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Abstract—The Roadside Unit (RSU) allocation is critical for
the functionality and topology control of Vehicular Ad-Hoc Net-
works. However, due to the complexity of different transportation
scenarios and the challenging coordination among different RSUs,
the allocation is still a challenging issue in both the academic and
practical industry. In this paper, we utilize the game theoretic RSU
deployment to fundamentally improve the allocation of RSUs with
practical consideration. Given a set of RSUs of arbitrary covering
radii, assuming there is a budget requirement that specifies the
total number of RSUs to be placed. In addition, considering the
minimum distance requirement between any pair of RSUs, how
to select a subset of RSUs to cover the maximum number of
Points of Interest (POIs). We consider the selfish behaviors of
RSU allocation and apply a game theoretic technique. We propose
a mechanism to achieve a small price of anarchy.

Keywords—Adhoc; Networks; Game theory; Feasibility; Alloca-
tion; Roadside Unit, Vehicular Networks

I. INTRODUCTION

With the development of electric vehicles and “smart” cars,
vehicular Ad-Hoc networks increasingly occupy an important
place in the automotive world. It is indicated that 100% of
new cars in the U.S./ E.U. / China will become ”connected”
by 2022 because of legal and customer pull for connected
cars. In terms of predictions, by the end of 2030, electric car
sales will account for 55% of all new car sales. During this
transformation period, new car sales in Europe could increase
by 34%, from approximately 18 million to just over 24 million
USD. While in the U.S.A., there could be a growth of 20%
(22 million units) as PricewaterhouseCoopers (PwC) Autofacts
team assumes [1].

Along with the development of connected vehicles, ve-
hicular networks also need a lot of effort to be integrated
with more technologies and advanced features. One of the big
challenges of vehicular Ad-hoc networks is how to arrange
the RSU with the network to coordinate the whole system
well [2], [3]. Dedicated Short Range Communications (DSRC)
contains two units that have transceivers and transponders:
RoadSide Units(RSUs) and On-Board Units(OBUs). DSRC is
also a secure and consistent form of communication between a
vehicle and the roadside in specific positions since it operates
around 5.9 GHz frequency band. As is shown in Fig. 1, the
RSUs engage traveling vehicles via the DSRC technology aim
to reach the essential traffic information such as time, speed
and location of the vehicle.

In this paper, we model the RSU selection and allocation as
a game-theoretical model. The motivation of using mechanism
design for the problem is as follows. In practice for mechanism

design, the true valuation vi is unknown, in addition, each RSU
candidate’s bidding value may be different from its valuation.
Considering the selfish behavior of each RSU candidate, we
provide a method to efficiently and effectively optimize the
whole network with the help of our proposed algorithms.
Suppose there is a set of players, each has an RSU candidate
position. Suppose all players interact to select an outcome.
Assume each player has a valuation indicating the number
of POIs covered and bid for his request. The objective of
this mechanism is to compute an allocation algorithm and
payment rules. Its performance is appraised by the Price of
Anarchy(PoA), which consider a trade-off between the social
welfare and the optimized mixed Nash equilibrium. And this
work aims to design and create an effective mechanism with
the minimum of PoA. As far as our knowledge goes, no such
mechanism design for RSU placements has been studied with
a small price of anarchy for Nash equilibrium.

Fig. 1. Model of RSU Communications

Our Contributions: For the RSU allocation, we apply a
game theoretic technique and present a mechanism to solve
this problem.

• We design an efficient Linear Programming (LP) based
algorithm for RSU allocation. The algorithm follows the
relax-and-round scheme.

• Considering the algorithmic results of the problem, we
introduce this mechanism on the grounds of the LP
relaxation and prove the smoothness of this mechanism.

• We further propose a mechanism based on the relax-and-
round scheme. We have proved that the PoA is bounded
by a small number which only depends on the local
independence number.

The rest of the paper is organized as follows. Section
II formulates the mechanism design problem. Section III
presents a RSU allocation algorithm. Section IV presents a LP-
relaxation based mechanism. Section V presents a relax-and-
round mechanism. Section VI presents the numerical results.
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Section VII reviews the related work. Section VIII concludes
the paper.

II. SYSTEM MODEL

Suppose there is a set of players N = {1, . . . , n} in a two-
dimensional plane. Each player i is associated with a location
and send a RSU allocation request here is a minimum distance
requirement between any pair of deployed RSUs. The total
number of RSUs to be placed is at most K. The set of all
RSU allocation requests form a set of RSU candidates.

Suppose all players interact to select an outcome. Let Ω
represent the set of all feasible outcomes. Assume each player
i has a valuation function vi : Ω → R≥0 which maps each
outcome to a real value. We use v for the evaluation profile
that specifies a evaluation for each player.

Assume each player needs to bid for his request. We use
b for the bid profile that specifies a bid for each player. Based
on b, the central auctioneer uses an allocation algorithm f to
compute an outcome f(b) ∈ Ω. Based on allocation algorithm,
central auctioneer also uses a payment rule p to compute
the payments p(b) ∈ R≥0 of all bidding players. Both the
allocation algorithm and the payment rule can be randomized.

Assume each player pays what they have bid if his request
is satisfied, i.e., pi(b) = bi(fi(b)). We assume that player i’s
utility is ui(b, vi) = Evi(f(b))−Epi(b). The valuation of each
of players are aware. A potentially randomized bid profile b
that may depend on v is a mixed Nash equilibrium if for each
player i ∈ N and possible deviations b′i that may depend on
v, we have Eb[ui(b, vi)] ≥ Eb′i,b−i

[ui((b
′
i, b−i), vi)].

We evaluate the performance of mechanisms by their Price
of Anarchy (PoA). Define BNASH(v) as the set of all mixed
Nash. Then,

PoA = max
v

max
b∈BNASH(v)

max
x∈Ω

∑
i∈N vi(x)

E
∑

i∈N vi(f(b))

The objective is to minimize the PoA.

Smoothness Framework: A mechanism is (λ, μ)-smooth
[4], [5] for λ, μ ≥ 0 if for all valuation profiles v and all bid
profiles b there exists a possibly randomized strategy b′i for
each player i that may rely upon the valuation profile v of all
players and the bid bi of that player such that∑

i∈N

Eui((b
′
i, b−i), vi) ≥

λ ·max
x∈Ω

∑
i∈N

vi(x)− μ ·
∑
i∈N

Epi(b).

Relax-and-round algorithms: For any optimization prob-
lem, a potentially randomized algorithm A receives the func-
tions w as input and calculate an output A(w) ∈ Ω [5]. The
algorithm is an α-approximation algorithm, for α ≥ 1, if for
all weights w, Ew(A(w)) ≥ 1

α · maxx∈Ω w(x). A rounding
algorithm is oblivious if it does not require knowledge of
the actual objective function w, beyond the fact that x was
optimized with respect to w. Formally, a rounding scheme is

an α-approximate oblivious rounding scheme if it computes a
solution x such that for all w, Ew(x) ≥ 1

αw(x
′).

As there is a minimum distance requirement between any
pair of deployed RSUs, let the neighborhood N [i] denotes all
the RSU candidates that conflict with i, including i itself.

N [i] = {j : (i, j) ∈ E} ∪ {i}.
Let η be the maximum number of RSU candidates in N [i] for
any possible i which are not conflict with each other. For each
RSU candidate i, let N [N [i]] be the set of all RSU candidates
within two hops of the RSU candidate i, i.e., j ∈ N [N [i]]
if and only if ∃k ∈ N [i] such that (j, k) ∈ E. Note that
here N [i] ⊆ N [N [i]]. Let η2 be the maximum number of
independent RSU candidates in N [N [i]] for any possible i.

III. RELAX-AND-ROUND ALGORITHM

Maximizing the social welfare is the goal of the RSU
allocation. First, we formulate the problem as an integer linear
program (ILP). We then make a LP relaxation. After that,
we build a RSU allocation algorithm from an approximate
oblivious rounding of the solution to the LP relaxation.

A. LP Relaxation

Let us first define the ILP. Let a binary variable xi ∈
{0, 1} : i ∈ [n] denote whether a RSU candidate i is selected.
As the valuation of RSU candidate i is vi, the objective aims
to find max

∑
i∈N vi · xi subject to three types of constraints.

The first type of constraints is that, for any pair of conflicting
players i and j, we have xi + xj ≤ 1. The second one
is that, considering the neighborhood N [i] of each player
i, by the definition of local independence number, we have
x(N [i]) ≤ η, ∀i. The third one is that the total number of
RSUs selected is at most K, thus we have

∑
xi ≤ K. To sum

up, we have the ILP given in Equation 1.

Max
∑

vi · xi

s.t.⎧⎪⎪⎨
⎪⎪⎩

xi + xj ≤ 1, ∀(i, j) ∈ E

x(N [i]) ≤ η, ∀i ∈ [n]∑
xi ≤ K

xi ∈ {0, 1}, ∀i ∈ [n]

(1)

If we allow the value of xi to be fractional, we have the
LP relaxation of Equation (1), shown in Equation 2.

Max
∑

vi · xi

s.t.⎧⎪⎪⎨
⎪⎪⎩

xi + xj ≤ 1, ∀(i, j) ∈ E

x(N [i]) ≤ η, ∀i ∈ [n]∑
xi ≤ K

xi ≥ 0, ∀i ∈ [n]

(2)

In the LP relaxation, the binary variables xi ∈ {0, 1} are
substituted by non-negative variables xi ≥ 0. It could be
interpreted that xi is a fractional allocation to RSU candidate
i. As xi + xj ≤ 1, ∀(i, j) ∈ E, we have xi ≤ 1, ∀i ∈ [n].
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Input : vi : ∀i ∈ [n]
Output: S′′

Accomplish an optimal fractional solution by solving
LP relaxation x;

Let α = 2;
Sample each RSU candidate independently with

probability xi

αη ;
Let S denote the set of chosen RSU candidates;
We call an RSU candidate in S an S-candidate;
We process S-candidate in increasing order of their
covering radii;

For each RSU candidate i, mark i for any constraint
xi + xj ≤ 1, ∀(i, j) ∈ E if some other S-candidate
j < i appears in this constraint;

Remove all marked RSU candidates, and return S′, the
set of remaining RSU candidates;

If S′ ≤ K, randomly select K RSU candidates, and
return S”;

return S′′
Algorithm 1: Relax-and-Round Algorithm for RSU
allocation

B. Rounding Algorithm for RSU Allocation

After solving this LP relaxation, we apply oblivious round-
ing. The main idea is to select randomly a subset of RSU
candidates based on xi. Then we remove all RSU if it conflicts
with any of the three types of constraints. The algorithm is
shown in Algorithm 1.

C. Performance Analysis

We then analyze the performance of this randomized algo-
rithm.

Lemma 1. Solution S” is feasible for the RSU allocation
problem.

Proof: The algorithm guarantees that at most one RSU
candidate in S′ participates in any conflicting constraint. This
means that for any pair of conflicting RSU candidates, at most
one RSU candidate is selected to S′. In addition, at most K
RSU candidates are finally selected to S”.

Next, we prove the following result.

Lemma 2. For any RSU candidate i, Pr[i ∈ S′|i ∈ S] ≥
1− 1

α .

Proof: For any RSU candidate i, for any constraint c in
the form of xi + xj ≤ 1, we compute the probability that i
is marked for deletion. Since i is marked only if j ∈ S, we
have:

Pr[i is marked for constraint c|i ∈ S] ≤ xj

αη
(3)

for any RSU candidate i, take the union bound over all
constraints of the form xi + xj ≤ 1, ∀(i, j) ∈ E.

Pr[i is marked|i ∈ S] ≤
∑

j∈N [i]

xj

αη
≤ 1

α
. (4)

Thus, the probability that i is deleted from S conditional on
it being chosen in S is at most 1

α . We have

Pr[i ∈ S′|i ∈ S] ≥ 1− 1

α
. (5)

Lemma 3. For any RSU candidate i, Pr[i ∈ S”|i ∈ S′] ≥ 1
αη .

Proof: As |S′| ≤ |S| ≤ αη, and we select K out of |S′|
RSU candidates, the theorem follows.

Finally, we prove the main result. Observe that our algo-
rithm always outputs a workable resolution. To prove the lower
bound of the objective value, recall that Pr[i ∈ S] = xi

αη for
all i. Thus, we have

Pr[i ∈ S\] ≥ Pr[i ∈ S] · Pr[i ∈ S′|i ∈ S]] · Pr[i ∈ S”|i ∈ S‘]

(6)

≥ xi

αη
· (1− 1

α
) · 1

αη
(7)

Finally, we obtain Theorem 1.

Theorem 1. There is a randomized 8η2-approximation obliv-
ious rounding algorithm for the RSU allocation problem.

Proof: The proof is based on the linearity of expectation
and α = 2.

IV. MECHANISM FOR LP RELAXATION

Previously, given the input of each RSU candidate i’s
valuation vi of being selected, we solve both (1) LP relaxation
and (2) propose a RSU allocation algorithm to maximize the
social welfare. In this section, we propose a mechanism for
LP relaxation correspondingly. In the next section, we will
propose a mechanism for relax and round algorithm.

A. Mechanism for LP Relaxation

The mechanism for LP relaxation is as follows.

• each RSU candidate i submits a bid bi.
• the central authority collects all bids and use the vector b

as the input for LP relaxation and solve the LP relaxation.
• if a RSU candidate i is allocated with xi, it will be

charged bi · xi for being selected.

B. PoA Upper Bound

We will show in Lemma 5 that this mechanism for the LP
relaxation of a RSU allocation (Equation 2) is (1/2, η2 + 1)-
smooth for deviations to b′i =

1
2vi. The claimed bound on the

POA then follows from Theorem 2.

To prove Lemma 5, given a bid vector b , we denote by W b

the value of the optimal LP solution. Given a bid vector b and a
value of xi, we denote by W b(i, xi) the optimal social welfare
of all other agents when the i-th agent has been allocated
a fraction of xi, i.e., W b(i, xi) is the optimal value of the
following LP.
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Max
∑

j �=i bj · xj

s.t.⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xj + xk ≤ 1, ∀(j, k) ∈ E

x(N [j]) ≤ η, ∀j ∈ [n]∑
xi ≤ K

xj ≥ 0, ∀j 
= i, j ∈ [n]

xi = xi

(8)

We use v−i to denote the valuations of the players other
than i. Let (0, b−i) denotes the bidding vector obtained by
setting the i-th entry of the vector b to be zero.

Lemma 4. Let x̄ be an arbitrary fractional solution. Then,∑
i∈N

(
W (0,b−i) −W b−i(i, xi)

)
≤ (η2 + 2) ·W b.

Proof: Let x̂ denote an optimal solution corresponding to
W b. Based on x̂, we define a LP solution x̂−i by setting

x̂−i
j =

{
(1− xi) x̂j , if j ∈ N [N [i]](
1− xi

K

)
x̂j , else

(9)

We next verify that whether x̂−i is a feasible to
W b−i(i, xi). We only need to verify the constraints that contain
xi.

Case 1: for each constraint of the form xi + xj ≤ 1, as
x̂−i
j = (1− xi) x̂j , thus x̂−i

j + xi ≤ 1 ≤ (1− xi) + xi = 1,
the constraint is satisfied.

Case 2: for the constraint x(N [i]) ≤ η, as ∀j ∈ N [i], we
have x̂−i

j = (1− xi) x̂j , this constraint is also satisfied.

Case 3: for the constraint of the form x(N [j]) ≤ η such
that i ∈ N [j]; for each k ∈ N [j], since (i, j) ∈ E and (j, k) ∈
E, we have k ∈ N [N [i]]; We have x̂−i

k = (1− xi) x̂k. Thus,
x(N [j]) ≤ xi +

∑
k∈N [j],k �=i (1− xi) x̂k ≤ (1− xi) η this

constraint is satisfied. Thus, x̂−i is feasible.

Case 4: for the constraint of the form
∑

xi ≤ K, We have
x̂−i
k = (1− xi) x̂k. Thus,

∑
x̂−i
j =

∑
j �=i x̂j · K−xi

K +xi ≤ K.
this constraint is satisfied.

To sum up, x̂−i is feasible. Finally, we have∑
i∈N

W b−i(i, xi) ≥
∑
i∈N

∑
j �=i,j∈N

bj x̂
−i
j

=
∑
j∈N

∑
i �=j,i∈N

bj (1− xi) x̂j

=
∑
j∈N

bj x̂j

∑
i �=j,i∈N

(1− xi)

=
∑
j∈N

bj x̂j(n− 1−
∑

i �=j,i∈N

xi)

= (n− 1)
∑
j∈N

bj x̂j −
∑
j∈N

bj x̂j ·
∑

i �=j,i∈N

xi

≥ (n− η2 − 2) ·
∑
j∈N

bj x̂j

= (n− η2 − 2) ·W b,

which gives the claimed bound as clearly W (0,b−i) ≤
W (bi,b−i) = W b.
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Fig. 2. The total PoIs covered when the density of RSU players is fixed.

Lemma 5. The pay-your-bid mechanism that solves the LP re-
laxation in Equations (2) is (1/2, η2+2)-smooth for deviations
to b′i =

1
2vi.

Proof: Consider valuations v, bids b and deviations
of each player i ∈ N to b′i = 1/2 · vi. De-
note the optimal fractional allocation for bids (b′i, b−i) by
x̄1(b

′
i, b−i), . . . , x̄n(b

′
i, b−i). Then, by the definition of b′i,

ui((b
′
i, b−i), vi) = vi(x̄i(b

′
i, b−i))− b′i(x̄i(b

′
i, b−i))

= b′i(x̄i(b
′
i, b−i)).

Since x̄1(b
′
i, b−i), . . . , x̄n(b

′
i, b−i) is fractional allocation that

maximizes declared welfare with respect to bids (b′i, b−i),

b′i(x̄i(b
′
i, b−i)) +W b−i

≥ b′i(x̄i(b
′
i, b−i)) +

∑
j �=i

bj(x̄j(b
′
i, b−i))

≥ b′i(x̄i(v)) +W b−i(i, x̄i(v))

By reorganizing this, it displays

b′i(x̄i(b
′
i, b−i)) ≥ b′i(x̄i(v))− [W b−i −W b−i(i, x̄i(v))].

After adding all players together and applying Lemma 4, we
could obtain∑

i∈N

ui((b
′
i, b−i), vi) =

∑
i∈N

b′i(x̄i(b
′
i, b−i))

≥
∑
i∈N

(
b′i(x̄i(v))− [W b−i −W b−i(i, x̄i(v))]

)

≥
∑
i∈N

b′i(x̄i(v))− (η2 + 2) ·
∑
i∈N

bi(x̄i(b))

=
1

2
·
∑
i∈N

vi(x̄i(v))− (η2 + 2) ·
∑
i∈N

bi(x̄i(b)),

which completes the proof.

V. MECHANISM FOR RELAX-AND-ROUND ALGORITHM

A. Converting relax-and-round algorithm to Mechanism

The mechanism is based on the proposed RSU algorithm
for the allocation of the requests and compute the PoA.
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• each RSU candidate i submits a bid bi.
• the central authority collects all bids and use the vector b

as the input and run the Algorithm 1.
• if a RSU candidate i is selected, it will be charged bi for

being selected.

B. PoA Upper Bound

Theorem 2. [5] Suppose the M ′ = (f ′, p′) mechanism could
work for the optimization of Π′ relaxation with (λ, μ)-smooth
with the deviations of b′i =

1
2vi, then for Π, which is gained the

(λ/α, μ)-smooth relaxation through an α-approximate based
on the pay-your-bid mechanism M = (f, p).

Finally, the following theorem establish a connection be-
tween smoothness and PoA.

Theorem 3 (Syrgkanis and Tardos [4]). If a mechanism is
(λ, μ)-smooth and it is possible for players to withdraw from
the mechanism, then the expected social welfare at any mixed
Nash is at least λ/max(μ, 1) of the social one.

Theorem 4. The PoA of the Relax-and-Round mechanism is
8η2(η2 + 2).
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Fig. 3. The total PoIs covered when the density of RSU players increases.

VI. NUMERICAL RESULTS

Our simulation results will be presented in this section.
Although we have characterized the worst-case performances
of the proposed algorithms in terms of approximation bound
on the PoA, we will study the average performance of the pro-
posed LP-based algorithm via simulation results. We randomly
deploy a set of RSU candidate nodes in a two-dimensional
plane. We evaluate the LP-based algorithm. We compare it
with a greedy scheduling method. In the greedy method, we
select RSU candidate nodes as follows. Each time we greedily
select RSUs as long as the selected RSUs do not conflict with
the RSUs already selected. We consider two scenarios with
the number of nodes increases. First, we present the average
reward of the LP-based algorithm and the average reward of
the greedy method when the RSU candidate density in the
deployment the plane is fixed. The results are shown in Figure
IV-B. Second, we present the average reward of the LP-based
algorithm and the average reward of the greedy method when
the density in the deployment plane increases. These results
are shown in Figure V-B. The results overall clearly show the
effectiveness of our algorithms and methodology.

VII. RELATED WORK

Auction theory [6] has been applied to a lot of scenarios
in the wireless networking domain, such as crowdsourcing [7],
[8], mobile sensing [9], [10], location privacy [11], and routing
[12]. On the other hand, there is extensive work on RSU
placement. According to what we’re informed, there is no
existing work on the Nash equilibrium of RSU placement.

VIII. CONCLUSION

Roadside Unit (RSU) allocation is critical for the function-
ality and topology control of Vehicular Ad-Hoc Networks. As
seen from results and corresponding methodology, we have
successfully proposed a mechanism for the RSU allocation
problem. We consider the selfish behaviors of RSU allocation
and apply a game theoretic technique. The mechanism has a
small price of anarchy. In relation to potential future work, one
open question is to design a mechanism for RSU allocation to
minimize the number of RSUs to cover all PoIs. Moreover,
the application of the proposed methodology and algorithms
to real-world datasets of a varying nature would be an ideal
direction to consider.
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