO

Establish TE Transfer TX Startup TS +R/W TT

p<c(m+ n) c(m+ n)e maxfcSt, pht, pstg p �maxfah + hbh,as + sbsg
p.c(m+ n) pe maxfcSt, pht, pstg p �maxfah + hbh,as + sbsg

SServer: solid-state drive server; HServer: hard disk drive server.

Table 4. Data access cost for homogeneous requests on Hservers.

Condition Network cost TNET Storage cost TSTO

Establish TE Transfer TX Startup TS +R/W TT

p<cm cme maxfcSt, pSt=mg pah + phbh

p.cm pe maxfcSt, pSt=mg pah + phbh
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(Carns et al., 2000), which is widely used in the HPC
domain. Figure 6 shows the procedure of the optimal
data layout scheme, which mainly consists of three
phases: estimation, determination, and placement.

In the estimation phase, we obtain the related para-
meters in the cost model. For a given system, the net-
work parameters, such as e and t, the storage
parameters, such as ah, bh, as, and bs, and the system
parameters, such as m and n can be regarded as

constants. We use one file server in the PFS to test the
storage parameters for HServers and SServers with
sequential/random and read/write patterns. We use a
pair of one client node and one file server to estimate
the network parameters. All these tests are repeated
thousands of times, and we use the average values in
the cost model.

In the determination phase, we use a trace collector
to obtain the run-time statistics of data accesses during
the application’s first execution. Based on the I/O trace,
we obtain the application’s I/O pattern related para-
meters, such as c, p, and S. Combined with the para-
meters obtained in the estimation phase, we use the cost
model and Algorithm 1 to determine the optimal file
stripe sizes for HServers and SServers.

In the placement phase, we distribute the file data
with the optimal data layout for later runs of the appli-
cations. The OrangeFS file system supports an API for
implementing specific variable stripe distribution. The
variable stripe distribution is similar to simple stripe,
except the stripe size can be configured differently on
various file servers. In OrangeFS, parallel files can
either be accessed by the PVFS2 or the POSIX inter-
face. For PVFS2 interface, we utilize the ‘‘pvfs2-xattr’’
command to set the data distribution of directories
where the application files are located. When a new file
is created, we use the ‘‘pvfs2-touch’’ command with the
‘‘-l’’ option to specify the order of the file servers, so
that the proper file stripe size can be applied to the cor-
responding file servers. For POSIX interface, we use

Algorithm 1: Stripe Size Determination Algorithm

Input: File requests: R0, R1, . . . , Rk�1, SServer Capacity: Cs,
Output: optimal stripe sizes: SH for HServer, SS for SServer

1 l S
m+ n;

2 h S
m;

3 step 4KB;
4 for sh  l; sh<h; sh  sh + step do
5 ss  (S�m � sh)=n;

6 j Cs

Ss
/*j is the number of heterogeneous requests*/;

7 for i 0; i\k; i i+ 1 do
8 Determine request type of Ri based on its offset, length, and j;
9 if Ri is a heterogeneous request then

10 /*Ri is distributed on m+ n servers */;
11 Ti  Calculate the access cost of Ri according to the formulas in Table 3;
12 else
13 /*Ri is distributed only on m HServers*/;
14 Ti  Calculate the access cost of Ri according to the formulas in Table 4;
15 end
16 Total cost Total cost+ Ti;
17 end
18 if Total cost\Opt cost then
19 Opt cost Total cost;
20 SH  sh;
21 SS  ss

22 end
23 end

Figure 6. The procedure of the PSA data layout scheme. PSA:
PSA: performance and space-aware.

402 The International Journal of High Performance Computing Applications 30(4)



the ‘‘setfattr’’ command to reach the similar data layout
optimization goal.

4. Performance evaluation

In this section, we evaluate the performance of the pro-
posed data layout scheme with benchmark-driven
experiments.

4.1. Experimental setup

We conducted the experiments on a 65-node SUN Fire
Linux cluster, where each node has two AMD
Opteron(tm) processors, 8 GB memory, and a 250 GB
HDD. Sixteen nodes are equipped with additional
OCZ-REVODRIVE 100-GB SSD. All nodes are
equipped with Gigabit Ethernet interconnection. The
PFS is OrangeFS 2.8.6.

Among the available nodes, we select eight as client
computing nodes, eight as HServers, and eight as
SServers. By default, the hybrid OrangeFS file system
is built on four HServers and four SServers. As dis-
cussed, a parallel file will be divided into two parts if
SServers run out of space. The first part is distributed
on all file servers and the other part is placed only on
HServers. We compare PSA with other two data layout
schemes: the default (DEF) scheme and the PA scheme.
In DEF, the first part of the file is placed across all ser-
vers with a fixed-size stripe of 64 KB; in PA, the stripe
sizes for HServers and SServers in the first part of the
file are determined by storage performance as discussed
in the report by (He et al., 2014c). For the second part
of the file, all schemes distribute the file on HServers
with a stripe size of S=m, where S is the request size
and m denotes the number of HServers.

We use the popular benchmark IOR (2016), HPIO
(Ching et al., 2006), MPI-TILE-IO (2016), and BTIO
(The NAS parallel benchmarks, 2016) to test the

performance of the PFS. For simplicity, we will use
stripe size pair h, sh i to denote that the stripe sizes on
HServers and SServers are h and s, respectively.

4.2. The IOR benchmark

The IOR is a PFS benchmark providing three APIs,
MPI-IO, POSIX, and HDF5. We only use MPI-IO
interface in the experiments. Unless otherwise specified,
IOR runs with 16 processes, each of which performs I/
O operations on a 16 GB shared file with request size
of 512 KB. To simulate the situation that SServers have
relatively smaller space than HServers, we limit the
storage space of each SServer to 1 GB.

(1) Different type of I/O operations: First we test
IOR with sequential and random read and write I/
O operations. From Figure 7, we observe that
PSA has optimal I/O performance compared to
the other data layout schemes. By using the opti-
mal stripe sizes for HServers and SServers, PSA
improves read performance up to 66.9% over
DEF with all I/O access patterns, and write per-
formance up to 77.1%. Compared with PA, PSA
improves the performance up to 39.8% for reads
and 29.7% for writes. For PA, the optimal stripe
sizes for sequential and random read and write are
28KB, 100KBh i, 20KB, 108KBh i, 24 KB, 104 KBh i,
and 36KB, 92KBh i, respectively. For PSA, the
optimal stripe sizes for sequential and random read
and write, are 120KB, 8KBh i, 120KB, 8KBh i,
116KB, 12KBh i., and 120KB, 8KBh i, respec-
tively. This demonstrates both PA and PSA
schemes adopt various file stripes for different I/O
operations. However, by allocating small stripe
sizes for SServers, PSA can make better trade-off
between SSD’s performance and space to improve
the overall I/O performance. PSA’s read

Figure 7. Throughputs of IOR under different layout schemes with different I/O modes. I/O: input/output.
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performance exceeds its write performance because
SSDs perform better for read operations than write,
as described in Section III-B. The experiments
prove PSA performs optimally and the stripe size
determining formula is effective.

(2) Different number of processes: The I/O perfor-
mance is also evaluated with different number of
processes. The IOR benchmark is executed under
the random access mode with 8, 32, and 64 pro-
cesses.
As displayed in Figure 8, the result is similar to
the previous test. PSA has the best performance
among the three schemes. Compared with DEF,
PSA improves the read performance by 62.8%,
59.5%, and 36.7%, respectively, with 4, 32, and
64 processes, and write performance by 74.3%,
70.9%, and 66.7%. Compared with PA, PSA
improves read performance by 36.2%, 41.9%,
and 27.1% with 4, 32, and 64 processes, and
write performance by 32.1%, 25.4%, and
22.3%. As the number of processes increase, the

performance of the hybrid PFS decrease because
more processes lead to severer I/O contention in
HServers. These results show that PSA has
excellent scalability with the number of I/O
processes.

(3) Different request sizes: In this test, the I/O perfor-
mance is examined with different request sizes.
The IOR benchmark is executed with request
sizes of 128 KB and 1024 KB and the number of
processes is fixed to 16. From Figure 9(a), we
can observe that PSA can improve the read per-
formance by up to 68.7%, and write by up to
74.4% in comparison with DEF scheme.
Compared with PA, PSA also has better perfor-
mance: the read performance is increased by up
to 43.4% and write performance is increased by
up to 38.9%. We also find that PSA provides
higher performance improvement for large
request size because large requests benefit more
from both HServers and SServers than only
HServers. These results validate that PSA can

Figure 8. Throughputs of IOR with varied number of processes.

Figure 9. Throughputs of IOR with varied request sizes.
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choose appropriate stripe sizes for HServers and
SServers when facing different request sizes.

(4) Different server configurations: The I/O perfor-
mance is examined with different ratios of
SServers to HServers. The OrangeFS is built
using HServers and SServers with the ratios of 5:3
and 3:5.

Figure 10 shows the I/O bandwidth of IOR with dif-
ferent file server configurations. Based on the results,
PSA can improve I/O throughput for both read and
write operations. When the ratio is 5:3, PSA improves
the read and write performance by up to 58.6% and
68.2%, respectively, when compared to DEF.
Compared with PA scheme, PSA increases the read
performance by 35.3% and write performance by
28.6%. When the ratio is 3:5, we can observe that PSA
has similar behavior. In the experiments, read and write
performance improve as the number of SServers
increase because the I/O performance of heterogeneous
requests benefits more from more SServers. Using the
optimal stripe sizes determined by the PSA layout

method in this article, PSA can significantly improve
the hybrid file system performance with every file ser-
ver configuration.

4.3. The HPIO benchmark

HPIO is a program developed by Northwestern
University and Sandia National Laboratories to evalu-
ate I/O system performance (Ching et al., 2006). This
benchmark can generate various data access patterns
by changing three parameters: region count, region
spacing, and region size. In our experiment, we set the
number of process to 32, the region count to 1024, the
region spacing to 0, and vary the region size from
64 KB to 512 KB. In addition, we build the file system
on four HServers and four SServers, and we limit all
SServers to contribute 1/3 storage space for all requests
in each test to simulate the case where SServer can’t
provide enough space.

As shown in Figure 11(a), compared with DEF, PSA
can increase read throughput by 59.4%, 64.5%, and
51.8% with request size 64 KB, 256 KB, and 512 KB,

Figure 10. Throughputs of IOR with varied file server configurations.

Figure 11. Throughputs of HPIO with varied region sizes.
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respectively. In contrast to PA, PSA obtains a perfor-
mance improvement of 33.2%, 25.1%, and 19.2%,
respectively. For write operations, PSA also exhibits
performance benefits over DEF and PA scheme, as pre-
sented in Figure 11(b). This result means that PSA is
effective with respect to HPIO benchmark. Similar to
previous tests, PSA provides higher I/O performance
for large region size (large request size) because large
requests benefit more for both HServers and SServers.

4.4. The MPI-tile-IO benchmark

MPI-Tile-IO is an MPI I/O test program designed by
the Parallel I/O Benchmarking Consortium (MPI-
TILE-IO, 2014). It treats the entire data file as a two-
dimensional dense dataset and tests the performance of
different data access patterns. Each process accesses a
chunk of data based on the size of each tile and the size
of each element. In the tests, we set the number of ele-
ments in the X and Y directions to 8 and 8, the size of
each element to 32 KB, and vary the number of pro-
cesses between 100 and 400. We also set both overlap_x
and overlap_y as 0, and perform collective I/O

operations. Moreover, we configure the OrangeFS file
system on four HServers and four SServers and make
SServers to hold 1/4 shared file data.

Figure 12 shows the aggregated I/O throughputs.
Compared with DEF, PSA improves the read perfor-
mance by 41.9%, 38.2%, and 34.1%, respectively, with
100, 200, and 400 processes, and write performance by
50.8%, 56.7%, and 59.2%. Compared with PA, PSA
improves read performance by 28.2%, 30.8%, and
27.9% with 100, 200, and 400 processes, and write per-
formance by 26.9%, 30.7%, and 32.2%. As the number
of processes increase, the performance of the hybrid
PFS decrease because more processes lead to severer I/
O contention in HServers. However, PSA still has the
best performance among the three schemes.

4.5. The BTIO benchmark

In addition to the benchmarks above, we use the BTIO
benchmark (The NAS parallel benchmarks, 2016) from
the NAS Parallel Benchmark (NPB3.3.1) suite to evalu-
ate the proposed scheme. BTIO represents a typical sci-
entific application with interleaved intensive
computation and I/O phases. BTIO uses a BT parti-
tioning pattern to solve the three-dimensional compres-
sible Navier–Stokes equations.

We consider the Class C and full subtype BTIO
workload in the experiments, that is, we write and read
a total size of 6.64 GB data with collective I/O func-
tions for its IO operations. We use 4, 16, and 64 com-
pute processes as BTIO requires a square number of
processes. Output file is striped across six HServers and
two SServers on the hybrid OrangeFS file system. In
the experiments, we limit each SServer to hold 0.5 GB
file data.

As shown in Figure 13, compared to DEF and PA
scheme, PSA achieves better throughput and scalability.
Compared to DEF, PAS improves the performance by
66.1%, 47.7%, and 53.7% with 4, 16, and 64 processes,
respectively. For PA, PSA achieves the improvement by

Figure 12. Throughputs of MPI-Tile-IO with varied number of processes.

Figure 13. Throughput of BTIO under varied number of
processes.
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up to 38.9%. The experimental result confirms that
PSA helps to improve hybrid file system performance.

All these experiment results have confirmed that the
proposed PSA scheme is a promising method to
improve the data layout of the hybrid PFSs. It helps
PFS provide high-performance I/O service to meet the
growing data demands of many HPC applications.

5. Related work

5.1. Data layout in HDD-based file systems

Data layout optimization is an effective approach to
improve the performance of file systems. PFSs gener-
ally provide several data layout strategies for different
I/O workloads (Song et al., 2011a), including simple
stripe, two-dimensional stripe, and variable stripe.
Widely adopted techniques for data partition (Rubin et
al., 2002; Wang and Kaeli, 2003) and replication
(Huang et al., 2005; Jenkins et al., 2014; Song et al.,
2011a) are utilized to optimize data layout depending
on I/O workloads.

Simple stripe layout schemes are unable to obtain
high performance for applications that access I/O sys-
tems erratically. Segment-level layout scheme logically
divides a file into several sections such that an optimal
stripe size is assigned for each section with nonuniform
access patterns (Song et al., 2011b). Server-level adap-
tive layout strategies adopt various stripe sizes on dif-
ferent file servers to improve the overall I/O
performance of PFSs (Song et al., 2012). PARLO uti-
lizes various data layout polices to accelerate scientific
applications with heterogeneous access patterns at I/O
middleware layer (Gong et al., 2013). However, these
efforts are suitable for heterogeneous file servers.
AdaptRaid addresses the load imbalance issue in het-
erogeneous disk arrays (Cortes and Labarta, 2003) with
adaptive number of blocks, which cannot be obtained
in PFSs. Tantisiriroj et al. (2011) use HDFS-specific
layout optimizations (Shvachko et al., 2010) to improve
the performance of PVFS. However, similar to most of
previous works, this study is designed for homogeneous
HDD-based file systems and can’t be applied to hetero-
geneous environments.

5.2. Data layout in SSD-based file systems

SSDs, which exhibit noticeable performance benefits
over traditional HDDs, are commonly integrated into
PFSs to improve I/O performance. Currently, most
SSDs are used as a cache to traditional HDDs, for
example, Sievestore (Pritchett and Thottethodi, 2010),
iTransformer (Zhang et al., 2012), and iBridge (Zhang
et al., 2013). SSD-based hybrid storage is another pop-
ular method that utilizes the full potential of SSDs,
such as I-CASH (Yang and Ren, 2011) and Hystor

(Chen et al., 2011). Yet, the vast majority of these tech-
niques are done on a single file server.

For hybrid parallel I/O systems, our earlier work
CARL (He et al., 2013) selects and places file regions
with high access costs onto the SSD-based file servers
at the I/O middleware layer. S4D-Cache (He et al.,
2014b) and SLA-Cache (He et al., 2016) use all SSD-
based file servers as a cache and selectively caches
performance-critical data on these high-performance
servers. HyCache+ (Zhao et al., 2014) uses fast stor-
age media, such as memory or SSD to provide a scal-
able high-performance caching middleware to improve
the I/O performance of PFSs. Welch et al. place small
files and file metadata onto SSDs, and large file extents
onto HDDs (Welch and Noer, 2013). However, in these
studies the HDD-based and SSD-based file servers
work independently and the parallelism of servers is
hard to be utilized.

Meager amount of effort is devoted to data layout
in a hybrid PFS, yet this knowledge is commonly
needed when aging HDD file servers are replaced by
new SSD-base file servers. PADP (He et al., 2014c) uses
varied-size stripes to improve the performance of
hybrid PFSs, but the stripe sizes are only optimized for
server storage performance. HAS (He et al., 2015a,
2015c) achieves an optimal data layout accounting for
both application access patterns and server perfor-
mance by choosing the least expensive layout from
three typical layout candidates. HARL (He et al.,
2015b) applies varied stripe sizes on file servers for dif-
ferent regions of a file. These techniques are effective in
improving the performance of hybrid PFSs, but they
do not consider the space limitation of high-
performance servers. Hybrid PFSs will lead issues of
performance and space disparities between heteroge-
neous servers, and this work helps to deal with these
challenges in hybrid storage architecture.

6. Conclusions

With the availability of SSDs, hybrid PFSs have
become common and promising in engineering practice.
Compared to a traditional HDD, an SSD commonly
has higher storage performance but smaller storage
space. In this study, we have proposed a PSA data lay-
out scheme, which distributes data across HServers and
SServers with adaptive stripe sizes. PSA determines file
stripe size on each server not only based on storage per-
formance but also space. We have developed and pre-
sented the proposed PSA data layout optimization
scheme in OrangeFS. In essence, PSA provides a better
matching of data access characteristics of an applica-
tion with the storage capabilities of file servers in a
hybrid file system. Experimental results show that PSA
is feasible and promising. PSA improves I/O perfor-
mance by 36.7% to 74.4% over the default file data
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layout scheme and it provides 20.6% to 43.5% better I/
O performance than the performance-aware data lay-
out scheme. In the future, we plan to extend the data
layout scheme to hybrid PFSs with two or more file ser-
ver performance profiles and investigate online
approaches to adapt to the changes of workloads.
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