
Design of an Object-based Storage Device Based on I/O
Processor

Shuibing He
Wuhan National Laboratory for Optoelectronics
School of Computer Science and Technology

Huazhong University of Science and Technology
Wuhan, 430074, China

 E-mail: hesbingxq@163.com

Dan Feng
Wuhan National Laboratory for Optoelectronics
School of Computer Science and Technology

Huazhong University of Science and Technology
Wuhan, 430074, China

E-mail: dfeng@hust.edu.cn

Abstract
Object-based Storage Device (OSD) is the foundation of the
Object-based Storage System (OBSS).As the petabyte-scale OBSS
includes thousands of OSDs, the performance, cost and power of
single OSD must be considered together to build such a huge
storage system The existing OSD based on server and general-
purposed PC platform cannot have an excellent tradeoff among
the three factor as they are not designed specifically for storage
applications. An original OSD architecture based on the Intel
IOP315 I/O processor chipset is presented in this paper. The I/O
processor makes it powerful for the OSD to process the network
communication protocol and the unique switch fabric of the
chipset can further improve the I/O performance through parallel
data transfer in multiple I/O channels. The experimental results
show that the OSD performs well for system performance.
Moreover, it provides characteristic of low cost and power.

Categories and Subject Descriptors
B.4.2 [input/Output and Data Communication]: Input/Output
Devices-channels and controllers; C.3 [Special-Purpose and
Application-Based Systems]:Real-time and embedded systems

General Terms
Design, performance

Keywords
Object-based storage device, I/O processor, switch fabric,
performance, power

1. Introduction

Object-based Storage System (OBSS) has led to a new wave in
network storage field [1] [2]. The OBSS captures the benefits of
NAS and SAN; it can provide storage with high performance,
scalable capacity and bandwidth, secure data sharing for
heterogeneous Operating System. Object, composed of application
data and attributes, is the base logical unit for data access in OBSS.
Object is of variable size and can be used to store every type of
data. Object attribute is used to describe characteristics of object
data.

The object-based storage device (OSD) which stores the objects
is the core of the OBSS. The OSD will represent the next

generation of disk drives for network storage [3]. Since the
petabyte-scale OBSS has thousands of self-contained OSDs
working together to provide storage service [8][9], the
performance, cost and power of single OSD can largely influence
the overall system. As a result, the design of an OSD with
excellent tradeoff among the three factors is critical to build such
a large-scale storage system.

 At present, the OSD or its prototype is usually based on Sever
or PC platform [3, 4, 5, 6, 7]. Though these kinds of OSDs usually
have good performance, they are not suitable for OSD design as
they do not fully consider the characteristics of storage
applications. First, as these platforms have powerful processors,
plenty of memory and other functional modules, they cost a lot.
Second, the existed resources are not configured with good
balance for storage. On the one hand, the components unrelated to
storage application are waste and the exceeded processing
capability is not fully used. On the other hand, the storage related
components seem to be lack or weak. For example, the bandwidth
of the I/O bus in PC platform usually has limitation for further
improve the disk and network I/O performance. Third, though
these kinds of design have relative superiority in terms of
computation speed, they usually bring forward an inherent
drawback that the power of these OSDs is considerable. As the
OSD usually provides 7x24 services, the overall power of such a
huge system is a serious problem when the system runs over time.

 This paper presents a novel design of OSD. The goal is to build
a good performance OSD meanwhile considering the cost and the
power. The Intel IOP315 I/O processor chipset with switch fabric
is used as the platform of the OSD. Based on the platform,
effective object-based software is implemented. Meanwhile, the
cost and the power is low due to the embedded chips is used.

The rest of this paper is organized as follow: in Section 2, we
give an overview of the Object-Based Storage System and the
OSD. Section 3 describes the related works on the design of the
OSD. In Section 4, we discuss the hardware platform and the
object control software on our OSD. The test results in Section 5
show that the OSD performs well for system performance. Finally,
section 6 concludes the paper.

2. OBSS Architecture Overview and OSD
The OBSS architecture is shown in Figure 1.The OBSS has

three main components: the Metadata Server (MDS), the OSDs

30

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1453775.1453782&domain=pdf&date_stamp=2008-10-01

and clients. The MDS provides objects mapping information in
OSDs and authentication for clients’ data access. When a client
accesses the data in an OSD, it first contacts with the MDS and
gets the mapping information about the objects. Then the client
interacts with the OSD directly. Unlike request to a block device,
the request here contains object ID, an offset within the object,
attribute values and so on. Finally, the OSD receives the object-
based request and performs corresponding operations.

Figure 1. OBSS architecture

The OSD is the cornerstone of the OBSS. It is an intelligent

storage device that contains CPU, memory, the storage media
(disk), and the network interface which allow it to manage the
local object store, and autonomously serve and store data from the
network. Generally speaking, the OSD provides three major
functions:

Object management. The first is to reliably store and retrieve
object data and object attributes from physical media. The second
is to optimize the storage management by using its memory and
processor.

Device security management. The OSD plays a new security
control mechanism. Each request to the OSD must be
accompanied with a capability which authorizes the client and its
action. The OSD inspects each incoming transmission for the
proper authorization capabilities and rejects any that are missing,
invalid or expired.

Network communication. The network interface is gigabit
Ethernet instead of fiber channel. The OSD must manage the
network communication so as to receive the iSCSI command from
the clients and the MDS.

 The OSD will have heavy workload when it faces with the data
intensive application. Therefore, the processing capacity, network
interface speed and the disk interface speed must be increased.
Otherwise, it will be the bottleneck of the OBSS.

3. Related Works
The Object-based storage is a hot research field today in

network storage technology. A lot of researches have been done to

design the OSD and the PC platform is a popular choice for their
convenience and the short time to develop the system.

IBM Haifa Labs implemented an OSD prototype:
ObjectStone[13], it runs on a Linux server. It has high
performance but its price is expensive. The OST in Lustre project
can be view as the control software of an OSD and it usually is
configured to run on PC[4] [5].The OST exports object interface,
it translates the object access into the file access which based on
the general purpose file system through an internal OBD Filter.
Though it has relatively lower cost, but the PC platform has
potential limitations in performance. For example, the disk
controllers, network interface controller, and other devices usually
are attached to the single I/O bus (PCI). As a result, the PCI bus
maybe becomes the bottleneck to further improve the performance
of both the disk I/O and network I/O. Further more, as the OST is
based on local file system rather than an independent object-base
file system, the OST degrades the OSD performance. The OSD in
Panasas is StorageBlade [6][7],it uses 1.2GHz Intel Celeron CPU
and 2 SATA disks as its hardware platform. This OSD has good
performance, but has poor scalability for bandwidth and capacity
in one StorageBlade.

4. The Object-based Storage Device Design

4.1 I/O processor overview
The Intel IOP315 I/O processor chipset with Intel XScale

technology is the product in Intel’s fourth-generation of I/O
processors. It contains two devices: the Intel 80200 processor
based on Intel XScale microarchitecture [10] and the Intel 80314
I/O companion chip [11]. The chipset provide a rich peripheral set
designed for storage and network applications. When used as an
OSD, the chipset provides a high-performance cost-effective
platform.

4.2 The Architecture of an OSD Based on
Switch Fabric

The ideal design of OSD should consider the requirements of
the storage applications such as proper performance of processing
capability, high-speed I/O bandwidth for network and disk
interface, specified hardware units to accelerate the calculating
when the technique RAID is used and the low power.

 In view of the perfect solution for all these aspects, the Intel
IOP 315 embedded system is used as the hardware platform of
OSD. As shown in the Figure 2, the Intel 80314 is the
interconnection core of the OSD ， with two Intel 80200
processors attached to its Core Interface Unit (CIU). The Intel
80200 performs the major tasks of OSD, such as network protocol
resolve，basic system operations and advanced task management.
Besides these main chips, some peripheral components are
employed. A DIMM SDRAM is connected to the Intel 80314 as
system main memory, while a flash memory is used to keep the
necessary data needed to boot the system attached to the
Peripheral Bus Interface (PBI). Two Gigabit Ethernet PHY
Transceivers, Marvel 88E1020 which provide high speed network
bandwidth are connect to the two integrated MAC ports.
Connected to the 80314 by PCI-X bus, the four Intel 31244 serial
ATA controllers realize the communication between host and disk
storage, and bring large capacity for OSD since they each has four
serial ATA disk interfaces. A LCD display attached to the PBI is

31

used to display the system status. Also, a JTAG port is provided
for advanced hardware debugging.

Figure 2. The OSD architecture based on switch fabric

The Intel 80200 processor supports maximum frequency 733

MHz [10]. What is the much surprising is that even at 600 MHz
the 80200 processor dissipates less than a watt. Comparing with
the power 89 watt which a typical Intel P4 3.0GHz processor
dissipates, the embedded processor Intel 80200 has salient
superiority in power. Indeed, the iSCSI protocol is a heavy weight
protocol, the resolution of iSCSI protocol and the disk processing
may result in a high utilization of one processor when it face with
data intensive applications. As the OSD has two processors, one
of them can resolve the iSCSI protocol, the other can take charge
of the disk operations and run the OS to have an excellent
performance.

 The significant characteristic of the OSD is that the Intel 80314
is designed as a fabric-centric, any-port-to-any-port bridge. It uses
an internal switch fabric and supports concurrent transactions
from any interface to any other interface. Such a unique
characteristic which can’t be obtained from other popular
hardware architecture brings a lot of benefits to improve the OSD
performance.

In the OSD, two methods are used to optimize the I/O
performance with the implements by the software.

1) Data is transferred in parallel by using two independent high-
speed PCI-X buses attached to the switch fabric. Here, the
technique RAID is used improve the OSD disk I/O performance.

2) Two network interfaces can work concurrently to increase
the throughput and reduce the network latency. It is implemented
with the network binding technique.

4.3 The address map mechanisms
The Intel 80314 has several address spaces: 32-bit CPU/CIU space,
64-bit fabric space(SFN address space) and two 64-bit PCI/X
spaces. Each functional block attached to the switch fabric
contains registers to set up addressing properties such as base
address, window size, address translation, and routing across the
fabric. Different functional blocks can have slightly different
configuration mechanisms. The GigE, PBI, DMA/XOR, and 64-
bit SDRAM fabric ports all operate off of the SFN address space
and thus have simpler decode mechanisms comprised of an
address register to set the SFN start address for the unit and a
mask register to set properties such as the decode window size for
the unit.Table 1 describes the OSD address mapping.

Table 1. The memory map of the OSD

4.4 The Software Architecture
In order to achieve the Object-based data storage functions, we

have implemented the storage software based on the hardware
architecture. Figure 3 shows that the software system is made up
of two main components: Control Module and real time embedded
Linux OS. The Control Module runs on the real time OS and
processes the iSCSI and OSD commands, while the real time OS
based on the hardware platform accomplishes the data read /write
operations through Object-base File System (OBFS) and the
corresponding device driver. The OBFS and the Control Module
are implemented in the form of a module in kernel space.

Address Size (MB) Description

0x00000000 1 GB SDRAM

0x40000000 256 FLASH/PBI

0x50000000 1 SRAM

0x50100000 64 KB Control Registers

0x80000000 495 PCI1 MEM32

0x9EFF0000 1 PCI1 I/O

0x9F000000 16 PCI1 CFG

0xA0000000 256 PCI1 PFM1

0xB0000000 256 PCI1 PFM2

0xC0000000 495 PCI2 MEM32

0xDEFF0000 1 PCI2 I/O

0xDF000000 16 PCI2 CFG

0xE0000000 256 PCI2 PFM1

0xF0000000 256 PCI2 PFM2

32

Figure 3. The OSD software architecture

The Control Module waits for the iSCSI commands come from

the OBS clients。Once a command is detected, it resolves the
SCSI commands carried in the iSCSI package. According to the
information in the SCSI commands, the Control Module
implements the operation of Primary Command such as INQUIRY,
REPORT LUNS, MODE SELECT and OSD Command, such as
OSD READ, OSD WRITE [2].The detailed processing is seen in
figure 4.

The OBFS implements the specific object-based operations
derived from the Control Module, such as hustosdfs_write_object,
hustosdfs_read_object, etc. It maps the object level request to the
block level request through a certain mechanism, and then
accomplishes the disk read or write operations by calling the disk
device driver in the lower layer.

5. Performance Evaluation and power
comparison

The OSD Prototype has been implemented. Its picture is shown
in Figure 5.Presently, only one CPU is running on the OSD
because the Embedded Linux doesn’t support two CPUs now;
modifying the kernel to support both CPUs is the future work.
Nevertheless, the OSD still exhibits excellent performance in our
experiments. In this section, we present experimental setup and
numerical results.

5.1 Experimental Setup

For the purpose of performance evaluation, an object-based
client file system mounted on the client machine is also developed.
Furthermore, the MDS is implemented on a PC. The experiment
platform is show in table 2.

The MDS, Client and the OSD are connected to the Switch.
Iozone is a popular benchmark that has been used extensively for
basic evaluation of file systems [12], and it is chosen as the
benchmark for the experiment.

The motive of this experiment is to measure the performance of
the OSD based-on IOP315 and OSD based on PC platform. The
configuration of the OSD based on PC platform is the same as the
client in the table 2. In the experiment, only one Gigabit Ethernet
interface in the OSD based on IOP315 is used and the other will
be used in the future. Moreover, only one disk is tested, indeed,
more disks can be configured as a MD with RAID technique to
improve the disk I/O performance. To access the data in OSD, a
test directory is created in the Client machine, and the client
object-based file system is mounted on the directory, and then all
kinds of operations can be done in the directory as in a general file
system.

Figure 4. The details of the Control Module

33

Figure 5. The OSD picture

Table 2. The Configuration of the MDS and the Client

 CPU Main
board

Memor
y

Disk Network

MDS

Client

Intel
Xeon

3.0GHz

Super-
micro

X6DHE-
XB

DDR
ECC
 RG

512M

Maxtor
Diamond
Max10/

SATA150
 200GB

Bcm5700
Gigabit
Ethernet

Switc
h

Cisco Catalyst 3750 Gigabit Ethernet witch

OS Redhat 9, Kernel Version 2.4.20

5.2 Results
In the experiment, a 64MB file is tested with multiple transfer

sizes. Figure 6, Figure 7 shows the results of this experiment.

It is can be seen from the figures that the OSD based on PC
platform has relative better read /write performance than that
based on IOP315. It is mainly because the processing capability in
PC platform farther exceeds that based on IOP315. To verify the
cause of performance difference, the CPU utilizations in the two
OSDs also are tested. We find the utilization is about 53-64% in
PC platform and 82-91% in IOP315 platform. Though the CPU in
PC platform is several times faster than that in the IOP 315
platform, the I/O performance benefit can not be obtained
proportionally. This shows the resource in our new design is
configured with better balance. As the read/write performance gap
is not large, if the two processors work together in the OSD based
on IOP315 in the future, we believe that the performance of the
new design will exceed that in the OSD based on PC platform.

5.3 Power Comparison
The powers of the two kinds of OSD are tested. The IOP

platform is less then 25 watt, but the PC platform is more than 160
watt when the disk power is not considered as it is the same. This
can show the benefit of the OSD based on IOP315 in power due to
the adaptations of the embedded chips.

Figure 6. The write performance comparison
Figure 7. The read performance comparison

6. Conclusions
As the petabyte-scale OBSS includes thousands of OSDs, the

performance, cost and power of single OSD must be considered
together to build such a huge storage system The existing OSD
based on server and general-purposed PC platform cannot have an
excellent tradeoff among the three factor as they are not designed
specifically for storage applications. An original OSD architecture
based on the Intel IOP315 I/O processor chipset is presented in
this paper. The I/O processor makes it powerful for the OSD to
process the network communication protocol and the unique
switch fabric of the chipset can further improve the I/O
performance through parallel data transfer in multiple I/O
channels. The experimental results show that the OSD performs
well for system performance. Moreover, it provides characteristic
of low cost and power.

In the future, a lot of works will be done on software layer to
make full use of the characteristic of the OSD hardware
architecture. For example, the OS kernel will be modified to
support both CPUs in the OSD. Furthermore, the storage software
will be optimized and an adaptive prefetching algorithm will be
designed for the OSD to further improve the OSD performance.

0

5

10

15

20

25

30

8 16 32 64 128 256 512 1024 2048

Request Block Size(KByte/s)

W
r
i
t
e

T
h
r
o
u
g
h
t
(
M
B
/
s
)

PC platform IOP315

0

5

10

15

20

25

30

35

8 16 32 64 128 256 512 1024 2048

Request Block Size(Kbyte/s)

R
e
a
d

T
h
r
o
u
g
h
t
(
M
B
/
s
)

PC platform IOP315

34

7. Acknowledgements
This work was supported by the National Basic Research

Program of China (973 Program) under Grant No.2004CB318201,
the Program for New Century Excellent Talents in University
NCET-04-0693, Wuhan Project 20061002031&200750730307.

8. References

[1] M.Mesnier,G.R.Ganger,E.Riedel. Object-based

Storage .IEEE Communications Magazine,2003，Vol.41,
Issue 8:84-90

[2] T10 work group. SCSI object-based storage device
commands (OSD). T10/1355-D working draft,2004

[3] PANASAS WHITE PAPER: Object Storage Architecture:
Defining a new generation of storage systems built on
distributed, intelligent storage devices. 2003

[4] Peter J Braam. The Lustre Storage Architecture. Cluster File
Systems, Inc. Whiter Paper. http://www.clusterfs.com. 2004

[5] Yu Weikuan, R. Noronha, Liang Shuang, et al. Benefits of
high speed interconnects to cluster file systems: a case study
with Lustre. In: The 20th International Parallel and
Distributed Processing Symposium(IPDPS 2006). 2006.
8~15

[6] Tang Hong, A.Gulbeden, Zhou Jingyu, et al. The Panasas
ActiveScale Storage Cluster - Delivering Scalable High
Bandwidth Storage. In: Proceedings of the ACM/IEEE
SC2004 Conference on Supercomputing. 2004. 53~62

[7] Panasas Inc. Object Storage Architecture. White Paper.
http://www.panasas.com/ objectbased_mgnt.html

[8] Wang Feng, Brandt Scott A., Miller Ethan L., et al. OBFS:
A File System for Object-based Storage Devices. In:
Proceedings of the 21st IEEE / 12th NASA Goddard
Conference on Mass Storage Systems and Technologies
(MSST2004). 2004. 101~118

[9] Andy Hospodor, Ethan L. Miller, Interconnection
Architectures for Petabyte-Scale high-performane storage
system, Proceedings of the 21st IEEE /12th NASA Goddard
Conference on Mass Storage Systems and
Technologies(MSST2004). 2004 .

[10] Intel Corp: Intel 80200 Processor based on Intel XScale
Microarchitecture Datasheet,2003

[11] Intel Corp: Intel GW80314 I/O companion Chip
Datasheet,2004

[12] Iozone filesystem benchmark. http://www.iozone.org.
[13] M. M. Factor, K. Meth, D. Naor, et al. Object Storage: The

Future Building Block for Storage Systems. In:
Proceedings of the 2nd International IEEE Symposium on
Mass Storage Systems and Technologies. 2005. 119~123

35

