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Cost-Aware Region-Level Data Placement
in Multi-Tiered Parallel I/O Systems
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Abstract—Multi-tiered Parallel I/O systems that combine traditional HDDs with emerging SSDs mitigate the cost burden of SSDs while
benefiting from their superior /0 performance. While a multi-tiered parallel I/O system is promising for data-intensive applications in
high-performance (HPC) domains, placing data on each tier of the system to achieve high I/0 performance remains a challenge. In this
paper, we propose a cost-aware region-level (CARL) data placement scheme in multi-tiered parallel /O systems. CARL divides a large
file into several small regions, and then places regions on different types of servers based on region access costs. CARL includes a
static policy S-CARL and a dynamic policy D-CARL. For applications whose /O access patterns are completely known, S-CARL
calculates the region costs within the entire workload duration, and uses a static data placement scheme to selectively place regions on
the proper servers. To adapt to applications whose access patterns are unknown in advance, D-CARL uses a dynamic data placement
scheme which migrates data among different servers within each time window. We have implemented CARL under MPI-IO library and
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OrangeFsS parallel file system environment. Our evaluation with representative benchmarks and an application shows that CARL is

both feasible and able to improve I/O performance significantly.

Index Terms—Parallel /0 system, parallel file system, data placement, solid state drive

1 INTRODUCTION

TODAY many of the applications in high-performance
computing (HPC) domains are becoming increasingly
data-intensive [1]. To satisfy the huge data requirements of
such applications, HPC clusters use parallel I/O systems,
which integrate multiple servers with a parallel file system
(PFS) [2], [3], [4], [5], to provide efficient storage accesses.
However, the performance of PFSs is still severely impacted
by application I/O characteristics [6], [7], [8]. For example,
although PFSs are effective to improve 1/O system perfor-
mance for large requests, they fail to perform well for
non-contiguous small requests. Therefore, a large body of
studies are devoted to improve parallel I/O system perfor-
mance [9], [10], [11].

New storage technologies, such as flash-based solid state
drives (S5D), are becoming increasingly popular in I/O sys-
tem designs. When compared to hard disk drives (HDD),
SSDs have higher storage density, lower energy consumption,
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a smaller thermal footprint, and orders of magnitude higher
performance [12]. SSD is an ideal storage medium for build-
ing high performance I/O systems [13]. However, the high
price per gigabyte of SSDs prevents them from being utilized
to build an I/O system completely based on SSDs [14]. Hence,
a multi-tiered parallel I/O system, which consists of both
HDD-based file servers (HServer) and SSD-based file servers
(SServer), is one of the practical ways to address the 1/O bot-
tleneck problem [15], [16], [17], [18].

While a multi-tied HDD-SSD architecture is cost effec-
tive, the performance of the multi-tiered I/O system relies
on an efficient data placement scheme. However, I/O access
patterns and storage system configurations become more
and more complex, how to place data in a multi-tiered par-
allel I/O system is challenging.

First, complicated I/O access patterns may result in ineffi-
cient data placement. A naive data placement approach is to
place performance-critical data on SServers. For example,
small requests can benefits more from SSDs, hence it tends to
place data with small requests on SServers. However, previ-
ous studies have shown that applications can send
I/0 requests with complicated access patterns [7], [19], in
terms of request size, type, frequency, and concurrency. A
given data placement scheme can benefit requests with one
given access pattern, but not necessarily lead to the optimal
performance for other patterns. If we blindly place data on a
tier without carefully considering the I/O access characteris-
tics, the overall I/ O system performance will be degraded.

Second, storage system configurations can also affect the
efficiency of the data placement schemes. Generally, multi-
tier parallel I/O systems may have different system config-
urations in terms of server performance and number of
servers in each storage tier. A data placement policy works
well under a special system configuration does not yield
performance benefits for other configurations. For example,
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placing the requested data of a large file request on SServers
is favorable if SServers have higher aggregated I/O perfor-
mance than HServers. However, when a multi-tiered sys-
tem has many more HServers than SServers, it is better to
place data on HServers because of their higher I/O parallel-
ism. As a result, an ideal data placement for a multi-tiered
parallel I/O system must consider storage system configu-
rations to determine the proper placement of file data.

Currently, plenty of work has been done on data place-
ment policies in SSD-based hybrid 1/O systems [14], [20],
[21], [22]. These methods are very helpful, however, to the
best of our knowledge, the existing work is deployed in a
single file server, without considering data placement opti-
mization in a multi-tiered parallel I/O system.

In this paper, we propose a cost-aware region-level data
placement scheme (CARL) for a multi-tiered parallel I/O sys-
tem combining both HServers and SServers. The basic idea of
CARL is to divide a large file into several small regions, and
then places file regions on different types of file servers based
on the region access costs. By selectively placing fine-grained
region instead of the entire file on the proper server tier,
CARL can benefit various I/O patterns and system configura-
tions. CARL consists of two data placement polices for differ-
ent applications. First, for applications whose I/O access
patterns are completely known, CARL calculates the region
costs according to data access patterns within the entire work-
load duration, and uses a static data placement scheme to
selectively place file regions with high access costs on proper
servers with better aggregated I/O performance. Second,
CARL also utilizes a dynamic data placement scheme which
leverages data migration to place data on different types of
servers based on workload changes if we have no a prior
knowledge about the application’s access patterns. As
opposed to the static data placement scheme [15], such a
dynamic data placement is more realistic and can adapt to
applications with unknown access patterns.

Specifically, this study makes the following contributions.

e We introduce a data access cost model for parallel
file systems, which can evaluate the access time of a
request with different access patterns and on differ-
ent storage media.

e For applications with I/O access patterns are
completely known in advance, we present a static
region-level data placement scheme based on the cost
model, which divides files into regions and selec-
tively places regions on proper underlying servers.

e For applications whose I/O access patterns are
unknown, we propose a dynamic region-level data
placement scheme, which considers data migration
among different types of servers based on the region
access costs.

e We implement and integrate the cost-aware region-
level data placement scheme into MPI-IO library and
OrangeFS, and evaluate the performance of CARL
with extensive tests. Experimental results show that
CARL can significantly improve the multi-tiered 1/O
system performance.

The rest of this paper is organized as follows. Section 2

discusses the related work. Section 3 introduces the data
access cost model used in the proposed data placement
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scheme. Sections 4 and 5 describe the static and dynamic
region-level data placement policy respectively. Section 6
evaluates the performance of CARL. Finally, Section 7 con-
cludes the paper.

2 RELATED WORK

In this section, we focus on previous studies in improving
parallel I/O system performance: I/O software optimiza-
tion and data placement in homogeneous/heterogeneous
I/0 systems.

2.1 1/0 Software Optimization Approaches
Numerous efforts have focused on reorganizing I/0
requests to produce large continuous data accesses. A lot of
work has been done at the I/O middleware layer, including
data sieving [10], list I/ O [11], datatype I/O [23], two-phase
I/0 [24], and collective I/O [10]. Data sieving [10] techni-
ques integrate multiple noncontiguous small requests into a
larger contiguous chunk, possibly fetched with additional
data (hole). List I/O [11] and datatype 1/O [23] allow users
to merge multiple I/O requests with different patterns into
a single I/O routine. While list I/O is used to handle more
general data access cases, datatype I/O is designed to access
data with certain regularity. Two-phase 1/O [24] and collec-
tive I/O [10] are proposed to rearrange concurrent I/O
accesses among a group of processes.

2.2 Data Placement in Homogeneous I/O Systems
Optimizing data placement is another effective approach to
improve I/O performance. Parallel file systems usually pro-
vide several data placement policies for different I/O work-
loads [6]. Data partition [25], [26], data migration [27], [28],
and data replication [6], [8], [29], [30] techniques are com-
monly used to organize data layout on file servers consistent
with I/O workloads. Furthermore, file stripe resizing tech-
nique is widely used to optimize the data placement of paral-
lel I/O systems [7], [31]. PARLO is designed for accelerating
queries on scientific datasets by applying user specified data
placement optimizations [32]. Tantisiriroj et al. [33] use
HDFS-specific layout rearrangement to improve the perfor-
mance of PVFS [34]. However, all these studies are designed
for homogeneous I/0O systems, and cannot be applied to het-
erogeneous environments.

2.3 Data Placement in Heterogeneous I/O Systems
As SSDs exhibit obvious performance advantages over
HDDs, they are widely deployed in parallel I/O systems,
either as a cache of traditional HDDs [35], [36] or as a hybrid
storage device [14], [18], [20], [21]. However, most of these
approaches are made on a single file server. In contrast to
these studies, our work is designed for a parallel 1/O
system.

Previous studies [37], [38], [39], [40], [41] use the global
data information and SSDs in a similar way to optimize
data placement in a parallel I/O environment. However,
both SSD-based servers and HDD-based servers are used as
persistent storage and the system only includes one storage
tier. While recent studies also focus on the data placement
in a multi-tiered parallel I/O system [9], [42], they use SSD-
based server as a caching tier as apposed to our work that
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TABLE 1

Parameters (Pars in Short) in Cost Analysis Model
Pars Description
M Number of HDD servers
N Number of SSD servers
str Stripe size of parallel file system
0 Offset of request req
s Size of request req
» Number of processes of the parallel application
oy Average startup time on HServer
Br, Unit data transfer time on HServer
gy Average startup time for read on SServer
Ber Unit data transfer time for read on SServer
sy Average startup time for write on SServer
Bsw Unit data transfer time for write on SServer

uses them as a storage tire, one of promising approaches to
utilize high-performance SSDs

3 DATA Access CosT MODEL

To guide the region-level data placement, we propose a
cost model to calculate the data access time on a parallel
file system. The corresponding parameters are listed in
Table 1. The model not only considers application’s access
patterns (e.g., request size, offset, number of processes),
but also takes storage system configurations (e.g., number
of servers, server type, storage startup time and storage
transfer time of each server) into account to overcome the
challenges in data placements in multi-tiered parallel I/O
systems.

In the cost model, we assume a file request is served
either by HSevers or SServers, each organized by a parallel
file system in a multi-tiered I/O system. We also assume
the file is distributed on the underlying servers in a round-
robin fashion which is the most popular data layout method
in a PFS [8]. We calculate the data access cost on different
types of servers respectively as follows.

3.1 Data Access Cost on HServers
For each file request req arriving at and served by HServers,
the access cost is defined as

TH = T'hs + T'ht~ (]-)

The cost is the completion time for each file request,
which consists of two parts: storage startup time 7}, and
storage transfer time 7j;. The storage startup time means
the time consumption due to disk seek and software over-
head on the file servers. Storage transfer time means the
time spent on actual data read/write from/to an HDD
disk.

3.1.1 Storage Startup Time

A vparallel file request re¢ may involve multiple sub-
requests on m (1 <m < M) HServers, the startup time of req
is determined by the maximum of all its sub-requests. We
first calculate the startup time of a single sub-request, then
describe the startup time of the entire file request.

Let o denote the startup time of a sub-request on a single
HServer, then o mainly depends on the number of seeks on
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File File File File

HServers HServers HServers HServers

(1) 2) 3) 4)

Fig. 1. Four cases where a file request involves different number of sub-
requests.

the disk. Because an HServer will randomly serve sub-
requests from multiple processes of an application [43], « is
a random variable. Assume « follows a uniform distribution
on [a, b], then its probability function is

r—a

b—a

Pla < x)= ,a<z<b, (2)
where a and b are the minimal and maximal startup time on
an HServer, respectively.

Let X denote the startup time of the entire file request
req, then we have X =max(o,a9,...,0,), where «;
(1<i<m) has an independent identical distribution as «.
The probability density function of X is

fla)y=" X(b(x_;)‘f,)bm_l La<a<b. ®)
Hence, the startup time of the entire file request is
b m
Thszl :L’f(ac)d:r:aeriH(bfa). 4)

An HServer only needs one seek operation to serve the
sub-requests in the best case, thus a = «),. But in the worst
case, there are p seeks since an HServer has to concurrently
serve p processes, thus b = p * ;. Given a file request req
with offset o and size s, the serial number of the involved

o

beginning and ending stripe are B = | 2| and E = [%*|. Let
¢c=FE— B+1,thus

m=1{ 9
T M,
Based on the value of a, b, and m, we can obtain the cost
of T}, according to Equation (4).

ife < M
otherwise’

(5)

3.1.2 Storage Transfer Time

The storage transfer time 7}; of request req should be the
maximum of all its m sub-requests. Since each sub-request’s
data transfer time is proportional to the data size on the
HServer, we first calculate the data size of each sub-request,
then describe 7; for the entire file request based on the maxi-
mal sub-request size.

Given a file request req with offset 0 and size s, the size of
the beginning and ending stripe fragment can be calculated
as b = str — o%str and e = (o + s)%str, as shown in Fig. 1.
Let 7 = [£5] — 1 and s(i) be the sub-request size on server
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i (1 <i<m), then s, =max{s(1),s(2),...,s(m)} can be
calculated as follows:

s, c=1
max{b+ e, str} +rxstr, (c—1)%M =0
max{b, e} + r * str, (c=1D)%M=1"
(r+ 1) * str, otherwise

(6)

Based on the value of s,,, the storage transfer time can be
calculated as

Tht = Sm * .B}L' (7)

With Equations (4) and (7), Ty of each file request in
Equation (1) can be obtained.

3.2 Data Access Cost on SServers

For each file request served by SServers, we calculate its
access cost in a similar way as that of HServers but with two
modifications. First, we count request type (read or write) in
the cost since SSDs usually have a much lower write perfor-
mance because of garbage collection and wear leveling [12].
Second, we use sub-request distribution on SServers rather
than HServers to derive the cost. The access cost is defined as

TS = Tss + Tsta (8)

where T, means the storage startup time and 7, refers to
the storage transfer time on SServers.

3.2.1 Storage Startup Time

We assume that n (1<n<N) is the number of involved
SServers in the data access of file request req, then n can be
calculated similarly as m discussed in Section 3.1.1. Due to
space limitation we omit the calculation here. Based on the
value of n, the storage startup time on SServers can be calcu-
lated as

n
T;S_a—’_n_—}—l(b_a)’ (9)
where a and b are the minimal and maximal startup time on
an SServer, respectively.

If req is a read request, then a = «,, and b = p * «,,. Here
we set a and b with these values because each SServer only
needs one seek operation to serve a continuous request in
the best case and needs p startup operations to concurrently
serve all the p processes in the worst case. Otherwise,
a = ag, and b = p * ay, for a write request.

3.2.2 Storage Transfer Time

The storage transfer time 7y, of a request is the maximal
transfer time of all its n sub-requests. Given a file request req
with offset 0 and size s, the maximal sub-request size can be
calculated similarly as that of maximal sub-request size on
HServers, as discussed in Section 3.1.2. Let s,, be the maximal
sub-request size, then 7}; can be calculated as follows:

Ts’t — { Sn * 557'7

Sn * B

if req is a read

otherwise (10)

With Equations (9) and (10), Ty of each file request in
Equation (8) can be obtained.
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Fig. 2. Overview of system using S-CARL.

3.3 Discussion

The proposed model is based on our previous work [15], but
there are three major differences. First, from the
application’s perspective, our model considers the number
of processes, which affects the storage startup time of a file
request. Second, from the viewpoint of storage, our model
also factors data startup time in the data access times of
SServers while the previous model is an ideal case without
such consideration. Third, our model differs read from
write performance of SServers while the previous work
regards them as the same. By considering these differences,
our model can more accurately describe the performance of
a practical I/O system.

4 STATIC REGION-LEVEL DATA PLACEMENT

The proposed cost model can be used to determine which
type of servers is the proper storage tier for a given file
request. If we have a prior knowledge of all requests on a
large parallel file, we can determine which parts of a file
should be placed on which type of servers to achieve opti-
mal I/O performance. Fortunately, many data-intensive
applications have predictable data access patterns [8], [44],
thus I/O behavior can be obtained from previous runs.
Based on this observation, the proposed static cost-aware
region-level (S-CARL) data layout scheme divides a large
file into several small regions, and then selectively places
them on proper servers based on the region cost analysis.

4.1 System Overview
Fig. 2 shows the high performance cluster systems for which
S-CARL is designed. In these systems, application processes
on compute nodes access the data on file servers by calling
the MPI-IO library. S-CARL resides in MPI-IO library and is
responsible for placing data on the underlying HServers
and SServers, which are accessed by a parallel file system
respectively. S-CARL is independent of the file system; thus
allowing the scheme to be portable and easily adopted to
different file systems, such as PVFS [2], Lustre [3], and
GPFS [4].

Fig. 3 shows the procedure of the static region-level data
placement scheme, which consists of three phases. In the
“Tracing Phase”, the run-time statistics of I/O accesses are
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Fig. 3. The procedure of data placement scheme.

collected by I/O Collector during the applications’ first exe-
cution. In the “Analysis Phase”, Region Analyzer divides the
file into regions and uses the data access cost model to esti-
mate performance gains for file regions if they are placed on
SServers over HServers. The performance gains are then
used to generate a region gain table (RGT). In the “Placing
Phase”, Region Placer places file regions on the underlying
servers according to RGT. In subsequent runs of the applica-
tion, Region Redirector is added at the I/O middleware layer
(MPI-IO library) to forward I/O requests to appropriate
underlying HServers or SServers. Through these three
phases, S-CARL reduces I/0 time of the application in sub-
sequent runs.

4.2 1/0 Collector

I/O Collector is responsible for capturing run-time I/O access
information of parallel applications. While there are other
tools can be used, we use IOSIG [45] to obtain the informa-
tion required by S-CARL. IOSIG is a pluggable library of
MPI-IO, which utilizes the Profiling MPI interfaces (PMPI) to
trace standard MPI-IO calls. After running applications with
IOSIG, S-CARL can get the required information of file
requests, such as process ID, MPI rank, file descriptor, type
of operation, offset, request size, and time stamp.

4.3 Region Analyzer

Region Analyzer evaluates the performance gain of placing a
file region on SServers over HServers. The basic approach
includes the following three steps.

First, the address space of the file is logically divided into
regions by a fixed chunk size (e.g., 64 or 128 MB) for further
analysis. The smaller the region size, the more efficient will
be the data placement. However, operating at the region
level incurs metadata overhead to keep track of region loca-
tions and other statistics and this overhead is inversely pro-
portional to the region size. We choose a region size of
64 MB with an acceptable system overhead.

Second, 1/0 requests located on each region are identified
according to the I/O traces. If the start offset of an I/O request
falls into the region, the request is counted toward the region.
If the request spans across several regions, then each subpart
of the request contributes to the region it belongs to.

Third, the performance gain of placing each region on
SServers instead of HServers is estimated. Let n(i) denote
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the number of requests located on the ith file region, 7% and
T} denote the data access cost taken by HServers and SSer-
vers to serve the jth request respectively, which are calcu-
lated using Equations (1) and (8), then the gain g; for the ith
file region is defined by

n(i) ) )
9=y (T} — T¥).

=1

an

To make appropriate data placement decisions, the cost
gains of all regions are stored in a global region gain table,
which will be used by Region Placer. Since RGT comprehen-
sively considers the key factors in data accesses, such as
number of requests, request frequency, request size, and
I/0O parallelism of underlying servers, it can effectively
guide the data placement in a multi-tiered I/O system.

4.4 Region Placer

Region Placer carries out the actual region placement on
underlying HServers or SServers based on three factors: (1)
the available free space on SServers, indicating whether
SServers can accommodate the current region, (2) the per-
formance gain in RGT for current region, indicating whether
I/0O performance can be improved if it is placed on SSer-
vers, (3) the rank of the region performance gain, indicating
whether it incurs more performance gain than other regions
if it is located on SServers.

Algorithm 1 shows the data placement procedure for an
incoming I/O request. First, a global region map table (RMT),
which keeps the location mapping information between a log-
ical file region and a target region on HServers or SServers, is
initialized. RMT is empty at the beginning, and will be contin-
uously updated as new regions are allocated to the file. Upon
a file write request, the algorithm checks if the request falls
into a region that has been allocated by consulting RMT. If
yes, the request is forwarded to the allocated region. Other-
wise, a new region on SServers or HServers will be allocated
to hold the request and the address of the allocated region is
stored in the corresponding entry of RMT. Suppose there are
k free regions on SServers, and the incoming request  belongs
to logical file region reg, then the algorithm will allocate a tar-
get region from SServers for r only when both of the following
conditions are true: (1) the performance gain of region reg is
positive, (2) region reg is the top-k unallocated regions in the
descending order of their performance gains. Otherwise,
the algorithm will allocate a free region on HServers to place
the requested data. As the data location of a file does not
change during the application’s run, we call it is a static region-
level data placement scheme.

Fig. 4 shows an example of the proposed data placement
scheme. In this example, the file is divided into five regions,
each having a different access cost. Among all regions,
region 2 and 4 have higher positive region gains than others.
As there are two free regions on SServers, region 2 and 4 are
placed on SServers and the remaining regions are placed on
HServers. Since the destination for each region is optimized
according to the data access gains on them, the proposed
data placement scheme can serve all file requests with high
performance. The region-level data placement scheme is a
fine-grained optimization, and it is more suitable for appli-
cations with complicated data access patterns.
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Fig. 4. An example of the static region-level data placement scheme.

Algorithm 1. The Data Placement

Algorithm

Region-Level

Require: I/O Request: r, Region gain table: RGT, Region map
table: RMT.
: /* Lookup rin RMT, return a mapping entry reg*/
: reg «— RMT _lookup(r)
if reg != NULL then
if reg.tier == SServers then
Forward r to reg on SServers
else
Forward r to reg on HServers
end if
9: else
10:  /* Otherwise, place data to a new region */
11: ¢ < Calculate the free capacity of SServers
12:  Letk = ¢/region_size
13:  /*Find top k regions in RGT but not in RMT */
14:  Reglk] «— top_k({z : € RGT Nz ¢ RMT?})
15:  /* Find a matched region in Reg[k] */
16:  foreach reg € Reg[k] do

PN N

17: if 7 in reg and reg.gain > 0 then

18: reg < Allocate a region from SServers
19: Forward r to reg on SServers

20: end if

21:  end for

22:  if no matched region found in Reg[k] then
23: reg < Allocate a region from HServers
24: Forward r to reg on HServers

25:  endif

26:  Add an entry of reg into RMT

27: end if

4.5 Region Redirector

Region redirector in the MPI-1O library is responsible for redi-
recting user’s I/O requests to underlying HServers or SSer-
vers. Upon a file request, Region Redirector first determines
the requested logical file regions based on the request offset,
request size, and region size. Then it examines RMT with
the logical file regions to find the target regions. Finally, the
read/write operations will be forwarded to the target
regions on underlying HServers or SServers. All the opera-
tions are transparent to applications. In this way, SServers,
which have a small storage space, can be intelligently uti-
lized according to the I/O patterns.
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5 THE DYNAMIC REGION-LEVEL DATA PLACEMENT

In the previous section, we described a static region-level data
placement in a multi-tiered parallel I/O system. While effec-
tive to optimize I/O performance, the static tiering technique
is based on the complete knowledge of I/O workloads of
applications. However, in practical systems, this assumption
may be unrealistic, and data placement scheme needs to
adapt dynamically to runtime changes of workloads.

5.1 Basic ldea of Dynamic Placement

To address this issue, we propose a dynamic region-level
data placement scheme (D-CARL), which leverages data
migration to improve parallel I/O performance at the run-
time. The basic idea of D-CARL is to divide the entire work-
load duration into multiple time windows, and place file
regions on proper servers based on the workload within
each window. As workloads on certain file regions may
change as time elapses, placing them on the old type of serv-
ers may offset the parallel I/O performance. In such cases,
D-CARL will migrate them from the old locations to the
new storage tiers accordingly. The efficiency of the data
migration depends on the locality of the workloads. Fortu-
nately, workloads of many applications show locality char-
acteristics [17], [18]. Unlike S-CARL that does not change
file region locations duration the entire observation win-
dow, such a dynamic placement scheme can adaptively
accommodate varying I/O workloads.

5.2 Design of D-CARL
5.2.1 Time Window Scale

A firstissue is the time scale at which file regions move across
different types of servers. One choice is to place regions once
during system instantiation or move them at coarse grain
intervals of the order of hours or days. However, previous
studies show that I/O workload changes typically most of the
time [46], this semi-static placement is not the optimal. The
alternate choice is to move region at intervals on the order of
minutes or hours. Such a system exploits variations in region
workload to improve its efficiency. Dynamic migration of the
regions into the proper storage tier (HServers or SServers)
when required enables cost-effective use of the resources. In
this study, we choose to perform dynamic data placement
with a time window of 10 minutes, which depends on the
workloads and can ensure the migration overhead does not
overwhelm its benefit. Previous study also uses a time win-
dow of the order of minutes [18].

5.2.2 Data Migration Algorithm

The second concern is how to determine which data need to
migrate and where to migrate. As we discussed, since region-
level data placement is beneficial to I/O performance,
D-CARL migrates data at the region granularity. From the
viewpoint of SServers, there are two types of regions that
need to be migrated. The first are the “outgoing” regions
which must be moved to HServers; they are no longer benefi-
cial enough to be on SServers. The second are the “incoming”
regions which now have a sufficiently high performance gain
to be migrated to SServers but are not currently on them.
These constitute the regions to be accessed to ensure high par-
allelI/O performance in the future.
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Algorithm 2 shows the data migration algorithm which is
responsible for constructing the migration plan and schedul-
ing the migration. It is executed at the end of each time win-
dow. First, the global region gain table RGT and region map
table are initialized. RMT is empty at the beginning and con-
tinuously updated as new regions are allocated for the file.
Then, at the end of each time window, D-CARL updates RGT
based on the recent data accesses in the last time window.
Assume that SServers have k regions, the outgoing and
incoming lists are then created based on the top-k entries in
RGT and contents in RMT. The algorithm walks through each
region on SServers by looking up RMT, creating an entry in
the outgoing list for each region that is no longer in the top-k
entries in RGT. Then, it walks through each entry in the top-k
ranked regions, creating an entry in the incoming list for each
region which is currently not on SServers. Once these two
steps are completed, the new migration plan is obtained. The
algorithm begins with no prior knowledge about the work-
load, then periodically gathers I/O access information, learns
workload behavior and makes migration plan to appropriate
locations in response to workload characteristics.

Algorithm 2. The Dynamic Region Migration Algorithm

Require: Region gain table: RGT, Region map table: RMT.
1: outgoinglist — ()

: incominglist «— ()

: /* Save top-k ranked regions in the last time window */

: Reg_las[k] — top_k({z : « € RGTY})

: Update RGT based on I/O accesses in the current time
window

: /* Find top-k ranked regions in the current time window */

: Reg_curlk] — top_k({z : x € RGT})

: /* Construct the outgoing list */
9: for each reg € Reg_las[k] do

10:  tier «— RMT lookup_tier(reg)

11:  if tier == SServersandreg ¢ Reg_cur[k] then

12: outgoinglist | J {reg}

13:  endif

14: end for

15: /* Construct the incoming list */

16: for each reg € Reg_cur[k] do

17:  tier «— RMT lookup_tier(reg)

18:  if tier! = SServers then

Tk WIN

® N

19: ingoinglist | J {reg}
20:  endif
21: end for

5.2.3 Data Migrator

The third issue is how to migrate data between HServers
and SServers. The actual data migration operation is carried
out by Data Migrator at the end of each time window. It
includes two distinct phases: SServers to HServers and vice
versa. These two phases are treated differently. The first
phase, SServers to HServers, addresses operations in the
outgoing list of the new placement plan. For each entry in
the list, the data movement operation is followed by coping
data from SServers to HServers and updating the corre-
sponding entry in RMT. The second is HServers to SServers
phase, which handles the incoming list in a similar way and
updates the new entry in RMT.
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5.3 Implementation

We implement D-CARL in MPI-IO library MPICH2 and
parallel file system OrangeFS. The primary challenges are
discussed below.

5.3.1 Key Data Structures

In the proposed placement scheme, RGT and RMT are two
key mapping tables to store region performance gains and
mapping relationship between logical file regions and target
file regions. We use Berkeley DB [47] to implement RGT and
RMT, each being a database file in a standalone space on SSer-
vers. The Berkeley DB is configured as a hash table, and each
record is a key-value pair. For RGT, the key is the RegionID
encoded with application name, number of processes, rank of
the process, original file name, and region sequence; the value
contains the performance gain. For RMT, the key is also
RegionID but the value is the target region information. For a
parallel application, there may be multiple processes access-
ing the two shared tables at the same time, which may lead to
access contention. However, with the light-weighted data-
base, the contention issue is addressed and metadata opera-
tions are performed efficiently. Additionally, we use a list to
maintain most frequently accessed entries for each table in
memory to speed up lookups.

5.3.2 1/O Redirection in MPI-10

We modify the MPI library so that the mapping table RMT
is loaded with MPI_Init() and unloaded with
MPI_Finalize(). To keep track of the location of each origi-
nal logical file region, RMT is stored in a file in the same
directory of the MPI program. The mapping table entries
are also hashed in memory for efficient table lookup.
Changes made to the mapping entries in memory are syn-
chronously written to the storage to survive power failures.
We also modify the MPI_File_read/write() (and other var-
iants of read/write), so that the user requests can be atom-
ically forwarded to the alternative file servers. In more
detail, if the requested regions are found in RMT, the logical
file regions will be translated to the target regions. Then, the
following read/write operations will be forwarded to the
target regions on underlying servers.

5.3.3 Data Migration Issues

To avoid interfering with the normal MPI I/O operations,
D-CARL creates a new I/O helper thread in each process to
handle the background data movement. This I/O thread is
created when the process opens the first file by calling
MPI File_open and destroyed after the last file is closed
with MPI_File_close. While each process can have multiple
files opened, only one migration thread is created. Once the
I/0 thread is created, it enters an infinite loop to perform
data migration operations until it is signaled for termina-
tion. It communicates with the main thread through shared
variables that store file access information, such as file han-
dler, offset, etc.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of CARL
through extensive experiments. Before discussing the exper-
iment results, we will first describe the experimental setup.
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Fig. 5. 1/0 throughputs with varying request sizes under the uniform ran-
dom workload.

6.1 Experimental Setup
We conduct the experiments on a 65-node SUN Fire Linux
cluster, where each node has two AMD Opteron(tm) pro-
cessors, 8 GB memory, and a 250 GB HDD. 16 nodes are
equipped with additional OCZ-REVODRIVE 100 GB SSD.
All nodes are equipped with Gigabit Ethernet interconnec-
tion. The operating system is Ubuntu 13.04, the MPI-IO
library is MPICH2-1.4.1p1, and the parallel file system is
OrangeFS 2.8.6. Among the available nodes, we select eight
as computing nodes, eight as HServers, and four as SSer-
vers. Both HServers and SServers are accessed through an
OrangeFS parallel file system respectively. By default, data
is striped over file servers with a 64 KB striping unit size. In
general, the larger the capacity of an SServer, the better the
I/O performance. To avoid the overestimation of perfor-
mance improvement, we set the data size on SServers as
20 percent of the application file size.

We use the popular benchmark IOR [48], HPIO [49], and
a real application [50] to evaluate the proposed data place-
ment scheme. First, we show the efficiency of the static
region-level data placement policy when the application’s
workload is known. We compare S-CARL with two other
static counterparts: RANDOM and ORIGINAL. RANDOM
distributes file regions on underlying HServers or SServers
randomly. ORIGINAL places file regions only on HServers,
which results in the worst-case system performance. Sec-
ond, we evaluate the efficiency of the dynamic region-level
data placement policy by comparing it with RANDOM and
S-CARL when we have no knowledge about the workloads.

6.2 Evaluation on Static Region-Level Data
Placement

6.2.1 IOR Benchmark

To simulate different I/O patterns, we use IOR to generate
two kinds of workloads. One workload generates uniform
random requests by using the default implementation of
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dom workload.

IOR. The other generates a Zipfian distribution by modify-
ing the default implementation of IOR. With such access
patterns, one can see the impact of skewness in workload
on the performance behavior of S-CARL.

Varying Request Sizes: We run IOR with request sizes of 8,
16, 32, and 256 KB, respectively. The number of processes is
fixed to 32. Each process is responsible for accessing its own
part of a 10 GB shared file, and continuously issues requests
with random offsets. Fig. 5 shows the I/O performance
under the uniform workload with various data placement
schemes. For read requests, both S-CARL and RANDOM
can improve the original I/O throughput by adding SSDs to
the parallel 1/O system. S-CARL improves read perfor-
mance of ORIGINAL by 18.8, 15.3, 12.1 and 11.7 percent,
respectively, in terms of different request sizes. With a
larger request size, the I/O throughput improves because
serving larger requests on SServers leads to higher 1/0
bandwidth. Compared with RANDOM, S-CARL has a simi-
lar performance behavior. This is because with a uniform
workload the regions selected by S-CARL nearly bring the
same performance gain as RANDOM. Under this case,
S-CARL nearly degrades to RANDOM. The write test
shows similar results.

Fig. 6 shows the I/O performance comparison under the
Zipfian workload. S-CARL can improve read performance
by 278.7, 205.1, 148.4 and 80.9 percent, while RANDOM
only improves the I/O performance by 29.3, 26.1, 22.6 and
16.0 percent. These results show that, as the request size
increases, both S-CARL and RANDOM provide better per-
formance compared to the results with a uniform workload.
However, S-CARL has a significant performance improve-
ment over RANDOM. This is because S-CARL places the
most frequently accessed data on SSDs while RANDOM
randomly selects data; thus, S-CARL can obtain more per-
formance benefits. The write test yields similar results. In
the comparison with ORIGINAL, S-CARL increases the
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Fig. 7. 1/0 throughputs with varying number of processes under the Zip-
fian random workload.

throughput by 127.4, 118.9, 94.8 and 73.7 percent, respec-
tively. Compared to RANDOM, S-CARL shows 88.1, 82.3,
65.6 and 51.0 percent improvements. However, S-CARL
provides a more modest improvement in writes. This is
because SSDs favor reads over writes.

Since S-CARL is unable to make significant performance
improvement for the uniform random workload, we only
focus on the workload with Zipfian distribution.

Varying Process Numbers: To show how the number of
process affects I/O performance, we run IOR with 16 to 256
processes and the request size is fixed to 16 KB. Fig. 7a
shows the results of read performance with respect to Zip-
fian workloads. Similar to the previous test, S-CARL
improves the overall bandwidth from 107.2 to 139.7 percent.
As the number of processes increases, the 1/O bandwidth
first increases and then decreases, this is due to the fact that
each HServer needs to serve requests from more processes
and the competition among processes impedes the whole
I/O progress. Fig. 7a shows another improvement of
S-CARL: when the number of processes increases, the per-
formance gain of S-CARL increases as well. In other words,
S-CARL has better scalability and hence are able to handle
more concurrent I/O processes. Additionally, this figure
shows that S-CARL is more effective than RANDOM, and
shows performance improvements of 74.2, 81.9, 96.7, 94.5
and 73.2 percent respectively. The performance trend is sim-
ilar for write requests, as shown in Fig. 7b.

Varying SSD Sizes. Generally the capacity of SServers is
smaller than that of HServers and could be smaller than the
I/0 working set size of the application. To show the impacts
of SSD space on the I/O performance, we run IOR by varying
data size ratios of HServers to SServers from 4:1 to 2:1.

Fig. 8 shows the I/O throughputs for read and write
operations. Similar to previous results, S-CARL outper-
forms RANDOM and ORIGINAL. S-CARL has perfor-
mance improvements up to 278.7, 356.4 and 450.8 percent,
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Fig. 8. 1/0 throughputs with varying SSD sizes under the Zipfian random
workload.

respectively, over the original I/O system performance in
terms of different sizes of SServers. With the increased size
of SServers, the I/O bandwidth improves because more
high-cost data regions can be placed on and benefit from
SServers. However, increasing the size of SServers will not
substantially improve performance when high-cost regions
are already stored on SServers.

6.2.2 HPIO Benchmark

HPIO is a program designed by Northwestern University
and Sandia National Laboratories to systematically evaluate
parallel I/O system performance [49]. This benchmark can
generate various data access patterns by changing three
parameters: region count, region spacing, and region size,
which indicate the number of requests, the distance
between two requests, and the request size, respectively. In
our experiment, the region count is 4,096, the region size is
128 KB, and the region spacing is 32 KB.

We vary the number of processes to emulate access pat-
terns with different I/O concurrencies. As shown in Fig. 9,
S-CARL can increase both read and write throughput over
ORIGINAL and RANDOM. For reads, S-CARL outperforms
RANDOM by 20.1, 23.3, 27.4, and 32.7 percent for 4, 16, 64,
and 256 processes, respectively. As the number of processes
increases, the performance speedup becomes more obvious
because SServers have higher and more stable performance
than HServers when serving a large number of processes.
This confirms the adaptability of S-CARL: when the
application’s I/O accesses have a poorer throughput due to
a higher I/O concurrency (more processes), more benefit is
gained by using S-CARL. For write operations, the perfor-
mance shows a similar trend as presented in Fig. 9b.

6.2.3 Real Application

Finally, we evaluate the performance of S-CARL with a real
I/O trace from ‘Anonymous LANL App 2’ [50]. This
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Fig. 9. Throughputs of HPIO with varying numbers of processes.

application has a complex access pattern: each process of
the application sends I/O requests with varied sizes at dif-
ferent parts of a shared file. Therefore, I/O workloads on
different regions of the file show distinctive access charac-
teristics. We replay the data accesses of the application
according to the I/O trace to simulate the same data access
scenario.

Fig. 10 shows the I/O throughput result. S-CARL obtains
108.5 and 69.3 percent performance improvement compared
to ORIGINAL and RANDOM  respectively. Although
S-CARL can improve performance, the improvement is not
as substantial as that of IOR under the Zipfian workload.
This is because only a small part of the requests have differ-
ent sizes while most of the requests in Zipfian workload
have various access frequencies, which means that the
region costs are not as skewed as those of Zipfian workload.
However, the results indicate that S-CARL is an effective
performance optimization method for applications with
complex 1/0O access patterns.

6.3 Evaluation on Dynamic Region-Level Data
Placement

We conduct experiments to show that the dynamic region-
level data placement policy can improve I/O system perfor-
mance, which verifies the need of data migration when the
I/0 workload changes and is unknown in advance. We
compare D-CARL with RANDOM and S-CARL and omit
ORIGINAL since ORIGINAL is the worst case.

6.3.1 The IOR Benchmark

We ran IOR with the Zipfian workload since it shows strong
temporal locality and benefits the dynamic data migration.
We first run IOR with requests in different sizes of 8, 64,
512, and 4 MB. As usual, the process number is fixed to 32.
The corresponding I/O throughputs are shown in Fig. 11.
Compared with RANDOM, D-CARL obtains 37.1-157.5
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percent additional performance improvements with respect
to the different request sizes. We can see that S-CARL is the
ideal case since it assumes the access patterns are known in
advance. However, while D-CARL is not as good as
S-CARL, the performance gap between them is not large.

We also vary the number of processes. We run IOR with
8, 32, and 128 processes, and set the request size as 512 KB.
Fig. 12 describes the results of read and write requests. Simi-
lar to the previous test, D-CARL is better than RANDOM
but worse than S-CARL. D-CARL obtains 39.4-63.2 percent
performance improvements over RANDOM. Compared
with S-CARL, D-CARL only suffers the performance degra-
dation at most 15.6 percent. This result shows that D-CARL
is very effective to improve I/O performance even the
workload is unknown in advance.

6.3.2 The HPIO Benchmark

We set the region count to 4,096, the region size to 16 KB,
and the region spacing is 32 KB. We vary the number of pro-
cesses from 16 to 256. Fig. 13 shows the results. Similar to
the IOR tests, D-CARL shows better performance than
RANDOM but poorer performance than S-CARL. As the
workload does not exhibit strong locality, the improve-
ments obtained by D-CARL are not very significant. How-
ever, D-CARL still can outweigh RANDOM by 4.1, 4.3, 3.3,
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Fig. 11. 1/0 throughputs with varying request sizes.
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Fig. 12. 1/O throughputs with varying numbers of processes.

and 4.8 percent respectively. Compared to the ideal case of
S-CARL, D-CARL is closed to it and shows moderate
performance.

6.3.3 Real Application

Finally, we evaluate the performance of D-CARL with the
real application ‘Anonymous LANL App 2’. As shown in
Fig. 14, we find that D-CARL obtains 10.9 percent perfor-
mance improvement compared to RANDOM. The improve-
ments are not as significant as those of IOR. This is because
the workload exhibits weaker locality than IOR so that the
data migration policy brings less performance benefits.
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Fig. 13. Throughputs of HPIO with various numbers of processes.
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6.4 Overhead Analysis
While the gains due to data placement are promising, CARL
could incur some potential overhead on resource utilization.

6.4.1 Metadata Space Overhead

As described, to maintain data consistency, the region map
table is used in the I/O middleware to track data location on
underlying servers. Furthermore, a region gain table RGT is
used to determine the proper data placement. These two key
tables would incur additional space overhead. In our imple-
mentation, the region size is fixed as 64 MB. So for a 100 GB
PFS file, there are up to 1,600 region entries in total. Since
each entry in RMT is of several bytes, we assume 128 bytes
for each, so the total size of RMT would be (1,600 * 256) bytes,
which is 0.4 MB. Thus, the metadata space overhead is
0.4 MB/100 GB, which is less than 0.001 percent and even
negligible for data sized in TB.

6.4.2 Performance Overhead

In S-CARL, I/O Collector uses I0SIG to collect trace files dur-
ing the application’s first run. Previous work shows the
overhead of IOSIG is very low [45] and this observation is
also applied to our case. Since in our design the pattern
analysis and planning are carried out only once in off-line
fashion, the CPU and memory overhead is also acceptable
for most HPC computing systems.

In D-CARL, some additional modules, such as those for
collecting access information and constructing migration
plan, could also incur performance overhead. To evaluate
it, we run IOR with random workloads, so that the system
would run additional modules without making actual data
migration. The process number is fixed to 32, and the
request size is varied from 8 to 64 KB. Fig. 15 demonstrates
the introduced overhead is negligible.
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Fig. 15. Performance overhead.
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7 CONCLUSIONS

Parallel I/O systems are widely used to mask the huge gap
between CPU performance and disk drive performance.
However, they may exhibit poor performance for certain I/
O patterns. Newer solid state drives provide a possible
hardware solution to the I/O system bottleneck. Due to the
excellent performance but high cost of SSD, building paral-
lel I/O systems with hybrid SSD-HDD file server is a prom-
ising approach to address the I/O performance issue.

In this paper, we propose CARL, a cost-aware region-
level data placement scheme, to speed up the I/O perfor-
mance for hybrid parallel I/O systems. This strategy pro-
vides fine-grained region-level data placement optimization,
which is highly suitable for applications with non-uniform
data access patterns. CARL includes a static policy S-CARL
and a dynamic policy D-CARL. For applications whose I/O
access patterns are completely known, S-CARL calculates
the region costs within the entire workload duration, and
uses a static data placement scheme to selectively place
regions on the appropriate servers. To adapt to applications
whose access patterns are unknown in advance, D-CARL
uses a dynamic data placement scheme which migrates data
among different servers within each time window.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation of China under Grant No. 61572377, No.
61672513, U1401258 and 61550110250, China National Basic
Research Program (973 Program, No. 2015CB352400), the
Natural Science Foundation of Hubei Province of China under
Grant No. 2014CFB239, and the Open Fund from HPCL under
Grant No. 201512-02, the Open Fund from SKLSE under Grant
No. 2015-A-06, and the Science and Technology Planning
Project of Guangdong Province (2015B010129011,
2016A030313183). Yang Wang is the corresponding author.

REFERENCES

[1] R. Latham, R. Ross, B. Welch, and K. Antypas, “Parallel I/O in
practice,” in Proc. Tutorial Supercomputing, 2015, pp. 1-257.

[2] P.H. Carns, I. Walter, B. Ligon, R. B. Ross, and R. Thakur, “PVFS:
A parallel virtual file system for linux clusters,” in Proc. 4th Annu.
Linux Showcase Conf., 2000, pp. 317-327.

[3] S. Microsystems, “Lustre file system: High-performance storage
architecture and scalable cluster file system,” Tech. Rep. Lustre
File System White Paper, 2007.

[4] F.Schmuck and R. Haskin, “GPFS: A shared-disk file system for
large computing clusters,” in Proc. 1st USENIX Conf. File Storage
Technol., 2002, pp. 231-244.

[5] D. Nagle, D. Serenyi, and D. Serenyi, “The Panasas ActiveScale
storage cluster: delivering scalable high bandwidth storage,” in
Proc. ACM/IEEE Conf. Supercomputing, 2004, pp. 53-53.

[6] H. Song, Y. Yin, Y. Chen, and X.-H. Sun, “A cost-intelligent
application-specific data layout scheme for parallel file systems,”
in Proc. 20th Int. Symp. High Performance Distrib. Comput., 2011, pp.
37-48.

[71 H.Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang, “A segment-
level adaptive data layout scheme for improved load balance in
parallel file systems,” in Proc. 11th IEEEJACM Int. Symp. Cluster
Cloud Grid Comput., 2011, pp. 414-423.

[8] Y. Yin,]. Li, J. He, X.-H. Sun, and R. Thakur, “Pattern-direct and
layout-aware replication scheme for parallel I/O systems,” in Proc.
27th IEEE Int. Parallel Distrib. Process. Symp., 2013, pp. 345-356.

[9] S. He, X.-H. Sun, and B. Feng, “S4D-cache: Smart selective SSD
cache for parallel I/O systems,” in Proc. Int. Conf. Distrib. Comput.
Syst., 2014, pp. 514-523.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.7, JULY 2017

[10] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective
I/01in ROMIO,” in Proc. 7th Symp. Frontiers Massively Parallel Com-
put., 1999, pp. 182-189.

[11] A. Ching, A. Choudhary, K. Coloma, L. Wei-keng, R. Ross, and
W. Gropp, “Noncontiguous I/O accesses through MPI-1O,” in Proc.
3rd IEEE[ACM Int. Symp. Cluster Comput. Grid, 2003, pp. 104-111.

[12] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding intrinsic
characteristics and system implications of flash memory based
solid state drives,” in Proc. 11th Int. Joint Conf. Meas. Model. Com-
put. Syst., 2009, pp. 181-192.

[13] A. Caulfield, L. Grupp, and S. Swanson, “Gordon: Using flash
memory to build fast, power-efficient clusters for data-intensive
applications,” in Proc. 14th Int. Conf. Archit. Support Program. Lan-
guages Operating Syst., 2009, pp. 217-228.

[14] F. Chen, D. A. Koufaty, and X. Zhang, “Hystor: Making the best
use of solid state drives in high performance storage systems,” in
Proc. Int. Conf. Supercomputing, 2011, pp. 22-32.

[15] S. He, X.-H. Sun, B. Feng, X. Huang, and K. Feng, “A cost-aware
region-level data placement scheme for hybrid parallel I/O sys-
tems,” in Proc. IEEE Int. Conf. Cluster Comput., 2013, pp. 1-8.

[16] H. Wang and P. Varman, “Balancing fairness and efficiency in
tiered storage systems with bottleneck-aware allocation,” in Proc.
12th USENIX Conf. File Storage Technol., 2014, pp. 229-242.

[17] H. Kim, S. Seshadri, C. L. Dickey, and L. Chiu, “Evaluating phase
change memory for enterprise storage systems: A study of cach-
ing and tiering approaches,” in Proc. 12th USENIX Conf. File Stor-
age Technol., 2014, pp. 33-45.

[18] J. Guerra, H. Pucha, J. Glider, W. Belluomini, and R. Rangaswami,
“Cost effective storage using extent based dynamic tiering,” in
Proc. 9th Conf. File Storage Technol., 2011, pp. 273-286.

[19] P. Carns, et al., “Understanding and improving computational
science storage access through continuous characterization,” in
Proc. IEEE 27th Symp. Mass Storage Syst. Technol., May 23-27,
2011, pp. 1-14.

[20] Q. Yang and ]. Ren, “I-CASH: Intelligently coupled array of SSD
and HDD,” in Proc. IEEE 17th Int. Symp. High Performance Comput.
Archit., 2011, pp. 278-289.

[21] H. Payer, M. Sanvido, Z. Bandic, and C. Kirsch, “Combo drive:
Optimizing cost and performance in a heterogeneous storage
device,” in Proc. 1st Workshop Integr. Solid-State Memory Storage
Hierarchy, 2009, vol. 1, pp. 1-8.

[22] T. Bisson and S. A. Brandt, “Reducing hybrid disk write latency
with flash-backed I/O requests,” in Proc. 15th Int. Symp. Model.
Anal. Simul. Comput. Telecommun. Syst., 2007, pp. 402-409.

[23] A. Ching, A. Choudhary, W.-K. Liao, R. Ross, and W. Gropp,
“Efficient structured data access in parallel file systems,” in Proc.
IEEE Int. Conf. Cluster Comput., 2003, pp. 326-335.

[24] R. Thakur and A. Choudhary, “An extended two-phase method
for accessing sections of out-of-core arrays,” Sci. Program., vol. 5,
no. 4, pp. 301-317, 1996.

[25] Y. Wang and D. Kaeli, “Profile-guided I/O partitioning,” in Proc.
17th Annu. Int. Conf. Supercomputing, 2003, pp. 252-260.

[26] S. Rubin, R. Bodik, and T. Chilimbi, “An efficient profile-analysis
framework for data-layout optimizations,” ACM SIGPLAN Noti-
ces, vol. 37, no. 1, pp. 140-153, 2002.

[27] M. Bhadkamkar, et al., “Borg: Block-reorganization for self-
optimizing storage systems,” in Proc. 7th Conf. File Storage Technol.,
2009, pp. 183-196.

[28] J. Ou, J. Shu, Y. Ly, L. Yi, and W. Wang, “EDM: An endurance-
aware data migration scheme for load balancing in SSD storage
clusters,” in Proc. 28th IEEE Int. Parallel Distrib. Process. Symp.,
2014, pp. 787-796.

[29] X. Zhang and S. Jiang, “InterferenceRemoval: Removing interfer-
ence of disk access for MPI programs through data replication,”
in Proc. 24th ACM Int. Conf. Supercomputing, 2010, pp. 223-232.

[30] J. Jenkins, X. Zou, H. Tang, D. Kimpe, R. Ross, and N. F. Sama-
tova, “RADAR: Runtime asymmetric data-access driven scientific
data replication,” in Proc. Int. Supercomputing Conf., 2014, pp. 296—
313.

[31] H. Song, H. Jin, J. He, X.-H. Sun, and R. Thakur, “A server-level
adaptive data layout strategy for parallel file systems,” in Proc.
IEEE 26th Int. Parallel Distrib. Process. Symp. Workshops PhD Forum,
2012, pp. 2095-2103.

[32] Z. Gong, et al., “PARLO: PArallel run-time layout optimization
for scientific data explorations with heterogeneous access
patterns,” in Proc. 13th IEEEJACM Int. Symp. Cluster Cloud Grid
Comput., 2013, pp. 343-351.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:15 UTC from IEEE Xplore. Restrictions apply.



HE ET AL.: COST-AWARE REGION-LEVEL DATA PLACEMENT IN MULTI-TIERED PARALLEL I/O SYSTEMS 1865

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471
[48]

[49]

[50]

W. Tantisiriroj, S. Patil, G. Gibson, S. Seung Woo, S. J. Lang, and
R. B. Ross, “On the duality of data-intensive file system design:
Reconciling HDFS and PVES,” in Proc. Int. Conf. High Performance
Comput. Netw. Storage Anal., 2011, pp. 1-12.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in Proc. IEEE 26th Symp. Mass Storage
Syst. Technol., 2010, pp. 1-10.

T. Pritchett and M. Thottethodi, “SieveStore: A highly-selective,
ensemble-level disk cache for cost-performance,” in Proc. 37th
Annu. Int. Symp. Comput. Archit., 2010, pp. 163-174.

X. Zhang, K. Liu, K. Davis, and S. Jiang, “iBridge: Improving
unaligned parallel file access with solid-state drives,” in Proc. 27th
IEEE Int. Parallel Distrib. Process. Symp., 2013, pp. 381-392.

S. He, X.-H. Sun, B. Feng, and F. Kun, “Performance-aware data
placement in hybrid parallel file systems,” in Proc. 14th Int. Conf.
Algorithms Archit. Parallel Process., 2014, pp. 563-576.

S. He, Y. Liu, and X.-H. Sun, “A performance and space-aware
data layout scheme for hybrid parallel file systems,” in Proc. Data
Intensive Scalable Comput. Syst. Workshop, 2014, pp. 41-48.

S. He, X.-H. Sun, and A. Haider, “HAS: Heterogeneity-aware
selective data layout scheme for parallel file systems on hybrid
servers,” in Proc. 29th IEEE Int. Parallel Distrib. Process. Symp.,
2015, pp. 613-622.

S. He, X.-H. Sun, Y. Wang, A. Kougkas, and A. Haider, “A hetero-
geneity-aware region-level data layout scheme for hybrid parallel
file systems,” in Proc. 44th Int. Conf. Parallel Process., 2015, pp. 340—
349.

S. He, Y. Wang, and X.-H. Sun, “Boosting parallel file system per-
formance via heterogeneity-aware selective data layout,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 9, pp. 2492-2505, Sep. 2016.
S. He, X.-H. Sun, and Y. Wang, “Improving performance of paral-
lel I/O systems through selective and layout-aware SSD cache,”
IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 10, pp. 2940-2952,
Oct. 2016.

X. Zhang, S. Jiang, and K. Davis, “Making resonance a common
case: A high-performance implementation of collective I/O on
parallel file systems,” in Proc. 23th IEEE Int. Parallel Distrib. Pro-
cess. Symp., 2009, pp. 1-12.

Y. Liu, R. Gunasekaran, X. Ma, and S. S. Vazhkudai, “Automatic
identification of application I/ O signatures from noisy server-side
traces,” in Proc. 12th USENIX Conf. File Storage Technol., 2014,
pp- 213-228.

Y. Yin, S. Byna, H. Song, X.-H. Sun, and R. Thakur, “Boosting
application-specific parallel I/O optimization using IOSIG,” in
Proc. 12th IEEE/ACM Int. Symp. Cluster Cloud Grid Comput., 2012,
pp- 196-203.

A. W. Leung, S. Pasupathy, G. R. Goodson, and E. L. Miller,
“Measurement and analysis of large-scale network file system
workloads,” in Proc. USENIX Annu. Tech. Conf., 2008, pp. 213-226.
M. A. Olson, K. Bostic, and M. I. Seltzer, “Berkeley DB,” in Proc.
USENIX Annu. Tech. Conf., 1999, pp. 183-191.

Interleaved or random (IOR) benchmarks, 2016. [Online]. Avail-
able: http:/ /sourceforge.net/projects/ior-sio/

A. Ching, A. Choudhary, W.-K. Liao, L. Ward, and N. Pundit,
“Evaluating I/O characteristics and methods for storing struc-
tured scientific data,” in Proc. 20th Int. Parallel Distrib. Process.
Symp., 2006, pp. 69-69.

Application 1/0O traces: Anonymous LANL App2, 2014. [Online].
Available: http:/ /institutes.lanl.gov/plfs/maps/

Shuibing He received the PhD degree in com-
puter science and technology from Huazhong
University of Science and Technology, China, in
2009. He is now an associate professor in the
Computer School, Wuhan University, China. His
current research areas include parallel 1/0O sys-
tems, file and storage systems, high-performance
computing, and distributed computing. He has
more than 30 papers to his credit in major jour-
nals and international conferences including the
IEEE Transactions on Parallel and Distributed
Systems, ICDCS, IPDPS, ICPP, CLUSTER,
HiPC, and ICA3PP.

Yang Wang received the BSc degree in applied
mathematics from Ocean University of China, in
1989, and the MSc degree in computer science
from Carleton University, in 2001, and the PhD
degree in computer science from the University
of Alberta, Canada, in 2008. He is currently in the
Shenzhen Institute of Advanced Technology,
Chinese Academy of Science, as a professor.
His research interests include cloud computing,
big data analytics, and Java virtual machine on
multicores.

Zheng Li received the PhD degree in computer
science from the lllinois Institute of Technology.
He is currently an assistant professor in the
School of Computer Science, Western lllinois
University. His research interests include distrib-
uted computing, real-time computing, many-core
computing, and reconfigurable computing.

Xian-He Sun received the BS degree in mathe-
matics from Beijing Normal University, China, in
1982, and the MS and PhD degrees in computer
science from Michigan State University, in 1987
and 1990, respectively. He is a distinguished pro-
fessor of the Department of Computer Science,
lllinois Institute of Technology (IIT), Chicago. He
is the director of the Scalable Computing Soft-
ware Laboratory, IIT, and is a guest faculty in the
Mathematics and Computer Science Division,
Argonne National Laboratory. His research inter-
ests include parallel and distributed processing, memory and /O sys-
tems, software systems, and performance evaluation and optimization.
He is a fellow of the IEEE.

Chengzhong Xu received the PhD degree from
the University of Hong Kong, in 1993. He is cur-
rently the director of the Institute of Advanced
Computing and Data Engineering, Shenzhen
Institute of Advanced Technology of Chinese
Academy of Sciences. His research interests
include parallel and distributed systems and
cloud computing. He received the the Faculty
Research Award, Career Development Chair
Award, and the President’s Award for Excellence
in Teaching of WSU. He also received the Out-
standing Oversea Scholar award of NSFC. He is
a fellow of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:15 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


