
 978-1-4244-9352-4/11/$26.00 ©2011 IEEE 2104

2011 4th International Conference on Biomedical Engineering and Informatics (BMEI)

Communication-Aware Task Scheduling for
Multi-Core Architectures with Segmented Buses
Yuping Zhang

 School of Computer
Wuhan University

Wuhan,China
ypzhang88@126.com

Xianbin Xu
School of Computer
Wuhan University

Wuhan,China
xbxu@whu.edu.cn

Yuanhua Yang1 2
1 School of Computer

Wuhan University
2 Jianghan Art

Vocational College
yangyuanhua123@163.com

Shuibing He
School of Computer
Wuhan University

Wuhan,China
heshuibing@whu.edu.c

n

Zimian Hao
Hubei Urban
Construction

Vocational and
Technical College

Wuhan,China
haozimian@yahoo.co

m.cn

Abstract—As the number of cores on a single chip and their
performance continue to increase, the communication
architecture plays a major role in the area, performance, and
energy consumption of the overall system. This paper presents a
mesh-like connected multi-core architecture with segmented
buses to meet the requirements of high performance and low
energy consumption. Based on the proposed architecture, a
communication-aware greedy task scheduling is designed to
minimize the communication energy consumption among cores
while maintaining the same performance as other scheduling
algorithms. We evaluate the algorithm performance through a
series of experiments with Gaussian Elimination, and the
experimental results confirm the effectiveness of the algorithm.

Keywords-Multi-Core Architecture, Segmented Buses,
Communication Energy Consumption , Greedy Algorithm,
Gaussian Elimination

I. INTRODUCTION AND MOTIVATION
As technology scales toward deep sub-micro (DSM), the

integration of a complete system consisting of a large number
of cores on a single chip is becoming technically feasible.
Multi-core or many-core architectures have been widely used
in recent times as a viable solution to the increasing chip
densities, due to the benefits offered by them with respect to
improving system performance, cost, power dissipation and
reusability [1] .

With the rising number of cores integrated into a single
chip and their performance continue to increase, the
communication architecture plays a major role in the area,
performance, and energy consumption of the overall system.
This means that communication, not computation, will be the
key performance bottleneck in DSM technologies [2]. To cope
with the increasing multi-core performance requirements and
power constraints in the DSM era, on-chip communication
architectures have undergone an evolution in complexity: from
bus-based architecture to Network-on-Chip (NoC). A lot of
researches have been done on the on-chip communication
architectures [3-5] .

Kumar et al. present that the design choice for the
communication have significant effect on the rest of the chip,
potentially consuming a significant fraction of the power
budget in [3]. Energy consumption is becoming one of the
major optimization targets when designing low power multi-
core architectures. Therefore, in the past decade there are many

works focusing on exploring bus-based communication
architecture for energy conservation, especially a variety of
shared buses, segmented bus (or splitted, partitioned bus) [1, 5-
10].

Long interconnect wires account for a significant fraction
(up to 50%) of the energy consumed in an integrated circuit
[6]. Segmented buses have obvious energy-related circuit
advantages such as reduced capacitive load during bus transfer.
A bus-segmentation method to reduce the switched capacitance
on the bus is proposed in [8]. The design theory and
implementation issues of a bus segmentation method for
lowering the energy dissipation on system buses is provided in
[11]. It was reported in [10] that the use of a splitting bus
architecture yields energy savings of 16%-50% over a
monolithic bus. Therefore, in this article, we design a mesh-like
connected segmented buses architecture for minimizing the
energy consumption of the communication architecture.

An efficient scheduling of a parallel program onto the cores
that minimizes the entire execution time is vital for achieving a
high performance in multi-core systems. A varieties of
scheduling algorithms have been proposed in the literature
[12]. All of these schedules share a common characteristic that
they try to cluster or duplicate heavily communicating tasks
onto the same processor meanwhile to reduce the overall
schedule length. None of them considers the relative
communication energy consumption among different cores
during scheduling. Recently some researchers have turned
their attention to consider the communication energy in
designing task scheduling algorithms [13, 14]. But all these
methods focus on application-specific segmented bus platform.
They are not suitable for task schedulings in general purpose
multi-core systems. In this paper, we provided a
communication-aware greedy task scheduling to minimize the
communication energy consumption among cores while
maintaining the same performance as other heuristic scheduling
algorithms.

The rest of this paper is organized as follows. Section II
describes the mesh-like connected multi-core architecture and
the energy model of the communication architecture. The
communication-aware greedy task scheduling is detailed in
Section III. We investigate the performance of our solution
through simulations and analyze the results in Section IV.
Conclusion and future work are shown in Section V.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:47:18 UTC from IEEE Xplore. Restrictions apply.

 2105

II. TARGET ARCHITECTURE AND
COMMUNICATION ENERGY MODEL

A. Target Architecture
A traditional shared bus communication architecture is

shown in Figure 1(a). All of the cores are connected through
one large monolithic shared bus. As the number of the cores
increase, the performance of this communication architecture
will be significantly decreased because the available bandwidth
for each core drops sharply. Moreover, the communication
architecture consumes a major fraction of energy in the chip
because the whole wire will be activated for every data transfer
during the communication of any two cores. To overcome
these problems, at the architecture level a lot of studies have
been existed for performance improvement and communication
energy minimization, especially the segmented bus, such as
presented in [1, 5, 6, 8, 10, 11, 14] .

Segmented buses have been proposed in the past for
multiple computer architectures [15]. Among various parallel
architectures, mesh-connected computers (MCCs) have
received considerable attention [16]. Due to its simple and
regular interconnection pattern, MCCs are suitable for
hardware implementation in VLSI technologies. The mesh,
however, has a crucial drawback that its communication
diameter is large. To overcome this problem, a variant of the
meshes with separable buses have been presented [15-18] . To
take advantage of the benefits of meshes and segmented
buses, we propose a Mesh-Like Connected Multi-Core
Architecture with Segmented Buses (MCMASB), as shown in
Figure 1 (b).

In MCMASB architecture, N cores arrange in a n1×n2 grid
with a separable bus for each row and each column
respectively. For simplicity and clarify, Figure 1 (b) shows a
4×4 mesh with 16 cores. The cores in the same row/column are
connected with a separable bus. The horizontal separated solid
lines and the vertical separated dotted lines represent the shared
buses for the cores on the same row and column respectively.
These buses can be segmented by the switches attached on
them dynamically during the runtime. Resemble like the cores,
the switches are arranged in a grid, and they are placed
symmetrically. Each separable bus is partitioned into equal
number of segments, and each segment is the same length of
“L”. The switches are 3 port uni-cast or multi-cast components
implemented using tri-state buffer chains (detailed structure
seen in [9]). Each switch is configured at runtime to form a
path between the source and the sink of the transfer, and the
control is light-weight because no handshaking techniques or
transfer protocols are needed. The segmented buses in each
row and column support multi-cast and concurrent non-
overlapping data transfers at the same time. Each segment acts
as a normal bus between cores that are connected to it, and is
separated from other segmented bus by switches when it is not
involved in transactions.

In Figure 1, each core is assumed to contain multiple
functional units and a cache. The functional units have direct
access to its cache at any moment with negligible
communication cost. The data is needed to transfer through the

segmented buses only when a functional unit requests the
information stored in a remote cache. Each core is attached two

Figure 1. Mesh-Like Connected Multi-Core Architecture with Segmented
Buses

switches that are used for connecting the core to the horizontal
and vertical shared bus respectively. The configurations of the
switches are controlled by their corresponding cores at runtime.
In the following we compare the architecture of MCMASB
with the NoC from several aspects:

 Structure: MCMASB and NoC are regular mesh–based
connection architecture, thus both them are feasible for
VLSI implementation.

 Scalability: Except for supporting concurrent data
transfer on non-overlapping segmented buses,
MCMASB can provide multi-cast on all or partial
separated row and column buses, therefore the
performance scales as well as the NoC.

 Energy: There are two important disadvantages for NoC
design [19]. First, a direction-based protocol inherently
suffers from indirection, requiring multiple messages for
every coherence transaction. Second, the messages
traverse multiple routers require more clock cycles. All
of these mean more execution time and energy
consumption for the operation to complete. In addition,
the routers are energy-hungry devices. However, the
segmented buses are presented for energy conservation,
and the cost of driving the switches of the segmented bus
can be negligible compared with the gain obtained from
the segmentation [9].

Except for the above discussions, at the present, NoC do
not always provide the huge predicted impact on the design
process [5]. However, the segmented bus architecture have
been successfully been employed in some implementation of
multi-core systems. Therefore the proposed MCMASB
architecture is completely feasible to meet the requirements of
the high performance and low energy dissipation.

B. Communication Energy Model
A well-known communication energy model is as follows:

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:47:18 UTC from IEEE Xplore. Restrictions apply.

 2106

 2E DDVC ××= α (1)

Where α is the switching activity of the signal that is being
transmitted, C is the physical capacitance switched during
signal transitions, including the total capacitance of
interconnects and the capacitance of driving and driven gates,
and VDD is the supply voltage.

The energy cost of the segmented bus depends directly on
the wire length and the switching activity of each segment.
Based on (1) and the MCMASB architecture, the energy
model of segmented buses can be computed as follows:

LjiNumjiCVE
Nji

segLDD ××××= ∑
∈,

2),(),(α (2)

Where CL is the capacitance introduced by each segmented bus,
α(i, j) is the communication frequency of the data that are
transmitted between Corei and Corej. Numseg(i, j) is the number
of segmented bus from Corei to Corej. L is the length of each
segmented bus.

Minimizing the value of (2) is the objective of this paper
for reducing the communication energy consumption. For a
specific technology, both VDD and CL are constants, therefore
the (2) is simplified to (3).

 LjiNumjiE
Nji

seg ××= ∑
∈,

),(),(α （3）

III. COMMUNICATION-AWARE GREEDY TASK SCHEDULING
In this section, we propose a Communication-Aware

Greedy Task Scheduling (CAGTS) algorithm, which is an
extension to the concept of traditional list scheduling, for
reducing the communication energy consumption. The target
system is the MCMASB described in Section II. The proposed
CAGTS algorithm is presented in Algorithm 1.

The scheduling parallel program can be modeled as a
Directed Acyclic Graph (DAG), in which the nodes and edges
represent tasks and messages, respectively. The detailed DAGs
can be found in [12]. Given the DAGs and the MCMASB
architecture, the proposed CAGTS algorithm is implemented in
three steps. Step 1 is to construct a task list according to tasks’
priorities. Then, in step 2, the task, Ti with the highest priority
is allocated to a core that allows the earliest start time for
minimizing the schedule length. Repeat step 2 until all the
tasks have been allocated to cores. In the last step calls the
greedy algorithm() for reducing communication energy
consumption.

As described in Algorithm 1, Step 1 and 2 are two basic
steps of traditional list scheduling, so these two steps can be
implemented with any list scheduling reported in the literature.
The extension of the traditional list scheduling is step 3. The
greedy algorithm() is listed in Algorithm 2.

The input of the greedy algorithm is the result, i.e., the task
clusters in different cores, which is produced by the traditional
list scheduling. The t-th population is represented as P(t). P(t)
is an array consisting of M elements, where M is the size of

the population. The label Xi(t) indicates that the i-th individual
of the t-th population. Each individual is a mapping of task
clusters to cores. For example, X3(t)=(2,0,1,3) shows that this

Algorithm 1 Task scheduling with CAGTS algorithm

Require: DAGs, MCMASB architecture with N cores

Ensure: Optimal communication energy task scheduling

1. Determine the tasks’ priorities. Order the tasks into a list
according to their priorities, respecting their precedence
constraints.

2. Repeat

(1) Remove the first task Ti from the list.

(2) Schedule Ti to the core that allows the earliest start
time while satisfying the tasks’ precedence
constraints.

Until the list is empty.

3. Call Greedy algorithm() for reducing communication
energy consumption.

individual is the third element of the t-th population, and the
task clusters from 0 to 3 are mapped to 2, 0, 1, and 3 cores
respectively (4 cores in the system). The initialization
population is generated randomly.

The symbol f(Xi(t)) represents that the fitness value of thei-th
individual of the t-th population. The greedy algorithm is to
minimize the communication energy consumption, thus
according to (3), we can draw fitness function as follows:

∑ ∑= +=
×= N

i

N

ik
kiDistkiCommCosttX

1 1i)],[],[())((f
(4)

where CommCost[i, k] denotes the communication frequency
of data transfer between Corei and Corej. The distance of these
two cores is represented as Dist[i, k], and in the MCMASB
architecture, it can be calculated as follows:

)()(

)()(],[Dist

ji

ji

CoreColCoreCol

CoreRowCoreRowki

−+

−=
 (5)

In (5), Row() and Col() denote the row and column
locations of the core lying in the two-dimensional architecture,
respectively.

The next generation is produced by choosing M individuals
with low fitness value from the last population and the new
individuals generated by the greedy operator, as shown from
Line 4 to 9 in Algorithm 2. The greedy operator is described in
the following.

The first element of the individual is generated randomly,
Xr(t)=[Core1], then produces the rest Corej(j=2, …, N) by
using greedy operator.

The frontαelements of individual Xr(t) are assumed to be
known, the (α+1)-th element will be choosed according to
the following criterion.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:47:18 UTC from IEEE Xplore. Restrictions apply.

 2107

∑ ∑
=

+

+=
∈

∈

×

=

+

+

α α

θ

θ

α

α

1

1

1

r

])),[],[((min

)))(((min

1

1

i ikCore

Core

kiDistkiCommCost

tXf

 (6)

where θ=Ω-σ,represents the set of the un-assigned core
number. There, Ω is the set of all cores number, andσis the

Algorithms 2 Greedy algorithm()

Require: The task clusters produced by list scheduling

Ensure: Optimal communication energy task scheduling

Begin
1. t:=0
2. initialize P(t); P(t) = {X1(t), X2(t),…, XN(t)}
3. evaluate P(t); f (P(t)) = {f (X1(t)), f (X2(t)),…,f (XN(t))}
4. while (not termination condition) do
5. Pg(t) = greedy {P(t)}
6. evaluate [Pg(t)]
7. P(t+1) = select [Pg(t) U P(t)]
8. t:=t+1
9. od
10. print Xbest , f (Xbest)
end

set of cores number which have been allocated to the frontα
elements of the individual. Repeat this step until all the rest
elements are completely produced.

A schedule with the best communication energy
consumption is generated when the termination condition or
the number of iterations is met.

IV. EXPERIMENTS AND RESULTS

A. Gaussian Elimination
In our study, we present the comparative evaluation of our

algorithm based on gaussian elimination. It is a well known
method used in mathematics for solving a system of equations,
and represents a real world problems.

Figure 2 (a) shows the sequential program for the gaussian
elimination [20]. The DAG for the special case of m=5, where
m is the dimension of the matrix, is given in Figure 2 (b). The
number of tasks in the task graph of this algorithms can be

roughly estimated as
2

2m2 −+ m
. Tk,k and Tk,j represent a

pivot column and an update operation respectively. The
computation cost function for any task Tk,j is equal to Wk,j=2×
(n-k) ×w, where 1≤k≤j≤m, and w is the average execution
time of either an addition and multiplication, or of a division.
The communication cost function of edge between dependent
tasks is equal to Ck,j=(n-k) ×b, where b is the transmission rate.
In our experiment, the value of b is set by tuning the
Communication-to-Computation Ration (CCR).

B. Performance Comparison
For the first comparison, we present the communication

energy consumption produced by the traditional list
scheduling and the proposed CAGTS for various CCR of
gaussian elimination. It is noteworthy that all the list
schedulings can be used in the first two steps of our algorithm.
The proposed technique reduces the communication energy
consumption and in the meantime retains the same schedule
length as the list scheduling. Therefore, we implement the list

 Figure 2.
(a) Gaussian Elimination Algorithm(kji version) (b) DAG for a Matrix of Size 5

scheduling according to the techniques presented in [21]
because of its low complexity and efficient solution.
 Figure 3 shows the communication energy consumption
generated by the proposed CAGTS algorithm at various CCR.
It is normalized to that of the traditional list scheduling. The
results are achieved through a set of gaussian elimination
DAGs with the matrix size varying from 5 to 20, and the
number of cores in the system is 16. As can be observed from
Figure 3, the communication energy dissipation is reduced
about 34% at coarse-grain (CCR<1), 25% at fine-grain
(CCR>1). The reduction is the least for CCR=1, about 18%.
This is because the communication load are distributed
uniformly among the cores, the adjustments of task clusters to
the cores are more difficult achieved for reducing the
communication energy dissipation. The coarse-grain graph
means less communication cost among cores, so it is easy to
redistribute the task clusters to cores for achieving the best
energy reduction. However, fine-grain applications mean
heavy communication traffic, the energy reduction less than
that of the coarse-grain is reasonable. In addition, it can be
observed from the experiments that the energy reductions are
constant both for the fine-grain and coarse-grain DAGs. It
further confirms the scalability and effectiveness of the
proposed algorithm in this article.

Figure 4 illustrates the communication energy reductions
at various number of cores. In the simulations, the matrix size
of gaussian elimination varies from 5 to 20, CCRs are between
0.2 and 10 (increment is 0.2). The experiments on various
number of cores make use of the same set of gaussian
elimination. As shown in Figure 4, the reduction of
communication energy dissipation is about zero on 4 cores.
This is because the diameter is 1 when there are only 4 cores
in the system, and the result is consistent with the MCMASB
architecture proposed in Section II. From Figure 4 we can see

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:47:18 UTC from IEEE Xplore. Restrictions apply.

 2108

that the reduction of the communication energy dissipation
increases as the number of cores in the system increases. For
example, the reduction is about 24%, 27%, and 37% for 8, 16,
and 32 cores, respectively. We believe that more cores exist
in the system, more reduction of communication energy
dissipation.

V. CONCLUSION AND FUTURE WORK
In this paper, we have presented a Mesh-Like Connected

Multi-Core architecture with Segmented Buses. The proposed

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.4 0.6 0.8 1 2 4 6 8 10

CCR

No
r
ma
li
z
ed
 C
o
mm
un
i
ca
ti
o
n
E
ne
rg
y
 C
os
u
mp
ti
o
n

Figure 3. Communication Energy Consumption of CAGTS Normalized
to Traditional List Scheduling at Various CCR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

4 8 16 32

The number of cores in the system

N
o
r
m
a
l
i
z
e
d

C
o
m
m
u
n
i
c
a
t
i
o
n

E
n
e
r
g
y

C
o
n
s
u
m
p
t
i
o
n

Figure 4. Communication Energy Consumption of CAGTS Normalized
to Traditional List Scheduling at Various Cores

architecture combines the benefits of both the shared bus and
the Network-on-Chip. Based on this architecture, an extension
of the traditional list scheduling algorithm is proposed for
reducing the communication energy consumption. The
mapping of task clusters to cores that produced by the
traditional list scheduling is adjusted by the proposed
communication-aware greedy algorithm in order to minimize
the length of the data transferred, the short wire length results
in the reduction of the communication energy consumption.
We have performed experiments with a variety of gaussian
elimination graphs. The results confirm the effectiveness of the
algorithm.

In future work, we attempt to implement this algorithm on
the systems with heterogeneous multiple cores and the switches
placed asymmetrically.

REFERENCES
[1] Srinivasan S., Li L., and Vijaykrishnan N., Simultaneous Partitioning

and Frequency Assignment for on-Chip Bus Architectures, in
Proceedings of the conference on Design, Automation and Test in
Europe - Volume 1. 2005, IEEE Computer Society.

[2] Pasricha S. and Dutt N., Trends in Emerging on-Chip Interconnect
Technologies. IPSJ Transactions on Systems LSI Design Methodology,
2008. 1: pp. 2-17.

[3] Kumar R., Zyuban V., and Tullsen D. M. Interconnections in Multi-Core
Architecture:Understanding Mechanisms,Overheads and Scaling. in
Proceeding of the 32nd International Symposium on Computer
Architecture. 2005. pp. 408-419.

[4] Lee H. G., et al., On-Chip Communication Architecture Exploration: A
Quantitative Evaluation of Point-to-Point, Bus, and Network-on-Chip
Approaches. ACM Trans. Des. Autom. Electron. Syst., 2007. 12(3): pp.
1-20.

[5] Seceleanu T., et al., Improving the Performance of Bus Platforms
Bymeans of Segmentation and Optimized Resource Allocation.
EURASIP J. Embedded Syst., 2009. pp. 1-14.

[6] Raghunathan V., Srivastava M. B., and Gupta R. K., A Survey of
Techniques for Energy Efficient on-Chip Communication, in
Proceedings of the 40th annual Design Automation Conference. 2003,
ACM: Anaheim, CA, USA.

[7] Loghi M., et al., Analyzing on-Chip Communication in a Mpsoc
Environment, in Proceedings of the conference on Design, automation
and test in Europe - Volume 2. 2004, IEEE Computer Society.

[8] J.Y.Chen, et al., Segmented Bus Design for Low-Power Systems. IEEE
TRANSACTIONS ON VLSI SYSTEMS, 1999. 7(1): pp. 25-29.

[9] Heyrman K., et al. Energy Costs of Transporting Switch Control Bits for
a Segmented Bus. in the 16th Annual Wsh. on Circuits, Systems and
Signal Processing (ProRisc) 2005. pp. 359--364.

[10] Hsieh C.-T. and Pedram M., Architecture Energy Optimization by Bus
Splitting. Proceedings of IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems(IEEE TCAS), 2002. 21(4): pp. 408-
414.

[11] Jone W.-B., et al., Design Theory and Implementation for Low-Power
Segmented Bus Systems. ACM Trans. Des. Autom. Electron. Syst., 2003.
8(1): pp. 38-54.

[12] Kwok Y.-K. and Ahmad I., Static Scheduling Algorithms for Allocating
Directed Task Graphs to Multiprocessors. ACM Comput. Surv., 1999.
31(4): pp. 406-471.

[13] Korthikanti V. A. and Agha G., Analysis of Parallel Algorithms for
Energy Conservation in Scalable Multicore Architectures, in
Proceedings of the 2009 International Conference on Parallel
Processing. 2009, IEEE Computer Society.

[14] Guo J., et al. Physical Design Implementation of Segmented Buses to
Reduce Communication Energy. in Asia and South Pacific Conference
on Design Automation. 2006. pp. 42-47.

[15] Katsinis C., A Multicomputer Architecture with a Segmented Shared Bus
Computers & Electrical Engineering, 1995. 21(1): pp. 33-46.

[16] Pan Y., et al., An Improved Generalization of Mesh-Connected
Computers with Multiple Buses. IEEE Trans. on Parallel and Distributed
Systems, 2001. 12(3): pp. 293--305.

[17] Chung K.-L., Prefix Computations on a Generalized Mesh-Connected
Computer with Multiple Buses. IEEE Transactions on Parallel and
Distributed Systems, 1995. 6(2): pp. 196-199.

[18] Semigroup and Prefix Computations on Improved Generalized Mesh-
Connected Computers with Multiple Buses, in Proceedings of the 14th
International Symposium on Parallel and Distributed Processing. 2000,
IEEE Computer Society.

[19] Loghi M., et al. Towards Scalable,Energy-Efficient,Bus-Based on-Chip
Networks. in Proceedings of the Disign,Automation and Test in Europe
Conference and Exhibition. 2004. pp. 752-757.

[20] Topcuoglu H., Hariri S., and Wu M.-Y., Task Scheduling Algorithms for
Heterogeneous Processors, in Proceedings of the Eighth Heterogeneous
Computing Workshop. 1999, IEEE Computer Society.

[21] Kwok Y.-K., Ahmad I., and Gu J., Fast: A Low-Complexity Algorithm
for Efficient Scheduling of Dags on Parallel Processors, in the 1996
International Conference on Parallel Processing. 1996, IEEE Computer
Society. pp. 150 - 157

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:47:18 UTC from IEEE Xplore. Restrictions apply.

