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Abstract—In this paper we consider the data caching problem
in next generation data services in the cloud, which is character-
ized by using monetary cost and access trajectory information
to control cache replacements, instead of exploiting capacity-
oriented strategies as in traditional research. In particular, given
a stream of requests to a shared data item with respect to
a homogeneous cost model, we first propose a fast off-line
algorithm using dynamic programming techniques. The proposed
algorithm can generate optimal schedule within O(mn) time-
space complexity to cache, migrate as well as replicate the
shared data item to serve an n-length request sequence with
minimum cost in a fully connected m-node network, substantially
improving the previous results. Additionally, we also study this
problem in its online form, and present a 3-competitive online
algorithm by leveraging a speculative caching idea. The algorithm
can serve an online request in constant time, and is space efficient
in O(m) as well, rendering it to be more practical in reality.
Our research complements the shortage of similar research in
literature on this problem.

Index Terms—Data caching; data service; mobile cloud com-
puting; dynamic programming; speculative caching; competitive
ratio

I. INTRODUCTION

With mobile devices (e.g., smartphone and table PC) gaining

popularity, data service, as a mainstream service to the mo-

bile cloud users, has been inspiring great interest from both

academia and industries. A shared common feature of such

a service is the maximization of data availability [1], which

is one of the pressing needs of the cloud service providers

(CSPs) to offer high-quality mobile data services in shortest

possible time. To achieve the maximization, data caching is

an often-used technique due to its effectiveness in minimizing

access latency and reducing network traffics.

However, when considering data caching as a service to

facilitate mobile accesses in the cloud, there are two main chal-

lenges on caching replacement policies that would characterize

the next generation mobile cloud services. First, the cache

replacement policy is usually cost driven in the cloud, instead

of being capacity-oriented as in classic network caching. This

is because the cloud-based caching generally does not impose

a limit on the cache capacity, instead, the size of cache as

a resource could be virtually infinite provided that the users

of the cache can afford it based on the cost model. Second,

as apposed to classic network caching, whose design is typ-

ically to exploit the spatial and temporal localities in access

sequences, the data caching in the cloud is usually required

to facilitate the mobile accesses that often exhibit spatial-

temporal trajectory patterns. This requirement is of importance

to the data caching since big data studies reveal that more than

93% human behavior is predictable [2], including the accesses

to data items in cloud services, which are highly predictable

in both time and space.

The above challenges profoundly affect the design of cache

policies on how to utilize the resources in a cost-effective way.

Traditionally, the capacity-oriented replacements like LRU or

LFU are typically designed to maximize the hit ratio of the

cache by selecting a victim item wisely to evict from the cache

so that a newly accessed item could be brought in. In contrast,

for the data caching in the cloud, the goal is, instead, changed

to minimize the cost of accessing the data items since the

cache capacity is not an issue anymore, it is neither fixed nor

bounded.

In this paper, we study the data caching problem by ef-

ficiently moving around a shared data item, with possible

multiple copies, in a fully connected cloud network so that

a sequence of requests to the item could be satisfied with

minimum service cost. In the study, the request sequences

could be online or off-line, signifying different application

scenarios in reality. The off-line sequence is embedded with

the spatial-temporal trajectory information of the requests,

which could be secured in advance by mining the data service

logs or exploiting some spatial-temporal trajectory model [3],

while for online sequence, we assume nothing known about

it in order to make competitive analysis, which could give a

theoretical bound to the worst case of the algorithm.

For comparison purpose with the classic caching problem

that has homogeneous miss penalty cost, we also assume that

the cost model in the data caching is homogeneous, which

means the transfer cost between any pair of servers in the

network is identical and the caching cost per time unit at

each individual server is also identical. The model is also

practical in the sense that the provisioned cloud infrastructure

for a particular data service is always organized as a subset of

homogeneous resources, which in turn results in homogeneous

computations and communications in the cloud [4]. To make

our research goal more clear, a detailed comparison between
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TABLE I: Classic network caching vs. Cloud data caching.

Classic Caching Cloud Data Caching

Network Fully Connected Fully Connected
Cost Model Transfer Cost Caching&Transfer Costs
Operation Page Fault Caching, Transfer&Replication
Cache Size Fixed Number k Dynamic Number
Opt. Goal Total Fault Cost Total Service Cost
Locality Spatial-Temporal Spatial-Temporal Trajectory

Opt. Off-line Belady’s Alg. [5] O(mn) Fast Opt. Alg.
Comp. Online k-competitive 3-competitive

classic network caching and the cloud-based data caching is

listed in Table I where fast optimal off-line and competitive

online algorithms for the raised data caching problem are the

focus of this paper.

First, we consider off-line algorithms with respect to a given

request sequence characterized by its spatial-temporal trajec-

tory information. To this end, we use dynamic programming

technique to design a fast optimal algorithm that can cache,

migrate and replicate the shared data item in a fully connected

m-node network to serve an n-request sequence within O(mn)
time and space complexity. The result is O(m logm) times

faster than the previous algorithms [4], [6] (Contribution1).

Second, we conduct competitive analysis on the online version

of this problem. By leveraging a concept of speculative

caching idea, we propose a 3-competitive online algorithm,

which not only guarantees the performance of this algorithm

in the worst case, but is also efficient in both time and space.

To the best of our knowledge, this is the first competitive

analysis to show this new caching paradigm has a constant

competitive ratio, a surprising result when comparing it with

those in the classic caching problem (Contribution2).

We provably achieve these results by making several key

observations on how the request sequence is served in both

online and off-line cases, and thereby conducting a strict

analysis on the schedules in both algorithms. Our algorithms

are not only practical to the data caching problem, but also

appear to be of theoretical significance to a natural new

caching paradigm in the realm of online algorithms.

The remainder of this paper is organized as follows: Sec-

tion II surveys some related work. The problem notation is

introduced in Section III, and the off-line algorithm, together

with its critical analysis, is presented in Section IV. We then

conduct competitive analysis in Section V, and conclude the

paper in the last section.

II. RELATED WORK

The caching problem, due to its pervasiveness for per-

formance optimization in distributed computing, has been

endowed with extensive studies in literature. Chockler et al. [7]

study the data caching problem in the cloud service, and

propose BLAZE, a simple multi-tenant caching scheme to

guarantee minimum QoS for each tenant. However, the scheme

is still oriented to the cache resources with limited capacity,

which is not necessary in the next generation data services.

With BLAZE as a basis, Chockler et al. [8] present a new

cloud-based caching service called Simple Cache for Cloud

(SC2), which can optimize the global use of cache resources

while simultaneously guaranteeing minimum service quality

for all users according to their stated requirements. Although

SC2 is distributed in network for shared uses among tenants

as in our case, it, like BLAZE, still takes the maximization of

overall hit ratio as a goal.

Unlike previous studies, Scouarnec et al. [9] investigate

cache policies for cloud-based caching from a different angle

that views cloud resources to be potentially infinite and only

paid when used. To deal with this new context, they design

and evaluate a new caching policy that minimizes the cost

of a cloud-based system in online fashion. We adopt this

point of view to design the optimal off-line and competitive

online data caching algorithms in the cloud. Particularly,

the off-line sequence is assumed to be available in advance

when considering the trajectory information inherent in access

patterns.

In the off-line setting, the work on optimal caching was

first conducted by Belady in 1966 [5], since then the follow-

up studies on this problem are few and far between, each being

in different contexts with different goals [10]–[12]. However,

none of them is applicable to our caching model. A highly

related one is Veeravalli’s work [6] which deals with the

network caching problem with respect to sharing a data item

in a set of fully networked servers. With a homogeneous

cost model, he obtains an optimal algorithm using dynamic

programming technique within O(nm2 logm) time, which can

automatically generate multiple copies to minimize the total

service cost of request sequence. Compared to this algorithm,

our off-line algorithm can reach the same goal in O(mn) time

and space complexity. Veeravalli’s work is later extended by

Wang et al. [4] to the context of clouds with some practical

constraints so that a balance between the caching costs and the

transfer costs of multiple shared data items can be optimally

struck.

In the online setting, there are substantial researches in

literature. However, most of them are capacity oriented [13]–

[15], and among which a few leverage competitive analysis

to evaluate their performance [10], [16]. Charikar et al. [17]

propose the dynamic servers problem (DSP), which can be

viewed as a generalization of the data caching problem in

our case in terms of its request pattern and metric space. For

the online DSP in arbitrary metric spaces, they present an

O(min{logn, log ρ})-competitive algorithm where n is the

number of requests and ρ, the (normalized) diameter of the

metric space. This is an improvement to the previous result

of Halperin et al. in [18] where the DSP has an O(log n)
competitive algorithm in a special case of paths.

III. PROBLEM NOTATION ON DATA CACHING

In this section, we describe the problem in details under a

homogeneous cost model. We first define some useful concepts

and then give the standard form of the solution to the problem.

Some used symbols are listed in Tab. II for easy reference.

Suppose in a cloud environment, the server set is S =
{s1, . . . , sm} that are fully connected by a network, and a
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TABLE II: Frequently used notation

Symbol Meaning

r−j r−j = (sj ,−∞), 1 ≤ j ≤ n
δti,j δti,j = tj − ti, time diff. btw ri and rj
p(i) the previous req. before ti (same server)
p′(i) the most recent event before ti (same server)
σi σi = ti − tp(i)
Tr(si, sj , x) data transfer from si to sj at tx
H(s, x, y) data is held in cache on server s from tx to ty
μ uniform caching cost per time unit
λ uniform transfer cost between servers

ωi
j the ith speculative caching cost on sj

Ωj the set of SC costs on sj

β uploading cost to servers
Ψ∗(n) optimal schedule for up to rn
Π(Ψ(i)) the cost of schedule Ψ(i)

Ψ(−1)(i) sub-schedule of Ψ(i) for up to ri−1

bi bi = min{λ, μσi}, 1 ≤ i ≤ n.

Bi Bi =
∑i

j=1 bj
Ψ′(i) conditional opt. sched. with H(si, tp(i), ti)

as the final cache H
κ pivot index

shared data item is initially located at a certain server, say

s1. The request for the data item is generated online at each

server, which could be made by users outside the cloud. The

request vector is denoted as R = 〈r1, . . . , rn〉, where each

ri = (si, ti), with ti < ti+1 and si ∈ S, represents that

ri is made from si at ti. Note that the use of superscripts

for the server indexes (e.g., si) should be distinguished from

the reference labels (e.g., si). For example, the ith request

ri’s server si could be sj . To satisfy the request sequence,

the shared item should be moved around between the servers,

replicated at or cached and then deleted at certain servers to

satisfy each request on time only if the total cost is minimum

(cost model is discussed later).

To simplify boundary conditions, we define r0 = (s1, 0) and

r−j = (sj ,−∞), 1 ≤ j ≤ n. Note that the requests at −∞
will never be included in a solution, and are only defined to

make notation on the intervals on a server easier. We assume at

least one request for each server (i.e. we ignore those servers

without requests).

For i < j, we define δti,j = tj − ti, which is the time

difference between requests ri and rj . For ri = (si, ti), 1 ≤
i < n, we define the previous request on the same server by

p(i) = argmax
j<i

{sj = si}. Then, we can define the server

interval on request ri as σi = ti − tp(i). Moreover, we can

define a data item transfer Tr(si, sj , x) from server si to sj
at time x, and say the data item is cached, or held in cache

on server s from time x to y using the notation of H(s, x, y).
In particular, if there is no confusion incurred, we would also

use H(s, x, y) or H to refer to the cached copy or its cost in

corresponding server.

The cost model for this process is homogeneous in the sense

that the cost of one unit of time caching on each server is the

same across all the servers, denoted by μ, and the transfer

cost from any server to any other server, denoted by λ, is also

identical no matter which servers are being used. As a result,

the transfer cost between servers sj and sk is λ, ∀j �= k at any

time x, and the caching cost from time x to y for any server

is μ(y − x). This model is corresponding to the traditional

caching model where the penalty of cache miss is always

assumed a constant. On the other hand, the homogeneous cost

model is also available in reality [4].

The problem is to find the set of cache intervals and transfers

for the data item so that

1) at least one server is caching the data item at any time

t, t0 ≤ t ≤ tn.

2) The data item is available for rj on sj at time tj , 1 ≤
j ≤ n, the time instance when rj is made (discuss later).

3) The total transfer and caching costs are minimized.

To this end, multiple copies of the data item could be

automatically generated during the service process. Except

the first one each of the other copies is caused by a transfer,

and eventually deleted when it is no longer used. Therefore,

without loss of accuracy, we assume that the replication cost

and the deletion cost are free since these costs are always

constants and can be included in the transfer cost.

Fig. 1 shows an example to illustrate the problem notation

where three servers are fully connected by a network. A shared

data item is initially located at s1, it is migrated, replicated or

cached among the servers to satisfy the request sequence in

time order with minimized total cost as a goal. Note that the

red color indicates that the corresponding cached data item is

deleted after being accessed. As such, the next request at the

same server should be served by a transfer (e.g., r7@s3).

Definition 1 (Schedule). We say that a schedule Ψ(i) is any

minimal set of caches and transfers satisfying 1) and 2) for

online requests r0, . . . , ri. A schedule is optimal if it also

satisfies 3). However, it is not achievable for online algorithms.

There could be many feasible (off-line) schedules for

r0, . . . , ri, we use Γ(i) to represent the space of the feasible

schedules for up to ri, each Ψ(i) having a cost, denoted by

Π(Ψ(i)). The goal is to find an optimal schedule Ψ∗(n) :

Ψ∗(n) = argmin
Ψ(n)∈Γ(n)

{Π(Ψ(n))}

We can view a schedule in a space-time diagram as shown

in [19], where the edges are caching intervals or transfers,

and the vertices are requests or end points of transfers. More

formally, we have

Definition 2 (Space-Time Graph). We define a space-time

graph as a weighted directed graph G = (V,E,W ) where

V = {vji : 0 ≤ j ≤ m, 0 ≤ i ≤ n}. Vertex vji corresponds

to time ti on server sj when 1 ≤ j ≤ m, and v0,i represents

the external storage at ti. The edge set E consists of three

subsets:

1) a set of cache edge C = {(vj,i−1, vji) : 0 ≤ i ≤ n, 1 ≤
j ≤ m},

414414
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r1 r3 r5 r10 r12

r2 r7 r11

s1 s2

r4r6

?

?C C C C

T

T

C s3

C

r9

r8

Fig. 1: Three servers are fully connected by a network (only

caches are depicted as squares), and a shared data item is

initially located at s1, which could be migrated, replicated, or

cached to satisfy request sequence R = 〈r1, . . . , r12〉 in time

order. The characters in each square specify how the data item

is created in the cache, say “C” is by caching, and “T” is by

transferring, each being charged by its own rate. After the

requests are served, the corresponding cached items could be

either kept in the cache for future demands (in green color)

or deleted for cost saving (in red color).

2) a set of transfer edge T = {(vki, vji), (vji, vki) : j �=
k, and (sk, ti) ∈ R}, and

The edge weights W are defined as W (e) = λ for edges

e ∈ T , and W (e) = μ(ti−1 − ti) for edges (vj,i−1, vji) ∈ C.

Notice that a request ri in the instance will correspond to

vertex vsi,i in the graph. For convenience we will often refer

to request vertex ri. All other vertices we call intermediate

vertices. The set of vertices v∗i induce a subgraph that is a

biconnected star centred on the request vertex ri. According to

the graph, the transfer time is negligible, we thus can satisfy

ri by a transfer at time ti. This assumption can be validated by

tweaking the graph as shown in [4], and is thus often adopted

in previous studies [4], [6], [17].

Since a schedule is minimal, it implies that it is tree-like.

If there is more than one path from s1 to ri then at the last

juncture of paths, at least one of the entries must be either

a transfer or an upload which can be deleted without loss of

service since such a path cannot be minimal. Also, a schedule

will contain no dead-end caches, that is cache on a server

beyond the last request or transfer time from that server.

The data staging problem in its general form is a variant of

the Rectilinear Steiner Arborescence problem [20]. As such, it

is believed to be NP-complete [6]. However, its formal proof

still remains open. Fortunately, in some realistic settings as in

our case, when the cost model is homogeneous, we can expect

optimal solution to this problem. The following observation

indicates that we only need to consider the schedules where

the transfers end on requests.

Observation 1 (Standard Form). For any instance, there exists

at least one optimal schedule in which every transfer occurs

at a request time ti with its output ends on server si.

0.5

0.3

0.3

1.2 0.2

1.2

0.5 0.8 1.1 1.4 2.6 2.8 4

s1

s2

s3

s4
0.3

Fig. 2: An example of a standard schedule (shown in bold

lines) for an off-line request sequence (solid dots along

timeline). The vertical (horizontal) lines represent transfers

(caching) that end on requests.

This observation can be directly obtained from Theorem

1 in Veeravalli [6]. Fig. 2 shows an optimal schedule in the

standard form in a space-time diagram where all transfers end

up with the requests at different servers. In the figure, the

caching cost and the transfer cost are 1.4μ+0.2μ+1.6μ = 3.2
and 4λ = 4.0, respectively, when μ = 1 and λ = 1.

The following observation implies that the optimal schedule

is a directed tree rooted at s1 (see Fig. 2).

Observation 2. In any optimal schedule, each request ri will

be served: 1) by the cache (i.e., the cached copy) on si, or 2)

by a single transfer ending at ri (see Fig. 2 again).

Given the standard form of schedules, we can define sub-

schedule as follows:

Definition 3 (Sub-schedule). The primary sub-schedule, here-

after referred to as the sub-schedule, Ψ(−1)(i) of Ψ(i) is a

schedule for ri−1 that consists of the set of caching inter-

vals and transfers from Ψ(i) required to satisfy all requests

r0, . . . , ri−1.

Note that even if Ψ(i) is optimal, the sub-schedule Ψ(−1)(i)
may not be an optimal schedule for r0 . . . ri−1. Moreover,

Ψ(−1)(i) may not be unique.

Since Observation 1 applies to every transfer in an optimal

schedule Ψ∗(i), it will also hold in the sub-schedule Ψ(−1)(i).
This justifies that from now on we only need to consider those

schedules in the standard form indicated by Observation 1,

which dramatically simplifies the feasible schedule space as

it is not necessary to consider the proactive data transfer to

some vantage servers for the subsequent requests. Note that

the last caching interval in Ψ∗(i) may be truncated to the last

transfer point or request prior to i on that server in Ψ(−1)(i)
(e.g., r7@s3 in Fig. 2).

IV. AN OPTIMAL O(mn) OFF-LINE ALGORITHM

Given the problem notation, in this section, we conduct

strict analysis on the problem and give our optimal off-line

algorithm with O(mn) time and space complexities.

To this end, we first obtain a lower bound on the marginal

costs to satisfy each individual request by combining above

observations, which is defined by

Definition 4 (Marginal Cost Bound). The marginal cost bound

of request ri is bi = min{λ, μσi}, 1 ≤ i ≤ n.

415415
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Based on the marginal cost bound, we can further have a

lower bound on the total costs to satisfy a request sequence,

which is defined by

Definition 5 (Running Bound). The running bound of the

marginal costs up to request i is Bi =
∑i

j=1 bj .

Definition 6 (Optimal Cost C(i)). We define C(i), 1 ≤ i ≤ n
to be the cost of the optimal schedule Ψ∗(i). Recall that r0
is a boundary variable we created, with C(0) = 0, so C(i) is

defined for 0 ≤ i ≤ n.

Clearly, given the definitions of Bi and C(i) for 1 ≤ i ≤ n,

we can have the following observation as Bi is only a lower

bound of the optimal cost, that is Bi ≤ C(i), 1 ≤ i ≤ n.

Our goal is to create a recurrence for C(i) that we can solve

dynamically. To this end, we first prove the following lemma,

Lemma 1. If Ψ∗(i) is an optimal schedule in which the last

operation is a transfer Tr(sj , si, ti) then Ψ(−1)(i) is an opti-

mal schedule up to request ri−1(i.e.,Ψ
(−1)(i) = Ψ∗(i− 1)).

Proof: If the optimal Ψ∗(i) ends in a transfer, it must

cache the unique data copy on the interval [ti−1, ti] on some

server other than si. All transfers are of equal cost, so one opti-

mal extension to the sub-schedule is to cache H(si−1, ti−1, ti)
and then transfer Tr(si−1, si, ti). If Ψ(−1)(i) were not optimal

this would lead to a contradiction.

Given Observation 2, we only need to consider two cases

that ri is served, either by the cache on si or by the immediate

transfer from ri−1. The next lemma covers the easy case of

our recurrence.

Lemma 2. If the conditions of Lemma 1 hold, then

C(i) = C(i− 1) + μδti−1,i + λ. (1)

Proof: This is just the sum of the optimal cost up to ri−1
plus the cost of caching and transfer.

Now, we consider the non-trivial case that the optimal

schedule Ψ∗(i) uses the cached data copy on server si to

satisfy ri. Unlike the transfer case where the last data transfer

Tr(sj , si, ti) does not impact the optimality of Ψ(−1)(i), in

this case, the last H(si, tp(i), ti) may impact all the requests

made in [tp(i), ti−1] since a cache is extended from tp(i) to

ti which allows the requests to re-adjust the sources of the

data item (e.g., a cache may be changed to transfer for cost

reduction). As a consequence, no request rj , 0 < j < i is

guaranteed to be optimal anymore for the sub-schedule of

Ψ∗(i) with respect to the interval [t1, ti−1]. To deal with this,

we define an auxiliary recurrence that helps compute C(i) in

this case.

Definition 7 (Semi-Optimal Cost D(i)). We define D(i) to

be the semi-optimal cost of a schedule Ψ(i) in standard form

(see Observation 1) under the condition that ri is served by

cache on server si. Clearly, C(i) ≤ D(i).

To see the efficacy of this definition we note the following.

Observation 3. In a Ψ(i), if si has a cached copy at ti, then

the cache extends from time tp(i), that is, the cache on si is

H(si, tp(i), ti).

Observation 3 follows from the standard form requirement

that no transfer ends at point that is not a request.

We can now complete the recurrence for C(i) in terms of

the not yet completed D(i) since the optimal will either use

cache or transfer (Observation 2).

C(i) =

⎧⎨
⎩

0 i = 0
min{D(i), C(i− 1) + μδti−1,i + λ}

1 ≤ i ≤ n
(2)

Recall that we added boundary points to our problem

definition, and we extend here by defining base cases D(i) =
+∞, i < 1. These together with the infinite negative starting

values of these intervals prevent us from using D(i) as the

cost of the first request on any server. That is, the first request

on any server except s1 will have to be served by either a

transfer or an upload. Recall that the first request on s1 is r0
with cost 0.

The basic idea of auxiliary recurrence is to establish the

relationships between D(i) and certain C(κ) that has been

available whereby the most recent C(i) can be computed.

To this end, we first denote the conditional optimal schedule

with H(si, tp(i), ti) as the final cache H by Ψ′(i), and then

look for the last cache that could cover rp(i) with respect to

Ψ′(i) (again, such a cache has potentials to satisfy rp(i) by a

transfer). Specifically, we have the following definitions:

Definition 8 (Cover Index Set). We define cover index set π(i)
as those potential caches that could satisfy rp(i) by a transfer.

π(i) = {k|p(k) < p(i) ≤ k < i}

Definition 9 (Pivot Index κ). The pivot index κ is defined by

either 0 or the maximum in π(i) (i.e., the most recent cache

in π(i) relative to ri), depending on whether or not π(i) = ∅,

i.e.,

κ =

{
0 π(i) = ∅

max{π(i)} Otherwise

The case of κ �= 0 is important as it signifies the last request

in [tp(i), ti−1] that is served by the cache H(sκ, tp(κ), tκ)
other than the transfer from H(si, tp(i), ti) in Ψ′(i), which

forms the basis for the D(i) recurrence. There could be two

distinguished cases: 1) κ ≤ p(i), and 2) κ > p(i). The first is

the boundary case, which is trivial.

Lemma 3. For the pivot index κ as defined in definition 9, if

κ ≤ p(i) then the optimal restricted cost

D(i) = C(p(i)) + μσi +Bi−1 −Bp(i). (3)

Proof: When κ ≤ p(i), there is no cache spanning across

tp(i). As a result, all requests rj , p(i) < j < i have to be

satisfied by the cache H using transfers or short cache intervals

by a cost of Bi−1 −Bp(i). On the other hand, all requests up

to tp(i) must still be satisfied, and C(p(i)) is a lower bound

on any schedule satisfying this. As such, given the cache cost

416416

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:45:54 UTC from IEEE Xplore.  Restrictions apply. 



s1

s2

s3

s4

s5
ti

D(i)

H

C(p(i))

ti 1

k

p(k)

tj

p(i)p(j)

Fig. 3: An example of the trivial case when κ ≤ p(i).
H(si, tp(i), ti) as the final cache H impacts how the requests

in [tp(i), ti−1] are served (shown in bold blue line). The

shadow area is optimal.

of μσi, we have the lemma. Since this difference is a lower

bound on serving these requests, the total is optimal under the

stated conditions of the lemma.

An illustrative example of the trivial case is shown in Fig. 3

where κ ≤ p(i). According to Observation 2, rp(i) could be

served by a cache on si (in bold red line) or a single transfer

ending at rp(i) (in bold black line), say the cache on s1 in the

example. In both cases, the optimality of the cost to serve the

request sequence up to tp(i) is independent of the subsequent

requests until ri since the service before (including) tp(i) has

no impact on the later requests.

Now let’s examine the non-trivial case that κ > p(i). In

this case, both H(sκ, tp(κ), tκ) and H(si, tp(i), ti) are in the

final schedule Ψ′(i) as shown in Fig. 4 as an example, then

we have

Lemma 4. For κ as defined in definition 9, if κ �= 0 then the

optimal restricted cost,

D(i) = D(κ) + μσi +Bi−1 −Bκ. (4)

Proof: When κ > p(i), H(sκ, tp(κ), tκ) in Ψ′(i) must

span across tp(i). As such, all requests up to tκ are satisfied.

Since D(κ) is a lower bound on the cost of the schedule up

to tκ, Bi−1 − Bκ is a lower bound on adding the requests

rh, κ < h < i, and μσi must be added to cover the cache

interval [tp(i), ti], we see that D(κ) + μσi + Bi−1 − Bκ ≤
Π(Ψ′(i)) = D(i).

If we start with a restricted optimal schedule to rκ with cost

D(κ), then we can similarly construct a restricted schedule to

ri with cost D(κ) + μσi + Bi−1 − Bκ ≥ Π(Ψ′(i)) = D(i),
and thus the lemma follows.

By combining these lemmas, we enumerate all the request

indexes on the interval [tp(i), ti−1] to derive D(()i) recurrence

as follows:

D(i) =

⎧⎪⎨
⎪⎩

+∞ −m ≤ i ≤ 0

min

{
C(p(i)) + μσi +Bi−1 −Bp(i)

min
κ∈π(i)

{D(κ) + μσi +Bi−1 −Bκ}

(5)

Theorem 1. With a homogeneous cost model, Recurrences (2)

and (5) can correctly compute the minimum cost of the data

caching problem.

tktj

s1

s2

s3

s4

s5

Pivot Index

ti 1 ti

D(i)

D(k)

p(k) p(i)

H

Fig. 4: An example of the non-trivial case when there are some

caches spanning across tp(i) (π(i) �= ∅). The shadow area is

conditionally optimal.

Proof: The optimality of the algorithm can be directly

derived by combining Lemma 2 to Lemma 4. In particular,

we examine all the caches in π(i) in (5) to ensure the semi-

optimal cost of D(i) since we do not know the pivot index in

D(i) in advance.

Recurrences (2) and (5) define a recurrence system that

allows us to compute the optimal cost. Using a sweep algo-

rithm, we can compute this value by incrementally indexing

through the requests from 1 to n, storing C(i) and D(i) for

each request. A straightforward implementation should run in

O(n2) time, which is dominated by the needs to check at most

O(n) previous values in the computation of D(i) as indicated

in Recurrence (5).

However, a closer look at Recurrence (5) indicates that at

each i we need check at most one interval on each server (since

|π(i)| ≤ m, we do not need to compute π(i) for 1 ≤ i ≤ n in

our algorithm), provided we can efficiently find the interval on

each server containing time tp(i). Based on this observation,

we can have the following result:

Theorem 2. The time and space complexity of the proposed

algorithm is O(mn).

Proof: We create the following structures in a pre-scan

of the requests. For each server, sj , 1 ≤ j ≤ m we create

a doubly linked list Qj which is initialized by the dummy

boundary requests, and a matrix A[n,m] of pointers. As

ri, 1 ≤ i ≤ n is considered, it is added to the list Qsi , and

Ai,j is assigned to the current last element of Qj for each

1 ≤ j ≤ m. Then, for each request node ri = (si, ti) in Qj , a

pointer is set up for each other server sk that points to its most

recent request node rk = (sk, tk), which could be obtained

from A[i, k], k �= j. Given hat each node in Qj , 1 ≤ j ≤ m
has O(m) space, the total data space in pre-scan thus takes

O(mn) time and space.

During the next pass over the requests to compute the

recurrences, these pointers can be used to precisely identify

each of the intervals required by Recurrence (5) in O(m) time

per request. Thus this pass also takes O(mn) time.

Fig. 5 is an example to how the data structures are organized

in efficient implementation of the proposed algorithm for the

data staging problem in Fig. 2. During the computation of the

recurrences, the algorithm follows the pointer of recent request

ri in A[i, j] (e.g., A[7, 3]) to find the current last element of Qj
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A[n,m]

* * * * **

* * * * * * *

* * * * * * * *

* * * **
Q1

Q2

Q3

Q4

request index
0

4.4

2.8

4.0

1.4

0.8

1.1

0.5 2.6

Fig. 5: An example to show how the proposed algorithm

efficiently addresses the data caching problem in Fig. 2 where

the computed cache intervals on each server are marked, and

each pointer, represented by “*” in different colors, is kept

up to t8 (updated when a new request made on that server is

processed).

(e.g., request node 4.0) and then go back along the backward

link to get its previous request node which records tp(i) (e.g.,

0.8). Then, by following the m = 1 pointers, each for one

server, the required interval on each server by Recurrence (5)

can be identified in O(1) (e.g., {[0, 1.4], [0.5, 2.6],∅,∅} in

our example).

For illustration purpose, we present a running example of

the algorithm for an off-line demand sequence shown in the

space-time diagram Fig. 6 where m = 4, n = 8 and each

time instance for the requests is also marked. The data item

is initially located at s1 given λ = 1 and μ = 1.

To facilitate the computation, we can pre-scan the sequence

and compute the marginal cost bound bi, the running bound

Bi as well as π(i), for each individual request ri, 1 ≤ i ≤ n,

in advance as we illustrated before. With the information of

Bi, we can further compute the C(i) and D(i).
At t0 = 0, C(0) and D(0) are initialized by 0 and +∞,

respectively. Since the first request on any server except s1

will have to be served by a transfer, D(1)−D(3) are set by

+∞, while C(1) = min{D(1), C(0)+1+0.5} = 1.5, C(2) =
min{D(2), C(1)+0.3+1} = 2.8, C(3) = min{D(3), C(2)+
0.3 + 1} = 4.1. In order to compute C(4), we have to

compute D(4) first. D(4) = C(0) + 1.4 + 3 − 0 = 4.4 and

C(4) = min{D(4), C(3)+0.3+1} = 4.4. Now we consider to

compute the final optimal value C(7). To this end, according to

Recurrence (5), we have D(7) = 9.2 and C(7) = 8.9 because

D(7) =

⎧⎪⎨
⎪⎩

C(2) + 3.2 + 5.6 − 2 = 9.6

min

⎧⎨
⎩

4.4 + 3.2 + 5.6− 4 = 9.2,
6.5 + 3.2 + 5.6− 5 = 10.03,
7.1 + 3.2 + 5.6− 5.6 = 10.03

and C(7) = min{D(7), C(6) + 0.8 + 1}. The full vectors of

C and D are listed in the table of Fig. 6.

The optimal schedule Ψ∗(7) can be reconstructed by recur-

sively backtracking the vectors of C and D up to the initial

configuration at t = 0. As such, we can phase by phase steer to

the final optimal results as shown in Fig. 6. Since the transfer

cost is a constant, we can only store the cache schedule by

marking the responding request nodes in Qj , 1 ≤ j ≤ m
(Fig. 6).

0.5

0.3

0.3

1.2

0.5 0.8 1.1 1.4 2.6 4

s1

s2

s3

s4
0.3

0.8

3.2

0.6

i 0 1 2 3 4 5 6 7
bi 0 1 1 1 1 1 0.6 1
Bi 0 1 2 3 4 5 5.6 6.6
C(i) 0 1.5 2.8 4.1 4.4 6.5 7.1 8.9
D(i) +∞ +∞ +∞ +∞ 4.4 6.5 7.1 9.2

Fig. 6: An optimal schedule for an off-line request sequence

(solid dots) is shown in bold lines, and the Marginal Cost

Bounds (bi), Running Bounds (Bi), as well as costs C(i) and

D(i) are also presented in the table at bottom.

V. A 3-COMPETITIVE ONLINE ALGORITHM

In this section, we describe an 3-competitive algorithm for

the online version of this problem. The algorithm is built on a

concept of speculative caching that allows the copy migrated

to a sever to speculatively keep active for another period of

Δt = λ/μ after it serves the most recent request at time t.
The rationale behind this idea is that if the next request is

coming no later than t + Δt, it should be served by caching

as the caching cost is not more than λ; otherwise, the copy

is not worthwhile to be kept, and the request is served by a

transfer from other server, instead. In this way, we can enable

the online algorithm to mimic the optimal off-line algorithm

as close as possible. The algorithm operates on a per-epoch

basis along the time-line, and each epoch is composed of n
transfers. We call this online algorithm Speculative Caching

(SC) algorithm, which operates as follows in each epoch.

1) use variables c and r to record the number of active

copies and the number of transfers in current epoch,

respectively. Initially, c← 1 and r ← 0, and the data is

located at s1;

2) use a counter array of C[m], initialized by zero, to

maintain the copy expiration information of each server

in current epoch, e.g., C[i] ← ti indicates the copy on

si will expire at ti, 1 ≤ i ≤ m.

3) when a new request ri on sj is coming at ti:

• for sj , if ti ∈ [tp′(i), tp′(i) + Δt] and C[j] �= 0,

then serve ri by the copy on sj , and then update

C[j] ← ti + Δt. Otherwise, serve ri by a transfer

from sk, k �= j where ri−1 is made, and update

C[j]← ti +Δt and r← r + 1;

• for sk, k �= j, if sk(C[k] �= 0) performs a transfer

at ti, then update C[k]← ti +Δt.
• if r = n then the current epoch is completed, and

the next epoch is started with c ← 1 and r ← 0,

C[m]← 0, 1 ≤ i ≤ m, and the data located at sj .

4) when events of copy expiration happen at ti:
1

1According to SC, there are at most two expiration events resulted from a
transfer that could occur at the same time.
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Fig. 7: An example of the online SC algorithm where the

schedule for an epoch with size of 5 is illustrated.

• c← the number of active copies,

• if there are two events on sj and sk at the same

time, and c > 2, then c ← c − 2 and delete the

copies on sj and sk (i.e., C[j]← 0, C[k]← 0).

• if there are two events on sj and sk, but c = 2
(the last two copies), then delete the copy in source

server, say sj , to break the tie, keep the copy in

target server sk (i.e., C[j] ← 0, C[k] ← ti + Δt),
and finally set c← 1,

• in other cases, if there is a single event on sj and

c > 1, just delete the copy on sj (i.e., C[j]← 0) and

set c ← c − 1. Otherwise if there is a single event

on sj but c = 1, then extend the copy expiration

time on sj to ti +Δt (i.e, C[j]← ti +Δt).

An illustrative example of this algorithm for a single epoch

with 5 transfers is shown in Fig. 7 where each copy survives

another speculative period of time at most Δt = λ/μ for

incoming requests. Based on the algorithm and this example,

we can easily make the following observation:

Observation 4. For each request ri at ti on sj , the online SC

algorithm satisfies the following properties:

1) when μδtp′(i),i ≤ λ, ri is always served by caching on

sj;

2) when μδtp′(i),i > λ,

• if tp′(i) < ti−1, ri is served by the copy created at

ti−1 on sk, k �= j via a transfer where tp′(i) < ti−1.

• otherwise, when tp′(i) = ti−1, which also implies

tp(i) = ti−1, ri is served by the copy created at

ti−1 on sj .

here, tp′(i) is the most recent time instance that a request or

a transfer (to other server) happen before ri at ti on the same

server, say sj in this observation (e.g., p′(6) = 3 and tp′(6) =
0.8 on s2 in Fig. 7). Clearly, p(i) ≤ p′(i) ≤ i−1. 2) is correct

since according to the algorithm, the latest copy created at ti−1
is always available to ri by continuously expanding its active

periods.

For the sake of easy analysis, we transform the SC schedule

in an epoch into an equivalent schedule, called Double Trans-

fer (DT) schedule, that has exactly the same cost with the SC

schedule. To this end, we denote the set of SC costs on sj as

Ωj , and have the following definition:

Definition 10 (Double Transfer Schedule). The double trans-

fer schedule can be obtained from the SC schedule by perform-
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0.8

3.2

0.61.2

s4

epoch(5)

1.6

v
reduction

h reduction

Fig. 8: An example of the DT schedule where the red circle

and transfer lines represent the initial cost and the transfer cost

of the data that are increased by corresponding ωi
j ∈ Ωj , 1 ≤

j ≤ 4 (ω22 = 0 and ω23 = 0 starting at t4). Additionaly, the

two types of reductions are also showed in shaded rectangles.

ing the following transformations for each SC cost ωi
j ∈ Ωj

on sj , 1 ≤ j ≤ m (note that ωi
j ≤ λ):

1) if j = 1 and i = 1, increase the initial cost on s1 from

0 to ω11 ;

2) otherwise, remove ωi
j and add it to the weight of the

most recent transfer edge to sj , whose value is increased

to λ+ ωi
j which is less than or equal to 2λ.

The transformation is reasonable as each ωi
j on sj corre-

sponds to an incoming transfer edge in the schedule. There-

fore, we can have Π(DT ) = Π(SC) in O(mn) time.

An example of the schedule produced by the DT algorithm

after the transformation is shown in Fig. 8. Given ω22 and ω23
starting at t4 are equal to zero in the example, one can verify

they have the same scheduling strategies and the total costs.

With these results, we have the following lemma that shows

if a time interval is greater than λ, we can only consider a

single caching location for both DT and any optimal algorithm

(OPT).

Lemma 5. In both DT and OPT schedules, if μδti−1,i > λ
then only one server will cache the data in [ti−1, ti].

Proof: We first consider the OPT schedule. Suppose there

are two or more caching intervals covering [ti−1, ti] in some

optimal solution. By Observation 2, ri will be served by

exactly one of the following choices,

1) the cached copy on server si
2) a transfer Tr(sj , si, ti) where sj holds one of the

overlapping caching intervals and sj �= si.

In either case, there will be another cached copy on another

server sk, H(sk, tk, tj) which spans the interval [ti−1, ti].
Since there are no requests between ri−1 and ri, tk < ti−1
and tj > ti. If we transfer Tr(si, sk, ti) and eliminate the

interval [ti−1, ti] on server sk, we will reduce the cost by

μσi−1,i−λ > 0, contradicting the assumption that the solution

was optimal.

According to the DT schedule, if μδti−1,i > λ, then

tp′(i),i ≤ i − 1, and δtp′(i),i > λ. According to DT, ri is

served by the copy created at ti−1 on sk, k �= j via a transfer.

If there is another cached copy on another server that spans the

interval [ti−1, ti], it must contradict the algorithm by following
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Fig. 9: The optimal schedule with 4 transfers after the two

types of reductions.

the same arguments for OPT. As a result, no more than one

copies in DT will be active in parallel in [ti−1, ti].
Based on Lemma 5, we can make the following reduction

on both schedules.

Definition 11 (V-Reduction). For each intervals [ti−1, ti], i ∈
[1, n] that satisfy μδti−1,i > λ in both schedules, we can

reduce its weight to μδti−1,i = λ by setting μδti−1,i′ = 0
where ti′ < ti. We call it V-Reduction.

As such, for any ri ∈ R in an epoch, we have μδti−1,i ≤ λ
in both DT and OPT. An example of the v-reduction is shown

in Fig. 8 and Fig. 9.

Moreover, we have the following lemma to show that each

request in SR = {ri : μσi < λ, i > 0} is satisfied in the same

way in both DT and any OPT schedules.

Lemma 6. For any i where μσi < λ, H(si, tp(i), ti) is a part

of the DT and any OPT schedules.

Proof: First, consider a request ri in OPT where σi < λ.

Any solution which uses a transfer to supply request ri can be

improved by λ−σi by replacing the transfer with the caching

on si for the interval [tp(i), ti]. As for DT, this is a direct

conclusion from Observation 4.

Based on Lemma 6, we can make the following reduction

on both schedules.

Definition 12 (H-Reduction). The caching cost of each request

in SR can be removed by setting the cost to zero for both

schedules. We call it H-Reduction.

As a result, we have for any ri ∈ R in an epoch, μσi ≥ λ
in both DT and OPT. We can observe it by comparing the

h-reductions in Fig. 8 and Fig. 9.

After the above reductions, we can reduce both DT and

OPT schedules by the same amount of weights in serving

the requests in R, and then have
Π(DT )
Π(OPT ) ≤

Π(DT ′)
Π(OPT ′) where

DT ′ and OPT ′ represent the reduced DT and OPT schedules,

respectively, after the reductions.

With these results, we now have our main theorem:

Theorem 3. The speculative caching (SC) algorithm is 3-

competitive.

To prove the theorem, let R′ = R \ SR since we can

equivalently view the reduced schedules as those working on

R′ given the h-reduction. In view of this, we then have the

following lemma to show an upper bound of Π(DT ′).
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Fig. 10: How the μσ′
i is computed for reduced schedule after

the reductions? (a) when p(i) < i − 1 and μδti−1,i > λ, (b)

when p(i) = i− 1 and μδti−1,i > λ, (c) when μδti−1,i ≤ λ.

Lemma 7. For an online sequence R in an epoch, Π(DT ′)
is upper bounded by 3n′λ where n′ = |R′|.

Proof: Since for DT ′, the schedule reduction results in

μδti−1,i ≤ λ for any request ri ∈ R
′, we then have

• if μδtp′(i),i ≤ λ, ri is served by caching at cost of no

more than λ.

• Otherwise, ri is served by the copy created at ti−1 on

sk, k �= j via a transfer at most cost of 2λ. Since

μδti−1,i ≤ λ, the cost to serve ri would be at most 3λ.

Overall, the total cost to serve the whole sequence R′ in an

epoch is at most 3n′λ.

Now, we estimate the lower bound of Π(OPT ′). Ac-

cording to Definition 5, running bound B′ is an lower

bound of Π(OPT ′). To this end, we let B′ =
∑n′

i=1 b
′
i =∑n′

i=1min{λ, μσ
′
i} with respect to R′ after the schedule

reductions. Due to the impact of v-reduction on μσ′
i, we have

to refine μσ′
i to compute B′ as we show in Fig. 10 where

three cases are considered to obtain:

μσ′
i =

{
μσi − (μδti−1,i − λ) if p(i) ≤ i− 1 (case 1&2)

μσi Otherwise (case 3)
(6)

Lemma 8. For online sequence R, Π(OPT ′) is lower

bounded by n′λ where n′ = |R′|.

Proof: Given definition in (6), we have μσ′
i ≥ λ since

1) μσi ≥ μδti−1,i when p(i) ≤ i − 1, and 2) μσi ≥ λ in

OPT ′ after h-reduction. Then, Π(OPT ′) ≥ B′ =
∑n′

i=1 bi =∑n′

i=1min{λ, μσ
′
i} = n′λ.

With the above results, we can prove Theorem 3 as follows:

Π(SC)

Π(OPT )
=

Π(DT )

Π(OPT )
≤

Π(DT ′)

Π(OPT ′)
≤
3n′λ

n′λ
= 3.

Finally, Π(SC) ≤ 3 · Π(OPT ) in an epoch. Since it can be

repeated on each epoch, the SC algorithm is 3-competitive.

VI. CONCLUSIONS

In this paper, we studied the data caching problem driven by

next generation cloud-based data services, which is character-

ized by using monetary cost and access trajectory information

to derive the cache replacements. With homogeneous cost

model, we first proposed a fast optimal algorithm that can
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serve an off-line request sequence in a fully connected net-

work within O(mn) time-space. Then, we investigated online

algorithms for this problem, and presented a 3-competitive

algorithm that leverages an idea of speculative caching. Our

algorithms are not only practical to the data caching problem,

but also appear to be of theoretical significance to a natural

new paradigm in the realm of online algorithms. We provably

achieve these results with our deep insights into the problem

and the careful analysis.
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