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Abstract—As the number of cores on a single chip and their 
performance continue to increase, the communication 
architecture plays a major role in the area, performance, and 
energy consumption of the overall system. This paper presents a 
mesh-like connected multi-core architecture with segmented 
buses to meet the requirements of high performance and low 
energy consumption. Based on the proposed architecture, a 
communication-aware greedy task scheduling is designed to 
minimize the communication energy consumption among cores 
while maintaining the same performance as other scheduling 
algorithms. We evaluate the algorithm performance through a 
series of experiments with Gaussian Elimination, and the 
experimental results confirm the effectiveness of  the algorithm.  
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I. INTRODUCTION  AND MOTIVATION  
As technology scales toward deep sub-micro (DSM), the 

integration of a complete system consisting of a large number 
of cores on a single chip is becoming technically feasible.  
Multi-core or many-core architectures have been widely used 
in recent times as a viable solution to the increasing chip 
densities, due to the benefits offered by them with respect to 
improving system performance, cost, power dissipation and 
reusability [1] .  

With the rising number of cores integrated into a single 
chip and their performance continue to increase, the 
communication architecture plays a major role in the area, 
performance, and energy consumption of the overall system.  
This means that communication, not computation, will be the 
key performance bottleneck in DSM technologies [2]. To cope 
with the increasing multi-core performance requirements and 
power constraints in the DSM era, on-chip communication 
architectures have undergone an evolution in complexity: from 
bus-based architecture to Network-on-Chip (NoC).  A lot of 
researches have been done on the on-chip communication 
architectures [3-5] .  

Kumar et al. present that the design choice for the 
communication have significant effect on the rest of the chip, 
potentially consuming a significant fraction of the power 
budget in [3].  Energy consumption is becoming one of the 
major optimization targets when designing low power multi-
core architectures. Therefore, in the past decade there are many 

works focusing on exploring bus-based communication 
architecture for energy conservation, especially a variety of 
shared buses, segmented bus (or splitted, partitioned bus) [1, 5-
10]. 

Long interconnect wires account for a significant fraction 
(up to 50%)  of  the energy consumed in an integrated circuit 
[6]. Segmented buses have obvious energy-related circuit 
advantages such as reduced capacitive load during bus transfer. 
A bus-segmentation method to reduce the switched capacitance 
on the bus is proposed in [8]. The design theory and 
implementation issues of a bus segmentation method for 
lowering the energy dissipation on system buses is provided in 
[11].  It was reported in [10] that the use of a splitting bus 
architecture yields energy savings of 16%-50% over a 
monolithic bus. Therefore, in this article, we design a mesh-like 
connected segmented buses architecture for minimizing the 
energy consumption of the communication architecture.  

An efficient scheduling of a parallel program onto the cores 
that minimizes the entire execution time is vital for achieving a 
high performance in multi-core systems. A varieties of  
scheduling algorithms have been proposed in the literature 
[12]. All of these schedules share a common characteristic that 
they try to cluster or duplicate heavily communicating tasks 
onto the same processor meanwhile to reduce the overall 
schedule length. None of them considers the relative 
communication energy consumption among different cores 
during scheduling.  Recently some researchers have turned 
their attention to consider the communication energy in 
designing task scheduling algorithms [13, 14].  But all these 
methods focus on application-specific segmented bus platform. 
They are not suitable for task schedulings in general purpose 
multi-core systems. In this paper, we provided a 
communication-aware greedy task scheduling to minimize the 
communication energy consumption among cores while 
maintaining the same performance as other heuristic scheduling 
algorithms.  

The rest of this paper is organized as follows. Section II 
describes the mesh-like connected multi-core architecture and 
the energy model of the communication architecture. The 
communication-aware greedy task scheduling is detailed in 
Section III. We investigate the performance of our solution 
through simulations and analyze the results in Section IV. 
Conclusion and future work are shown in Section V. 
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II. TARGET ARCHITECTURE AND 
COMMUNICATION ENERGY MODEL 

A. Target Architecture 
A traditional shared bus communication architecture is  

shown in Figure 1(a).  All of the cores are connected through 
one large monolithic shared bus. As the number of the cores 
increase, the performance of this communication architecture 
will be significantly decreased because the available bandwidth 
for each core drops sharply.  Moreover, the communication 
architecture consumes a major fraction of energy in the chip  
because the whole wire will be activated for every data transfer 
during the communication of any two cores. To overcome 
these problems,  at the architecture level a lot of studies have 
been existed for performance improvement and communication 
energy minimization, especially the segmented bus, such as 
presented in [1, 5, 6, 8, 10, 11, 14] . 

Segmented buses have been proposed in the past for 
multiple computer architectures [15].  Among various parallel 
architectures, mesh-connected computers (MCCs) have 
received considerable attention [16].  Due to its simple and 
regular interconnection pattern,  MCCs are suitable for 
hardware implementation in VLSI technologies.  The mesh, 
however, has a crucial drawback that its communication 
diameter is large. To overcome this problem,  a variant of the 
meshes with separable buses have been presented [15-18] . To 
take advantage of the benefits of meshes  and  segmented 
buses,  we propose a Mesh-Like Connected Multi-Core 
Architecture with Segmented Buses  (MCMASB), as shown in 
Figure 1 (b).  

In  MCMASB architecture,  N cores  arrange in a n1×n2 grid 
with a separable bus for each row and each column 
respectively. For simplicity and clarify, Figure 1 (b)  shows a  
4×4 mesh with 16 cores. The cores in the same row/column are 
connected with a separable bus. The horizontal separated solid 
lines and the vertical separated dotted lines represent the shared 
buses for the cores on the same row and column respectively.  
These buses can be segmented by the switches attached on 
them dynamically during the runtime.  Resemble like the cores, 
the switches are arranged in a grid, and they are placed 
symmetrically. Each separable bus is partitioned into equal 
number of segments, and each segment is the same length of 
“L”. The switches are 3 port uni-cast or multi-cast components 
implemented using tri-state buffer chains (detailed  structure 
seen in [9]). Each switch is configured at runtime to form a 
path between the source and the sink of the transfer, and the 
control is light-weight because no handshaking techniques or 
transfer protocols are needed. The segmented buses in each 
row and column support multi-cast and concurrent non-
overlapping data transfers at the same time. Each segment acts 
as a normal bus between cores that are connected to it, and is 
separated from other segmented bus by switches when it is not 
involved in transactions.  

In Figure 1, each core is assumed to contain multiple 
functional units and a cache.  The functional units have direct 
access to its cache at any moment with negligible 
communication cost.  The data is needed to transfer through the 

segmented buses only when a functional unit requests the 
information stored in a remote cache. Each core is attached two 

 

Figure 1.  Mesh-Like Connected Multi-Core Architecture with Segmented 
Buses 

switches that are used for connecting the core to  the horizontal 
and vertical shared bus respectively. The configurations of the 
switches are controlled by their corresponding cores at runtime. 
In the following we compare the architecture of  MCMASB 
with the NoC from several aspects:  

 Structure: MCMASB and NoC are regular mesh–based 
connection architecture, thus both them are feasible for 
VLSI implementation.  

  Scalability: Except for supporting concurrent data 
transfer on non-overlapping segmented buses,  
MCMASB can provide multi-cast on all or partial  
separated row and column buses, therefore the 
performance scales as well as the NoC.  

  Energy: There are two important disadvantages for NoC 
design [19]. First, a direction-based protocol inherently 
suffers from indirection, requiring multiple messages for 
every coherence transaction. Second, the messages 
traverse multiple routers require more clock cycles. All 
of these mean more execution time and energy 
consumption for the operation to complete. In addition, 
the routers are energy-hungry devices. However, the 
segmented buses are presented for energy conservation, 
and the cost of driving the switches of the segmented bus 
can be negligible compared with the gain obtained from 
the segmentation [9].  

Except for the above discussions, at the present, NoC do 
not always provide the huge predicted impact on the design 
process [5].  However, the segmented bus architecture have 
been successfully been employed in some implementation of 
multi-core systems.  Therefore the proposed MCMASB 
architecture is completely feasible to meet the requirements of 
the high performance and  low energy dissipation.  

B. Communication Energy Model 
A well-known communication energy model is as follows:  
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                             2E DDVC ××= α                                 (1)    

Where α is the switching activity of the signal that is being 
transmitted, C is the physical capacitance switched during 
signal transitions, including the total capacitance of 
interconnects and the capacitance of driving and driven gates, 
and VDD is the supply voltage.  

The energy cost of the segmented bus depends directly on 
the wire length and the switching activity of each segment. 
Based on  (1) and the MCMASB architecture, the energy 
model of segmented buses can be computed as  follows: 

LjiNumjiCVE
Nji

segLDD ××××= ∑
∈,

2 ),(),(α       (2)  

Where CL is the capacitance introduced by each segmented bus,  
α(i, j) is the communication frequency of the data that are 
transmitted between Corei and Corej.  Numseg(i, j) is the number 
of segmented bus from Corei to Corej. L is the length of each 
segmented bus.   

Minimizing  the value of  (2) is the objective of  this paper 
for reducing the communication energy consumption.  For a 
specific technology, both VDD  and CL  are constants,  therefore 
the (2)  is simplified to  (3). 

 LjiNumjiE
Nji

seg ××= ∑
∈,

),(),(α               （3） 

III. COMMUNICATION-AWARE GREEDY TASK SCHEDULING  
In this section, we propose a Communication-Aware 

Greedy Task Scheduling (CAGTS) algorithm, which is an 
extension to the concept of traditional list scheduling, for 
reducing the communication energy consumption. The target 
system is the MCMASB described in Section II.  The proposed 
CAGTS algorithm is presented in  Algorithm 1.  

The scheduling parallel program can be modeled as a 
Directed Acyclic Graph (DAG), in which the nodes and edges 
represent tasks and messages, respectively. The detailed DAGs 
can be found in [12]. Given the DAGs and the MCMASB 
architecture, the proposed CAGTS algorithm is implemented in 
three steps.  Step 1 is to construct a task list according to tasks’ 
priorities. Then, in step 2, the task, Ti with the highest priority 
is allocated to a core  that allows the earliest start time for 
minimizing the schedule length.  Repeat step 2 until all the 
tasks have been allocated to cores.  In the last step calls the 
greedy algorithm() for reducing communication energy 
consumption.  

As described in Algorithm 1, Step 1 and 2 are two basic 
steps of traditional list scheduling, so these two steps can be 
implemented with any list scheduling reported in the literature.  
The extension of the traditional list scheduling is step 3. The 
greedy algorithm() is listed in Algorithm 2.  

The input of the greedy algorithm is the result, i.e., the task 
clusters in different cores, which is produced by the traditional 
list scheduling.   The t-th population is represented as P(t).  P(t) 
is  an array consisting of M elements, where M is the size of 

the population.  The label Xi(t) indicates that the i-th individual 
of the t-th population.  Each individual is a mapping of task 
clusters to cores. For example, X3(t)=(2,0,1,3)  shows that this  

Algorithm 1  Task scheduling with CAGTS algorithm

Require: DAGs, MCMASB architecture with N cores 

Ensure:  Optimal communication energy task scheduling 

1. Determine the tasks’ priorities. Order the tasks into a list 
according to their priorities, respecting their precedence 
constraints. 

2. Repeat 

(1) Remove the first task Ti from the list. 

(2) Schedule Ti  to the core that allows the earliest start 
time while satisfying the  tasks’ precedence 
constraints. 

Until the list is empty. 

3. Call Greedy algorithm() for reducing communication 
energy consumption. 

individual is the third element of the t-th population, and the 
task clusters from 0 to 3 are mapped to 2, 0, 1, and 3 cores 
respectively (4 cores in the system).  The initialization 
population is generated randomly.   

The symbol f(Xi(t)) represents that the fitness value of thei-th 
individual of the t-th population. The greedy algorithm is to 
minimize the communication energy consumption, thus 
according to (3),  we can draw fitness function as follows:  

∑ ∑= +=
×= N

i

N

ik
kiDistkiCommCosttX

1 1i )],[],[())((f      
(4) 

where  CommCost[i, k] denotes the communication frequency 
of data transfer between Corei and Corej.  The distance of these 
two cores is represented as Dist[i, k], and in the MCMASB 
architecture, it can be calculated as follows: 

)()(

)()(],[Dist

ji

ji

CoreColCoreCol

CoreRowCoreRowki

−+

−=
              (5) 

In (5), Row() and Col() denote the row and column 
locations of the core lying in the two-dimensional architecture, 
respectively.  

The next generation is produced by choosing M individuals 
with low fitness value from the last population and the new 
individuals generated by the greedy operator, as shown from 
Line 4 to 9 in Algorithm 2.  The greedy operator is described in 
the following.  

The first element of the individual is generated randomly, 
Xr(t)=[Core1],  then produces the rest Corej(j=2, …, N) by 
using greedy operator.  

The frontαelements of  individual Xr(t) are assumed to be 
known,  the  (α+1)-th  element will be choosed according to 
the following criterion.  
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where θ=Ω-σ,represents the set of the un-assigned core 
number. There, Ω is the set of all cores number, andσis the  

Algorithms 2  Greedy algorithm() 

Require: The task clusters produced by list scheduling 

Ensure:  Optimal communication energy task scheduling 

Begin 
1.     t:=0 
2.    initialize P(t);  P(t) = {X1(t), X2(t),…, XN(t)}  
3.    evaluate P(t);  f (P(t )) = {f (X1(t)), f (X2(t)),…,f (XN(t))}  
4.   while (not termination condition) do  
5.         Pg(t) = greedy {P(t)} 
6.        evaluate [Pg(t)] 
7.         P(t+1) = select [Pg(t) U P(t) ] 
8.         t:=t+1 
9.    od 
10. print Xbest  , f (Xbest ) 
end 

set of cores number which have been allocated to the frontα
elements of the individual. Repeat this step until all the rest 
elements are completely produced. 

A schedule with the best communication energy 
consumption is generated when the termination condition or 
the number of iterations is met.  

IV. EXPERIMENTS AND RESULTS 

A. Gaussian Elimination 
In our study, we present the comparative evaluation of our 

algorithm based on gaussian elimination. It is a well known 
method used in mathematics for solving a system of equations, 
and represents a real world problems. 

Figure 2 (a) shows the sequential program for the gaussian 
elimination [20].  The DAG for the special case of m=5, where 
m is the dimension of the matrix, is given in Figure 2 (b).  The 
number of tasks in the task graph of this algorithms can be 

roughly estimated as 
2

2m2 −+ m
.  Tk,k and Tk,j represent a 

pivot column and an update operation respectively.  The 
computation cost function for any task Tk,j is equal to Wk,j=2×
(n-k) ×w, where 1≤k≤j≤m, and w is the average execution 
time of either an addition and multiplication, or of a division.  
The communication cost function of edge between dependent 
tasks is equal to Ck,j=(n-k) ×b, where b is the transmission rate.  
In our experiment, the value of b is set by tuning the 
Communication-to-Computation  Ration (CCR).  

B. Performance Comparison 
For the first comparison, we present the communication 

energy consumption produced by the traditional list 
scheduling and the proposed CAGTS for various CCR of 
gaussian elimination.  It is noteworthy that all the list 
schedulings can be used in the first two steps of our algorithm. 
The proposed technique reduces the communication energy 
consumption and in the meantime retains the same schedule 
length as the list scheduling.  Therefore, we implement the list  

 

 Figure 2.  
(a) Gaussian Elimination Algorithm(kji version)  (b) DAG for a Matrix of Size 5 

scheduling according to the techniques presented in [21] 
because of its low complexity and efficient solution.  
      Figure 3 shows the communication energy consumption 
generated by the proposed CAGTS algorithm at various CCR. 
It is normalized to that of  the traditional list scheduling. The 
results are achieved through a set of gaussian elimination 
DAGs with the matrix size varying from 5 to 20, and the 
number of cores in the system is 16. As can be observed from 
Figure 3, the communication energy dissipation is reduced 
about 34% at coarse-grain (CCR<1), 25% at fine-grain 
(CCR>1). The reduction is the least for CCR=1, about 18%.  
This is because the communication load are distributed 
uniformly among the cores, the adjustments of task clusters to 
the cores are more difficult achieved for reducing the 
communication energy dissipation. The coarse-grain graph  
means less communication cost among cores, so it is easy to 
redistribute the task clusters to cores for achieving the  best 
energy reduction. However, fine-grain applications mean 
heavy communication traffic, the energy reduction less than 
that of the coarse-grain is reasonable. In addition, it can be 
observed from the experiments that the energy reductions are 
constant both for the fine-grain and coarse-grain DAGs. It 
further confirms the scalability and effectiveness of the 
proposed algorithm in this article. 

Figure 4 illustrates the communication energy reductions 
at various number of cores. In the simulations, the matrix size 
of gaussian elimination varies from 5 to 20, CCRs are between 
0.2 and 10 (increment is 0.2). The experiments on various 
number of cores make use of the same set of gaussian 
elimination. As shown in Figure 4, the reduction of 
communication energy dissipation is about zero on 4 cores. 
This is because the diameter is 1 when there are only 4 cores 
in the system, and the result is consistent with the MCMASB 
architecture proposed in Section II. From Figure 4 we can see 
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that the reduction of the communication energy dissipation 
increases as the number of cores in the system increases.  For 
example, the reduction is about 24%, 27%, and 37%  for 8, 16, 
and 32 cores, respectively.  We believe that more cores exist 
in the system, more reduction of communication energy 
dissipation. 

V. CONCLUSION AND FUTURE WORK 
In this paper, we have presented a Mesh-Like Connected 

Multi-Core architecture with Segmented Buses.  The proposed 
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Figure 3. Communication Energy Consumption of CAGTS Normalized 
to Traditional List Scheduling at Various CCR 
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Figure 4. Communication Energy Consumption of CAGTS Normalized 
to Traditional List Scheduling at Various Cores 

architecture combines the benefits of both the shared bus and 
the Network-on-Chip. Based on this architecture, an extension 
of the traditional list scheduling algorithm is proposed for 
reducing the communication energy consumption. The 
mapping of task  clusters to cores that produced by the 
traditional list scheduling is adjusted by the proposed 
communication-aware greedy algorithm in order to minimize 
the length of the data transferred, the short wire length results 
in the reduction of the communication energy consumption. 
We have performed experiments with a variety of gaussian 
elimination graphs. The results confirm the effectiveness of the 
algorithm. 

In future work, we attempt to implement this algorithm on 
the systems with heterogeneous multiple cores and the switches 
placed asymmetrically. 
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