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Abstract—In this paper, we study the data caching problem in
mobile cloud environment where multiple correlated data items
could be packed and migrated to serve a predefined sequence
of requests. By leveraging the spatial and temporal trajectory
of requests, we propose a two-phase caching algorithm. We
first investigate the correlation between data items to determine
whether or not two data items could be packed to transfer,
and then combine an existing dynamic programming (DP)-based
algorithm and a greedy strategy to design a two-phase algorithm,
named DP Greedy, for effectively caching these shared data items
to serve a predefined sequence of requests. Under homogeneous
cost model, we prove the proposed algorithm is at most 2/α
times worse than the optimal one in terms of the total service
cost, where α is the defined discount factor, and also show
that the algorithm can achieve this results within O(mn2) time
and O(mn) space complexity for m caches to serve a n-length
sequence. We evaluate our algorithm by effectively implementing
it and comparing it with the non-packing case, the result show
the proposed DP Greedy algorithm not only presents excellent
performances but is also more in line with the actual situation.

Index Terms—data caching, data correlations, mobile cloud
computing, dynamic programming, greedy strategy, approxima-
tion ratio

I. INTRODUCTION

With the rapid development of mobile devices (e.g., smart
phone, ipad, PC), mobile cloud computing has received
widespread attention and has gradually become a major form
of cloud services. It appears in people’s daily life more and
more frequently, such as remote management, wireless push,
storage backup, online search, online music, and mobile notes,
etc. A common goal of these services is to maximize the data
availability [1], which is also a pressing need for cloud service
providers (CSPs) to provide high-quality data services. As
mobile cloud services are usually time sensitive, how to reduce
the service latency and the network loads to maximize data
access efficiency is a crucial issue for cloud computing to offer
high-quality data services and lower service costs. However,
with the increase of mobile users, the number of visits, the
requirement of service quality, and costs of cloud infrastructure
rental, achieving these goals is becoming increasingly difficult
for cloud service providers. To address these issues, data
caching as an effective technology to reduce data service delay

and maximize network bandwidth, has been widely studied in
the past few decades [2]–[4].

However, when considering data caching as a service in the
cloud, things become different from those in classical scenario.
Firstly, the data caching strategy in the cloud is often cost-
oriented, instead of capacity-oriented as in classical caching
problem. This is because that the storage capacity as a resource
in the cloud can be viewed as virtually infinite as long as user
can afford it. Secondly, the data items are often correlated
in accesses, and the accesses are in general trajectory-based,
which is also different from the traditional case where the
spatial and temporal localities are often exploited for each
individual item. This feature comes from the observation that
the overwhelming majority of data items are correlative in real
world, and thus they are always accessed together. A typical
example is a news page where accessing the news text always
implies accessing its associated pictures and video clips in
the subsequent time. With these distinct features in mind, the
cloud based data caching is highly desired to utilize the spatial-
temporal trajectory of mobile accesses to the data items while
considering the correlationships to minimize the total service
cost.

In this paper, we study the caching problem for multi-
ple data items in an off-line form with an assumption that
the spatial-temporal trajectory of each data item accesses is
available in advance. The rationale behind this assumption is
the observation that 93% of human behavior is predictable
[5]. In other words, we can predict and exploit the time and
place information of requests in advance to some extent.* The
essence of this study is based on a general observation that
packed data items to serve requests jointly are usually more
cost effective than transferring each individual one. To this
end, we propose a two-phase data caching algorithm, called
DP Greedy, to deal with the data caching problem when some
data items are correlative in the mobile cloud computing. In
the first phase, the algorithm investigates the correlationships
among the data items and in the second phase it integrates
the dynamic programming (DP)-based optimal off-line data
caching algorithm proposed in [6] with a greedy strategy to

*How to obtain the predicted sequence of requests is beyond the scope
of this paper.978-1-7281-4734-5/19/$31.00 © 2019 IEEE
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handle the caching problem in our model.
Our studies are based on a homogeneous cost model, which

means the caching cost per time unit is identical for each
storage server and the transfer cost between any pair of servers
is also identical. The homogeneous cost model is often studied
in literature [6]–[8] since it typically reflects a certain case in
reality that the infrastructures for a particular service are often
organized as a subset of homogeneous resources, which in turn
results in homogeneous computations and communications [9].
On the other hand, for a cloud infrastructure provider (CIP),
its billing rates for resources are often fixed across its different
data centers (DCs) in a region. †

Since the optimal packing problem for given requests in
its general form is believed to be NP-hard, the proposed
algorithm is an efficient approximated algorithm. We prove
the algorithm is at most 2/α times worse than the optimal
one in terms of the total service cost for a predefined request
sequence, where α is the discount factor that is defined to
measure the cost saving when two items are packed, compared
to non-packing algorithm. Our algorithm can cache the packed
data items, probably with multiple copies amongst the m
caches, to serve a n-length sequence within O(mn2) time and
O(mn) complexity. We evaluate our algorithm by effectively
implementing it and comparing it with the non-packing case,
the result show the proposed DP Greedy algorithm not only
presents excellent performances but is also more in line with
the actual situation.

Although as a proof of concept, the proposed algorithm only
considers to pack two correlative data items, it can be naturally
extended to the case where multiple data items could be
packed. However, the detection of the correlationships among
multiple data items needs much more efforts. The remainder
of this paper is organized as follows: In Section II, we survey
some related works and compare them with ours. After that,
we present our model and the detailed problem formulation
in Section III, followed by Section V where we introduce our
algorithm based on the cost model. We describe the experiment
in Section VI, and conclude the paper in the last section.

II. RELATED WORK

Data caching as a classic technology to reduce commu-
nication overhead and lower response delay for data access
has been intensively studying in network-based applications
for past decades. The earliest studies on the caching problem
in network is web caching [11], [12]. Podlipnig et al. [11]
conduct a study on the distributed cache replacement strategy,
which provides a classification of existing cache technologies.
Using this classification, one can describe the advantages and
disadvantages of different strategies. Furthermore, it discusses
the importance of proxy cache-based replacement strategies
and lists some further research topics. In contrast, Wijesun-
dara et al. [12] regard objects replacement problem in the
caching strategy as a NP-hard backpack problem. As such,

†For example, the cloud storage pricing as of June 2015 for Google
is $0.026 (GB/Month), for Azure is $0.030 (GB/Month). The out-network
pricing bears a similarity compared to the storage case [10].

TABLE I
FREQUENTLY USED NOTATION

Symbol Meaning
µ uniform caching cost per time unit
λ uniform transform cost between servers
Cp

ij cost from ti to tj for data item dp
α the discount factor
Π(i) the set of all feasible schedule up to ri
φ(n) a feasible schedule up to rn
φ∗(n) the optimal schedule up to rn
A(i, j) the correlation matrix between data items
J(di, dj) the Jaccard similarity between di and dj

rp(i)
the most recent request in same server

for a particular data item
C∗ the optimal cost of our model
C∗1 , C

∗
2 the cost of d1,d2 in our optimal schedule

C1opt, C2opt the cost of d1,d2 in the optimal schedule in [6]
CDPG the cost of our proposed algorithm

C
′
1, C

′
2

the cost to serve requests with only d1 or d2
of our proposed algorithm

C1G, C2G the cost of d1,d2 using simple greedy algorithm

they propose a heuristic-based strategy to optimize object
replacements.

As an effective technique for reducing network traffic and
improving access latency, the cooperative cache [4], [13]–
[16] is proposed. Saihan et al. [13] summarize the three
main problems in cooperative caching systems, i.e., cache
placements, cache replacements, and cache consistency main-
tenance. Nuggehalli et al. [14] and Tang et al. [15] respectively
prove that subject to the constraints of cache consistency
and cache capacity, the optimal cache placements is an
NP-complete problem, then they both propose approximate
algorithms to solve the cache placement problem. Besides,
Saleh and Fan present adaptive cooperative caching strategies,
respectively [4], [16]. Our problem is different from theirs in
terms of system model, cost model, and problem definition
since the existing works are all capacity-oriented and aim to
maximize the cache hit ratio, and additionally, the cache cost
is not taken into consideration. In contrast, our algorithm goal
is to minimize the monetary cost under the raised assumption.

The data caching problems can be divided into on-line case
and off-line case based on different application scenarios. In
the off-line case, the request sequence is known in advance
[17], while for the on-line case, we know nothing about the
future requests sequence. Veeravalli et al. [7] studied a caching
problem for sharing a single data item among a set of fully
connected servers in an off-line form, where they obtained
an optimal solution within O(nm2 logm) time complexity
with respect to a homogeneous cost model, here m and n
are the number of cache servers and the length of the request
sequence, respectively. Later, this result was further improved
by Wang et al. [6], who extended the data caching problem
to the cloud-based context, and proposed an optimal off-line
caching algorithm with O(mn) time and space complexity.
Additionally, they also investigated the problem in its on-line
form and presented a fast 3-competitive on-line algorithm.
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Fig. 1. A feasible schedule (bold lines) with standard form where vertices
represent request nodes and the horizontal lines and vertical lines represent
cache interval and transfer interval respectively in single data item system.
The cost of this schedule is C = (1.4 + 3.5 + 0.3)µ+ 4λ.

Another similar study is also conducted by Wang et al. [8]
where the caching problem for multiple data items is studied
with several practical constrains. They proposed an optimal
off-line algorithm based on dynamic programming technique
and an approximation algorithm within a factor of 1 + C/S
for a single-copy scenario, where C and S represent the rates
for transfer cost and caching cost, respectively.

Our model is very similar with theirs, but it is more realistic
and profitable as we incorporate the correlationships between
the data items into the algorithm to serve the requests. Our
work is derived from the aforementioned work and substan-
tially improved their results in both the problem model and
the algorithm efficiency.

III. PROBLEM FORMULATION

In this section, we describe the data caching problem in
details. We first define some useful concepts that will be used
in this paper, and then give a standard form of the solution to
the problem by following the idea proposed in study [6].

A. System Model

Supposed in a cloud environment, there are k distinct
data items with different degrees of correlationships initially
stored in a certain server, say s1. The set of data items is
denoted by D = {d1, d2, ..., dk}, which will be cached in
a fully connected network with m cache servers, denoted
by S = {s1, s2, . . . , sm}. A sequence of data requests,
R = {r1, r2, ..., rn}, is made to access these data items, where
ri =< si, ti, Di > represents the request is made at server si
at time ti for a data items subset Di, Di ⊆ D, si ∈ S. To
serve these data requests, the shared data items need to be
held in one particular server’s cache, transferred from a server
to another server, and replicated or destroyed at certain time
and server with minimal cost. In off-line settings, we have
complete knowledge of where and when each data request
is made and which subset of data items are accessed. For
simplicity, we also assume that there exists at most one request
per time instance as many other previous studies did [6]–[8],
so we can use ti to represent the request node if confuse in
not incurred.

Since there are multiple data items in the system, it is
likely that several correlated data items could be accessed in
one request. In this circumstance, packing these data items

Fig. 2. A feasible schedule based on our system model, the number in bracket
represents the data items. Bold lines in red are package migration paths and in
blue are paths to serve the requests for only single data item of the package.
The cost is C = ((0.8+3.2)µ+2λ)×2α+(0.5+0.3+1.2+1.8)µ+4λ.

as a package to serve the data requests jointly is not only
convenient, but also cost effective, and here we use a discount
factor α, which is defined to measure the cost saving when
multiple items are packed to serve the requests, compared to
the case when the packing is not employed, to show these
benefits as listed in Table II. In this paper, we only consider
two data items package, but without loss of generality, the
algorithm is convenient to extend to multiple item case.

We also adopt the space-time diagram as shown in paper
[18] to present this problem. Moreover, we continue to use
some definitions proposed in [6] that a feasible schedule
(shown in Fig. 1, Fig. 2) is that we use cache or transfer
to get all requests satisfied along the time line, and a standard
form of a schedule is that all transfers occur at the request
time and in addition, the paper [7] confirms that there exists
at least one optimal schedule which belongs to standard form.
What makes our work different from the research [6] is that
we consider the multiple data items data caching problem and
we take the data items correlationships into consideration as
well.

Notably, since a request is often made for a subset of the
data items, when we say the request is satisfied often means
that the data items in that request mentioned before is satisfied
instead of all data items requested for are satisfied.

Definition 1. For a given data item dp(1 6 p 6 k) in ri, we
use ri−1 to represent the most recent request for data item dp,
and rp(i) is the most recent request for data item dp in the
same server.

B. Cost Model

We adopt the homogeneous cost model in our study, which
means the cache cost per time unit for each server is identical,
denoted by µ, and the transfer cost between any pair of servers
is also identical, denoted by λ. Suppose Cpij(1 6 p 6 k)
represents the cost to serve the request rj =< sj , tj , Dj > that
contains data item p, p ∈ Dj . And request ri =< si, ti, Di >,
p ∈ Di, is the most recent request for data item p. We give a
formal definition to Cpij :

Cpij =

{
(tj − ti)µ+ ελ, tj > ti
+∞, Otherwise (1)

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:52 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
COST OF DATA ITEM SERVING INDIVIDUALLY AND SERVING BY PACKAGE

Data Item Individual Package
Cache Transfer Cache Transfer

k = 1 µ λ µ λ
k > 1 kµ kλ αkµ αkλ

where ε is an 0/1 variable to signify how to treat the transfer
cost in the computation of Cpij . Specifically, if si = sj , then
ε = 0, which means request rj is served by a cache from ri.
Otherwise, ε = 1, implying data item p is first cached from ti
to tj , and then transferred from si to sj to serve request rj .
For the data item package, the corresponding cost is 2αCpij ,
where p is one of packed data item.

C. Problem Goal

In order to satisfy all the data requests, the data items may
need to be cached in some server to serve the subsequent
requests made on this server or transferred from a server to
another so that the requests made on other servers could be
satisfied. A transfer operation often implies a replication for a
data item, and the copy may be cached in that server and then
destroyed in the future for cost saving. Since the replication
cost, deletion cost and package cost are always a constant
and thus can be added to the transfer cost or the cache cost,
without loss of accuracy, we assume these cost are free as
many previous studies did [6]–[8].

There are many schedules that can satisfy the requests se-
quence. Our goal is to find an optimal schedule so that the total
cost to serve all these requests is minimum. Here we use Π(i)
to represent all the feasible schedules to satisfy the requests
up to ri, and φ(n) and φ∗(n) denote a feasible schedule
and an optimal schedule for this n-length requests sequence,
respectively. Each schedule φ(n) has a cost cost(φ(n)), then
the formal definition of our goal is:

φ∗(n) = arg min
φ(n)∈Π(n)

cost(φ(n)) (2)

in which cost(φ(n)) can be written as:

cost(φ(n)) =
∑
ri∈R

cost(ri) =
∑
ri∈R

∑
dj∈Di

cost(dj) (3)

The packed caching problem in its general form is highly
related to the data caching problem under a heterogeneous
cost model [7] since the packing operation may change the
cost of data migration paths, leading to a variant of the recti-
linear Steiner arborescence problem [19]. As such, the packed
caching problem is believed to be NP-complete. However, its
formal proof still remains open. Given the intractability of this
problem, we will focus on its approximation solution.

IV. A 2/α-APPROXIMATION ALGORITHM

In this section, we will first present our two-phase caching
algorithm with an approximation factor of 2/α based on the
problem notation, where α is the discount factor, and then
conduct a proof of the approximation ratio.

A. The Algorithm

Suppose we use matrix A to record the correlation between
input data items:

A(i, j) =

{
ai,j ∈ [0, 1], i 6= j
1, i = j

(4)

where i, j ∈ [0, k − 1] and it is obvious that the matrix A is
a symmetric matrix, meaning aij = aji. In this paper, we use
Jaccard similarity (denoted by J), instead of the co-occurrence
of data items, to specify the correlationships between data
items since we expect the DP Greedy algorithm to perform
well when both the frequency and the Jaccard similarity for
two data items are high. The Jaccard similarity of two data
items is defined as follow:

J(di, dj) =
|di ∩ dj |
|di ∪ dj |

=
|(di, dj)|

|di|+ |dj | − |(di, dj)
(5)

where |(di, dj)| is the number of requests in which data item
di and dj co-exist, and |di| and |dj | represent the number of
requests that contains data item di and the number of requests
that access data item dj , respectively.

We set a correlation threshold denoted by θ, which implies
when the correlationships of a pair of data items are greater
than the threshold value θ, we pack these two data items to
satisfy those requests that simultaneously access to the two
data items using the optimal off-line algorithm in [6].

Observation 1. Since those requests with the two data items
in one package are satisfied by the optimal algorithm proposed
in [6], which means that there exists at least a single-package
copy schedule so that the package is available at any time
instance.

Based on Observation 1, we can reach the conclusion those
requests with only one of data item (say d1 or d2) of the
package, they may be served by a transfer or a cache from the
node with that data item or the node with the package, here the
node with package only cache or transfer the only requested
data item to serve the request. This is because the package is
unpacked when serving the front request and therefore we can
get any one of data item in the package to serve the subsequent
requests. what’s more, since the package is available at any
time, so we can also directly transfer the package to satisfy
those requests. The way we determine to have these requests
satisfied depends on if it is most cost effective at this moment.

Observation 2. By using the greedy algorithm to serve
requests ri with only one of data items in the package, the
request may be served by a transfer from ri−1 or a cache
from rp(i) or a package, and One thing needs to be clarified
is that the cost using a package to serve the request with a
single data item of the package is always a constant equaling
to 2λα.

To make it more clear, we take the request 2.6 in Fig. 2 as
an example:
• Served by a cache from rp(i) (0.5, r1), C1

15 = (2.6 −
1.5)µ.

• Served by a transfer from ri−1 (1.4, r4), C1
45 = (2.6 −

1.4)µ+ λ.
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• Served by a package, 2λα.

So to serve request r5, the cost is min{C1
15, C

1
45, (2λα)},

according to our algorithm. The detailed two phases of this
algorithm are shown as follows:

Algorithm 1 The DP Greedy algorithm
Create an array named cost with size k+ 1 to store the cost of each
data item, and a dictionary Jaccard to store the Jaccard similarity
between each data item pair. Create two array package list and
package flag of size k + 1 to respectively store data items packing
situation and flag whether the data item is engaged in packing. For
easy description, we assume d1 = 1, d2 = 2, ..., dk = k.
Inputs: a request sequence with form ri =< si, ti, Di >
Outputs: the average cost to serve this request sequence denoted by

ave cost
1: θ ← θ0 ← 0;
2: package list[k + 1]← 0;
3: cost[k + 1]← 0;
4: Jaccard← 0;
5: package flag[k + 1]← 0;
6: ave cost← 0;
7: Phase 1 (Jaccard similarity and package)
8: for (i← 1 to k − 1) do
9: for (j ← i+ 1 to k) do

10: J(i, j)← |(di,dj)|
|di|+|dj |−|(di,dj)

11: add ((i,j),J(i, j)) to Jaccard
12: end for
13: end for
14: sort Jaccard by J(i, j)
15: for (key in Jaccard) do
16: if (Jaccard(key) > θ and package flag[key.i] 6= 1
17: and package flag[key.j] 6= 1) then
18: add (key.i, key.j) to package list
19: package flag[key.i]← 1;
20: package flag[key.j]← 1;
21: end if
22: end for
23: for (i← 1 to k) do
24: if (package flag[i] = 0) then
25: add di to package list
26: end if
27: end for
28: Phase 2 (Cost computation)
29: for (item in package list) do
30: if (item size is 1) then
31: for (i← 1 to n) do
32: if (item in ri) then
33: cost[item] += call alg. in [6]
34: end if
35: end for
36: else (item size is 2)
37: cost[item.d1]← 0
38: for (i← 1 to n) do
39: if (item.d1 and item.d2 in ri) then
40: cost[item.d2] += 2α (call alg. in [6])
41: else if ( item.d1 or item.d2 in ri) then
42: cost[item.d2]+ = min{µ(ti − tp(i)),
43: λ+ µ(ti − ti−1), 2αλ}
44: else
45: continue;
46: end if
47: end for
48: end if
49: end for

Fig. 3. An example optimal schedule using the optimal off-line algorithm
proposed in [6].

Fig. 4. An example schedule using simple greedy algorithm.

50: ave cost←
k∑

i=1
cost[i]

|d1|+|d2|+...+|dk|
;

51: return ave cost;

Remarks: Although the proposed algorithm only considers
to detect the correlationships between two data items and
pack them accordingly, it is not difficult to extend it to
the case where multiple correlative data items. However, the
correlationships among multiple data items as well as the
intractability of this scaling-out (in terms of the number of
items) would need much more efforts to detect and deal with.

B. Approximation Ratio Analysis (2/α)

In this section, we perform a strict analysis of the approx-
imation ratio of 2/α. For the sake of easy explanation, we
take two data items, say d1 and d2, as an example and assume
the Jaccard similarity between the two data items is greater
than the threshold value, that is the d1 and d2 should be
packed. Given a sequence of requests, we assume the cost of
the optimal algorithm and the DP Greedy algorithm to satisfy
these requests containing data item d1 or d2 are C∗ and CDPG,
respectively. In addition, C1opt and C2opt denote the cost of
the optimal off-line algorithm proposed in [6] to serve these
requests individually.

Lemma 1. C∗ ≥ α(C1opt + C2opt).

Proof: For the given data requests sequence, there exist
an optimal service strategy based on our model that the total
cost to serve all these requests is minimal. Data item d1 and
d2 respectively have a serving tree, the cost is denoted by C∗1
and C∗2 respectively. The set of requests with data item d1 or
d2 is denoted by R, and R’ represents the set of requests that
contains both d1 and d2, R′ ⊆ R, then

C1opt ≤ C∗1 and C2opt ≤ C∗2

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:52 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. An example to show how to conduct the cut operation in optimal
off-line schedule where the shaded rectangles are the cut regions.

C∗ =
∑
ri∈R

Ci = α
∑
rj∈R′

Cj +
∑

rk∈(R−R′)

Ck

≥ α
∑
rj∈R′

Cj + α
∑

rk∈(R−R′)

Ck (6)

= α
∑
rj∈R′

(C1j + C2j) + α
∑

rk∈(R−R′)

Ck

= α(C∗1 + C∗2 )

≥ α(C1opt + C2opt)

where rj is the requests with the two packed data items d1

and d2, αCj is the cost of request rj , and rk is the request
that accesses only one of packed data items and Ck is the
corresponding cost. C1j and C2j represents the cost of d1 and
d2 in rj (a package), C1j = C2j .
CDPG = C

′

1 +C
′

2 +C12, where C
′

1 and C
′

2 are the costs of
the greedy strategy to serve the requests with only data item
d1 and the requests with only data item d2, respectively, and
C12 is the cost we use dynamic programming technique to
satisfy these requests that d1 and d2 co-exist. Besides, we use
C1G and C2G to denote we individually serve these requests
with d1 or d2 by the greedy strategy (an example shown in
Fig. 4). Then we have following Lemma 2:

Lemma 2. CDPG 6 C1G + C2G.

Proof: CDPG = C
′

1 + C
′

2 + C12. For those requests
with only d1 or d2, the cost of DP Greedy is not more than
the greedy algorithm for the DP Greedy algorithm has more
choice (package). However, to serve those request with d1

and d2, the DP Greedy algorithm adopts the modified optimal
algorithm and therefore is better than greedy algorithm, so the
cost is less.

Now, we first analyze the approximation ratio between
the optimal off-line algorithm in [6] and the simple greedy
algorithm for a particular data item, and then we deduce
the approximation ratio between DP Greedy and the optimal
algorithm. For each situation, we have

1) When µ(ti − tp(i)) 6 λ, in this situation, both in
the optimal off-line algorithm and the simple greedy
algorithm, the request is satisfied by a caching. If we
set µ = 1 and λ = 1, the request 3.2 (Fig. 3 and Fig. 4)
meets this requirement.

2) When µ(ti − ti−1) > λ, in this situation, both in
the optimal off-line algorithm and the simple greedy

Fig. 6. An example to show how to conduct cut operation in simple greedy
schedule in which the shaded rectangles are the cut regions.

algorithm, there exists only one data copy at any time
instance during ti−1 and ti. If we set µ = 1 and λ = 1,
the request 2.6 (Fig. 3 and Fig. 4) meet this requirement.
Proof: Assume the request ri meets this requirement and
there exists another data copy between time ti−1 and ti,
and we assume this data copy is to serve the request rk
and this data copy derives from rj . According to our
assumption, tk > ti and tj < ti−1, the cost to serve
rk is: Ck = µ(tk − tj) = µ((ti − tj) + (tk − ti)) >
µ(tk−ti)+λ. However, if we serve rk by the data copy
in ri, the cost is Ck = µ(tk−ti)+λ. So that rk is served
by ri is more profitable than by rj , the assumption is
conflict with the reality, there exist only one data copy
between ti−1 and ti when µ(ti − ti−1) > λ.

3) For those requests meeting the above two situations,
we conduct the following remove operation for both
the optimal off-line algorithm and the simple greedy
algorithm because they both have the same serving way.
The cut operation rules are as follows, in both
DP Greedy and the simple greedy algorithm schedule,
for those requests that meet µ(ti − tp(i)) 6 λ, the cost
of these requests can be ignored, that is the caching line
can be removed. While for those requests that meet the
requirement µ(ti− ti−1) > λ, we remove the short part
of the long caching line (ti, ti−1) so that µ(ti − ti−1)
equals to λ (shown in Fig. 5 and Fig. 6). In this way, we
can obtain the critical state that in the optimal off-line
schedule, the cost of a particular request is at least λ,
while in the simple greedy schedule, 2λ is the greatest
cost for a request. After above processing, the optimal
off-line cost for data item d1 C1opt and d2 C2opt is
changed to C

′

1opt and C
′

2opt. Moreover, the cost of the
simple greedy algorithm for d1 C1G and d2 C2G is
denoted by C ′1G and C ′2G, and n′ represents the number
of requests after above remove operation. So we have

C1G

C1opt
6

C
′

1G

C
′
1opt

6
2n′λ

n′λ
= 2 (7)

then

C1G 6 2C1opt 6 2C∗1 and C2G 6 2C2opt 6 2C∗2
(8)

So far, for data item d1 and d2, we get the approximation
ratio:
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Fig. 7. The schedule derived from our DP Greedy algorithm for the given
requests sequence

CDPG
C∗

6
C

′

1 + C
′

2 + C12

α(C∗1 + C∗2 )
6

C1G + C2G

α(C∗1 + C∗2 )

6
2(C∗1 + C∗2 )

α(C∗1 + C∗2 )
=

2

α

Further, we reach our final conclusion:
k∑
i=1

CDPG

k∑
i=1

C∗
6
CDPG
C∗

6
2

α
(9)

Theorem 1. With homogeneous cost model, the approximation
ratio of the DP Greedy algorithm is 2/α where α is the
discount factor we defined.

Proof: The proof can be directly given by above discus-
sion.

V. EFFICIENT IMPLEMENTATION

In this section, we present the core data structure to imple-
ment the proposed algorithm for a given expected sequence of
requests, thereby conducting its time and space analysis.

A. Core Data Structure

For efficient implementation of the algorithm, we focus on
the second phase of the algorithm by conducting two-pass
processing of the sequence of requests, pre-scan pass and
service pass, as this phase is the core part of the algorithm.
The intent of the pre-scan pass is to build some advanced data
structures to represent the requests for efficient processing in
the service pass.

1) Pre-Scan Phase: We create the following structures in a
pre-scan of the requests. First, for each server, sj , 1 ≤ j ≤ m,
we create a doubly linked list Qj , which is initialized by a
dummy boundary request and used to record the requests made
on sj . Then, for each ti when a request is made, we maintain
a data structure, which contains an m-size pointer array to
record the most recent request made on each server relative to
ti. Finally, we also allocate arrays of A[n] and pLast[m] as
two global index structures, in which A[n] is designed to index
the requests along the time whereas pLast[m] is constantly
updated on per-request basis (say, ri) by storing the immediate
request ahead of the request (e.g., ri) for each server. After
updated, pLast[m] is also copied to the m-size pointer array

Fig. 8. An example to show how the efficient implementation of the proposed
algorithm addresses the data caching problem. The computed cache intervals
on each server are also marked, and each pointer, represented by “*” in
different colors, is kept up to t8 (updated when a new request made on that
server is processed).

of the request (ri) so that the m-size pointer array will always
keep the most recent requests before or at the request time
(say ti). As such, the most recent request in Qk relative to ri
in Qj can be obtained from pLast[k], and these most recent
request nodes are potential start nodes of the time intervals
that cover ri.

As ri is considered, 1 ≤ i ≤ n, it is added to the list Qsi
and array A[i], and then pLast[m] is updated and assigned
to the request’s m-size pointer array, which take O(m) time,
there are n request nodes in total and thus take exact O(mn)
time and space in pre-scan.

2) Service Phase: During the next service pass over the
requests to compute the actual cost, these pointers can be used
to precisely identify each of the intervals in O(mn) time per
request. By considering the outside loop in Line 31 and 38,
this pass totally takes O(mn2) time.

Fig. 8 is an example to show how the data structures
are organized in the efficient implementation of the caching
algorithm. During the computation of the recurrences, the
algorithm follows the pointer of recent request ri in A[i] (e.g.,
A[7]) to find the current last element of Qj (e.g., request
node 4.0) and then go back along the backward link of the
last element (i.e., node 4.0) to get its previous request node
which records tp(i) (e.g., node 0.8). Then, by following the
m pointers of the m-size array of node at tp(i) (i.e., node
0.8), each for one server, the required interval on each server
can be identified in O(1) (i.e., {[0, 1.4], [0.5, 2.6],∅,∅} in our
example).

B. Time-Space Complexity Analysis

With the efficient implementation, the time complexity of
the algorithm is O(mn2) while the space remains O(mn).
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C. A Running Example

In this example, we take two packed data items as an
instance of multiple data items, because once the package
strategy is determined, the cost of this data item only relates
to the other packed data item. Other data items are either
served individually or packed with other data items and has
no influence to this two-data items. So taking two packed data
items as an example is reasonable.

1) set θ = 0.4, µ = 1, λ = 1, α = 0.8.
2) J(d1, d2) = |(d1,d2)|

|d1|+|d2|−|(d1,d2)|
= 3

7
.

3) J(d1, d2) > θ, so d1,d2 are packed to serve those requests
with d1,d2.

4) Requests(e.g., 0.8, 1.4, 4.0) are served by the algorithm pro-
posed in [6]:
• D(0.8) = +∞
Tr(0.8) = (0.8× 1 + 1)× 2× 0.8 = 2.88
C(0.8) = min(D(0.8), T r(0.8)) = 2.88

• D(1.4) = C(0) + (1.4 + 1)× 2× 0.8 = 3.84
Tr(1.4) = C(0.8) + (0.6 + 1)× 2× 0.8 = 5.44
C(1.4) = 3.84

• D(4.0) = min(C(0.8) + (3.2 + 1)× 2× 0.8, D(1.4) +
3.2× 2× 0.8) = min{9.6, 8.96} = 8.96
Tr(4.0) = C(1.4) + (2.6 + 1)× 2× 0.8 = 9.6
C(4.0) = 8.96

5) Those requests with one of data item in a package is served
by a greedy algorithm. For d1 (e.g., 0.5, 2.6)
• D(0.5) = +∞
Tr(0.5) = C(0) + 0.5 + 1 = 1.5
P = C(0) + 2αλ = 1.6
C(0.5) = 1.5

• D(2.6) = C(0.5) + 2.1 = 3.6
Tr(2.6) = C(0.5) + (2.6− 1.4)µ+ λ = 3.7
P = C(0.5) + 2αλ = 3.1
C(2.6) = 3.1

6) For d2(e.g., 1.1, 3.2) :

• D(1.1 = +∞
Tr(1.1) = C(0) + (1.1− 0.8)× 1 + 1 = 1.3
P = C(0) + 2αλ = 1.6
C(1.1) = 1.3

• D(3.2) = +∞
Tr(3.2) = C(1.1) + (3.2− 1.4)× 1 + 1 = 4.1
P = C(1.1) + 2αλ = 2.9
C(2.6) = 2.9

7) So the total of this schedule is: 8.96 + 3.1 + 2.9 = 14.96, and
the caching schedule is shown in Fig. 7.

VI. SIMULATION STUDIES

In this section, we conduct extensive simulation-based ex-
periments to study the performance of our algorithm in reality.
We design a solver in C language, which effectively imple-
ments our algorithm. The experiment data (shown in Fig. 9)
comes from the taxi trace data from Shenzhen, a metropolitan
city in South China [20]. We partition the territory of Shenzhen
city into a number of parts (e.g., 50), each maintaining a data
server to serve the user requests made in the taxis to shared
data items.

The algorithm proposed is characterized by several param-
eters, such as the size of distinct data items k, the number
of nodes m in the network, the number of requests n, the
discount factor α, the correlation threshold θ, the cache cost
µ and transfer cost λ. In order to concentrate our study on the

Fig. 9. The distribution of requests in taxi trace data of Shenzhen city.

factors we concerned about, we deliberately ignore some other
factors that may make some influence on our algorithm, such
as the network traffic, the CPU power and the bandwidth of
the network. On the other hand, we take the average cost as the
major performance metric since many other performance can
be reflected from it such as the network bandwidth occupancy
rate.

As for our experiment environment, we randomly select 10
taxis, each accessing a single distinct data item (d1, d2, ..., d10)
as this value can be well handled and without loss of generality
to reflect general case. As stated, we partition Shenzhen
city into 50 parts, each having a caching server, and select
correlation threshold θ = 0.3 and discount factor α = 0.8 in
this study based on our experience to research human mobility
behaviors in metropolitan city [21]. According to the research
results [21], the trace of the taxi can be roughly seen as the
trace how data items are requested from different servers.

To evaluate our algorithm, we compare the results with those
of the optimal off-line algorithm proposed in [6] for a single
data item caching since this algorithm has the best results,
and can be used as a yardstick to measure the quality of our
algorithm.

a) Impact of Jaccard similarity: We first investigate the
impact of Jaccard similarity on the proposed algorithm. A
bigger value of Jaccard similarity means the ratio of the
number of requests with two co-exist packed data items is
greater, which undoubtedly is beneficial to our algorithm with
respect to the cost to serve these requests. This is what shown
in Fig. 11 where the Jaccard similarities come from different
pairs of data items in Fig. 10. Since there is no interference
between data items except for data items in the same package,
we study this impact between packages, for example, 0.5227
is the Jaccard similarity between d8 and d9, so the ave cost
(y-axis) demonstrates the average cost by using the algorithm
proposed in this paper to get all requests with d8 or d9 being
satisfied, and the rest can be served in the same manner.

As can be seen in the figure, the general trend of this
curve is that the bigger Jaccard similarity value of the packed
data items is, the better the proposed algorithm performs, and
moreover, when the Jaccard similarity is approximately equal
to 0.3, the performance of the proposed algorithm and the
optimal algorithm for a single data item caching is equally
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Fig. 10. The frequency and Jaccard similarities in two frequent dataset in
taxi trace data.

good with respect to this dataset. This is why we set the
correlation threshold value to 0.3 in the experiments.

b) Impact of ratio ρ = λ/µ: We then consider the impact
of ratio ρ = λ/µ on the behavior of the proposed algorithm. To
this end, we give the performance of the optimal algorithm for
a single data item caching system [6] and compare with that
of the proposed algorithm when the ratio ρ is varied from 0.2-
5.0, which covers a wide range of this ratio to reflect different
cases in reality.

By following the previous arguments, we still set the cor-
relation threshold θ = 0.3 and the discount factor α = 0.8 in
this experiment. Moreover, to prevent λ + µ from arbitrarily
changing and also for a fair comparison, we intentionally
limit λ + µ as a constant value of 6. We expect this value
in conjunction with their ratio can characterize the relative
weights between λ and µ in reality.

Fig. 12 displays the results of our experiment, as shown in
the figure, the tendency of average cost exhibits a parabolic
like curve that the average cost increases rapidly with the
growth of ρ in the initial stage, and then decreases at a slower
rate afterwards. This results are highly consistent with our
expectation since λ + µ is a constant, and the increase of µ
means the decrease of λ and vice versa, which means when
ρ is very large or very small (both sides of the curve), the
algorithm is able to choose more caching or more transfers (a
relatively better way) to satisfy a request for cost saving, so
the performance of the algorithm is relatively good.

However, with the increase of ρ, the value of µ and the
value of λ gradually reach to equality, under this circumstance,
neither the transfer nor the caching is an absolutely favorable
choice, which leads to the performance of the algorithm
becoming poor. In addition, the first request of each server
must be served by a transfer, implying that the transfer cost has
greater impact on the algorithm than the caching cost, which
explains why the initial stage of this curve is more steeper
than its end part and also reveals why the curve reaches its
peak around ρ = 2 (µ = 2, λ = 4).

c) Impact of discount factor α: It is expected that the
benefits from data packing is highly related the discount factor
α. By using the same experimental setups, we study the impact

Fig. 11. Impact of Jaccard similarity of two data items on DP Greedy.

Fig. 12. The relative performance changes of the optimal algorithm and
DP Greedy under different ρs (θ=0.3 and α= 0.8).

of this factor α by varying it from 0.2 to 0.8 to reflect various
cases in reality and observe its impact on the service cost
by comparing three algorithms Package Served, Optimal, and
DP Greedy, in which the Package Served algorithm serves
the requests containing data items di, dj , or both by always
packing them if they are evaluated to have J(di, dj) greater
than the threshold value (i.e. J(di, dj) ≥ θ). Package Served
represents the extreme to exploit the data packing from service
cost reduction. In contrast, Optimal is on the other extreme
where no packing is involved to serve the requests.

Fig. 13 shows the comparison results. It is easy to derive
that when α is smaller than 0.5, it is always (across all the
selected Jaccard similarities) beneficial to pack the correlative
data items as shown by Package Served in Fig. 13 when α =
0.2 or 0.4. Also in these cases, Optimal exhibits the worst
service cost among the three as it is optimized for single item
caching, lacking the power of packing ability to enjoy the
benefits of small discount factors. In contrast, the service cost
DP Greedy approaches to that of Package Served due to its
selective packing ability.

As α continues to increase, the performance of the com-
pared algorithms are gradually changed. In particular, the
service cost of Optimal consistently declines while that of
Package Served grows up. When α = 0.8, DP Greedy is com-
petitive to Optimal, exhibiting the best performance among the
three, especially when J > 0.3, while Package Served is the
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Fig. 13. Impact of discount factor α on average cost

worst due to the value reduction of the data packing.
By observing these results, we can derive that DP Greedy

can effectively exploit the data packing mechanism to optimize
the service cost across a range of discount factors and for
diverse requests with different Jaccard similarities.

VII. CONCLUSION

In this paper, we study multiple data items caching prob-
lem in the mobile cloud computing system by minimizing
monetary cost as our optimization objective. By leveraging
the observation that packing two data items to serve requests
jointly are usually more cost effective than non-packing,
we first investigated the correlation between data items and
determine which data items need to be packed together, and
then extended the optimal off-line algorithm in [6] with respect
to a homogeneous cost model to serve those requests with at
most two data items being packed. We proved the proposed
algorithm is at most 2/α times the optimal algorithm and
showed that the result can be achieved within O(mn2) time
and O(mn) space complexity, where α represents the defined
discount factor. To evaluate the performance of the algorithm
in reality, we implemented it effectively and conducted exten-
sive simulation-based experiments. Our results revealed that
the proposed algorithm is not only cost-effective to serve
data requests in practice, but also has important theoretical
significance to similar problems.
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