
Boosting Parallel File System Performance via
Heterogeneity-Aware Selective Data Layout

Shuibing He, Yang Wang, and Xian-He Sun, Fellow, IEEE

Abstract—Hybrid parallel file systems (PFS) that combine HDD servers with SSD servers provide a promising solution for data

intensive applications. The efficiency of a hybrid PFS relies on the data layout schemes. However, most current layout strategies are

designed for homogeneous servers, which neither address the heterogeneity of servers nor the varying access patterns of applications.

In this paper, we proposeHAS, a novel heterogeneity-aware selective data layout scheme for hybrid PFSs. HAS alleviates inter-server

load imbalance through skewing data distribution on heterogeneous servers based on their storage performance. Furthermore, to obtain

the optimal performance for a specific access pattern, HAS selects one static data layout policy with lowest access cost from three typical

layout candidates as the final file data layout method. To adapt to themixed access patternswithin an application, HAS uses a dynamic

data layout scheme, which stores file with multiple copies, each using a different data layout policy, and then selects the copy with the

lowest access cost to serve file requests.We have implementedHASwithin MPICH2 andOrangeFS. Experimental results show that

HAS can significantly increase the I/O throughput of hybrid PFSs, compared to existing data layout optimization methods.

Index Terms—Parallel I/O system, parallel file system, data layout, solid state drive

Ç

1 INTRODUCTION

PARALLEL file systems (PFS) have been widely used in
high-performance computing (HPC) systems during

the past few decades. A PFS, such as OrangeFS [1], Lustre [2]
and GPFS [3], can achieve superior I/O bandwidth and
large storage capacity by accessing multiple file servers
simultaneously. However because of the existing perfor-
mance gap between file servers and CPU, the so called I/O
wall, current PFSs cannot fully meet the growing data
access requirements of many HPC applications [4], espe-
cially for data intensive HPC applications.

NAND flash based solid state disks (SSD) are attracting
attention in HPC domains [5]. An SSD is a purely electronic
device without mechanical components, thus can provides
low access latency, high data bandwidth, lower power con-
sumption, lack of noise, and shock resistance. However,
due to the high cost of SSDs and the inherent merits of
HDDs (high capacity and decent peak bandwidth for
sequential requests), building a large file system solely
based on SSDs may be unfeasible for most systems. There-
fore, a hybrid PFS, which is comprised of both HDD servers
(HServer) and SSD servers (SServer), provides a promising
solution for data-intensive applications [6], [7].

A high-performance hybrid PFS must rely on an effi-
cient data layout, which is an algorithm defining a file’s
data distribution across available servers. To achieve
even data placement, most traditional layout methods uti-
lize a fixed-size stripe to dispatch data across multiple
servers. There are three typical such schemes: the one-
dimensional horizontal layout, one-dimensional vertical
layout, and two-dimensional layout [8], as shown in
Fig. 1. To further improve the storage performance,
numerous efforts are devoted to the file data layout
optimizations, such as data stripe resizing [9], data
replication [10], and data reorganization [11]. However,
most current schemes are designed and optimized for
homogeneous servers. When applied to hybrid PFSs, such
schemes have the following three limitations.

First, the heterogeneity of file servers may significantly
decrease the overall system performance. Traditional layout
schemes usually distribute the same number of file stripes
on each server. However, due to their intrinsic properties,
SServers almost always outperform HServers [12]. In this
case, SServers are easily left idling while HServers continue
to process their requests when they concurrently serve a
large file request. This inter-server load imbalance leads to
underutilization of system hardware resources, which can
significantly slows down a request as shown in Section 2.2.

Second, due to the changes of access patterns across dif-
ferent applications, current layout schemes, designed for a
specific set of access patterns, are no longer efficient. For
example, the commonly used one-dimensional horizontal
layout in OrangeFS [1], is only suitable for large parallel file
requests, but performs poorly for small requests with a high
degree of access concurrency [8]. As access patterns of dif-
ferent applications may vary, in terms of request size, access
type (read or write), and access concurrency, a data layout
strategy optimized for an application’s access pattern is not
efficient for other applications.

� S. He is with the State Key Laboratory of Software Engineering, Computer
School, Wuhan University, Luojiashan, Wuhan 430072, Hubei, China,
and the State Key Laboratory of High Performance Computing, National
University of Defense Technology, Changsha 410073, Hunan, China.
E-mail: heshuibing@whu.edu.cn.

� Y. Wang is with the Shenzhen Institute of Advanced Technology, Chinese
Academy of Science, Xueyuan Avenue 1068, Shenzhen University Town,
Shenzhen 518055, China. E-mail: yang.wang1@siat.ac.cn.

� X.-H. Sun is with the Department of Computer Science, Illinois Institute
of Technology, Chicago, IL 60616. E-mail: sun@iit.edu.

Manuscript received 17 May 2015; revised 11 Nov. 2015; accepted 23 Nov.
2015. Date of publication 3 Dec. 2015; date of current version 10 Aug. 2016.
Recommended for acceptance by Y. Lu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2015.2504969

2492 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 9, SEPTEMBER 2016

1045-9219� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:47 UTC from IEEE Xplore. Restrictions apply.

mailto:
mailto:
mailto:

Third, as applications become more complex, the access
patterns within an application can vary considerably, ren-
dering conventional static layout approaches incapable of
adapting to the frequently changed access patterns. For
example, the application may have a small number of con-
current I/O requests at one moment, but a burst of I/O
requests at another, and the requests in each phase have dif-
ferent sizes. In such a case, a static layout approach can be
sub-optimal, or even ineffective if an application does not
have a dominant pattern. An efficient and comprehensive
data layout scheme should depend on the changes of
application’s access patterns.

In this paper, we propose a heterogeneity-aware selective
(HAS) data layout scheme for hybrid PFSs to address the
above challenges. HAS eliminates load-imbalance by
assigning varied-size file stripes and distributing different
number of files to heterogeneous servers based on their per-
formance. In addition, to obtain the optimal performance
for a specific access pattern, HAS uses a cost model to select
one static data layout policy with lowest access cost from
three typical candidates existed in PFSs as the final data lay-
out method. Furthermore, to accommodate the various
access patterns within an application, HAS uses a dynamic
data layout scheme, which stores file with multiple copies,
each using a different data layout policy, and then selects
the copy with the lowest cost to serve file requests. Com-
pared with the static layout scheme in our conference
version [13], such dynamic replication-based data layout
strategy can adaptively serve various access patterns of the
application for the best performance.

Specifically, we make the following contributions.

� We introduce a cost model, which is a function of I/
O access patterns, file data layout policies, and sys-
tem configurations, to evaluate the I/O completion
time of each file request in a hybrid PFS.

� We propose a selective static data layout scheme for
specific access patterns, which distributes file data
with the least expensive layout policy determined by
the cost analysis. The distribution is implemented

either by varying the file stripe sizes or varying the
number of files on different servers.

� We present a selective dynamic data layout scheme
for various access patterns. This strategy stores file
data with multiple copies, each using a different lay-
out policy, and then selects the proper copy with the
lowest access cost to serve file requests. This replica-
tion-based dynamic strategy can adapt to changed
access patterns of a complex application for the best
performance.

� We implement the prototype of the HAS scheme
under MPICH2 and OrangeFS, and have conducted
extensive tests to verify the benefits of the HAS
scheme. Experiment results illustrate that HAS can
adapt to various access patterns, static and dynamic,
and significantly improves I/O performance.

The rest of this paper is organized as follows. The
background and motivation are given in Section 2. We
describe the design and implementation of HAS in
Section 3. Performance evaluations of HAS are presented
in Section 4. We introduce the related work in Section 5.
Section 6 discusses the applicable spheres of HAS, and
Section 7 concludes the paper.

2 BACKGROUND AND MOTIVATION

2.1 Typical Data Layout Policies in PFSs

To obtain optimal performance for different I/O access pat-
terns, PFSs, such as OrangeFS [1], Lustre [2] and GPFS [3],
support three typical data layout policies—one-dimensional
horizontal (1–DH), one-dimensional vertical (1–DV), and
two-dimensional (2–D) layout [8]. As shown in Fig. 1, 1–DH
distributes a process’s file across all available servers in a
round-robin fashion; 1–DV performs no striping at all, and
instead places the file data on one server; 2–D is a hybrid
method, it distributes the file on a subset of servers. 1–DH is
the most widely used data layout. For example, it is the
default layout policy called “simple striping” in OrangeFS [1].
All three layout policies utilize fixed-size file stripes to dis-
tribute file data, and each of them work well for a particular

Fig. 1. Three typical data layout policies in PFSs. For 1-DH and 2-D, HServer and SServer are assigned with fixed-size file stripes. For 1-DV, HServer
and SServer are distributed with identical number of files.

HE ETAL.: BOOSTING PARALLEL FILE SYSTEM PERFORMANCE VIA HETEROGENEITY-AWARE SELECTIVE DATA LAYOUT 2493

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:47 UTC from IEEE Xplore. Restrictions apply.

kind of I/O access patterns [8], [14]. However, these
schemes are designed for homogeneous PFSs on identical
file servers, and could perform poorly for a hybrid PFS.

2.2 Motivation Example

To illustrate the impact of server heterogeneity on I/O sys-
tem performance, we ran IOR [15] in a parallel file system
OrangeFS under three server configurations: four HServers
(denoted by HDD), four SServers (denoted by SSD), and
four HServers and four SServers (denoted by Hybrid). IOR
ran with 16 processes, each accessing an individual file. The
request size was 512 KB, and the access patterns were
sequential and random reads and writes. The file stripe size
was the default 64 KB.

For each server configuration, we tested IOR perfor-
mance under three typical layout policies. For 1–DH, each
process’s data were distributed on all servers and one server
served 16 processes; for 1–DV, each process’s data were dis-
tributed on one server and each server served 16=N proc-
esses’ data, where N is the number of servers in the file
system; for 2–D, the group size was 2. Fig. 2 shows the
throughputs, which were measured as the aggregated data
amount divided by the application’s I/O time. We observe
that for all policies, the hybrid cluster with eight servers
slightly outperforms the homogeneous cluster with four
low-speed HServers. Even worse, the hybrid system per-
forms worse than the homogeneous system with four
SServers. In other words, more heterogeneous hardware
resources actually degrade I/O performance. This result
illustrates that traditional layout schemes are highly ineffi-
cient for hybrid PFSs.

2.3 Reasons for Poor Performance of Hybrid PFSs

2.3.1 Inter-Server Load Imbalance

The main reason for the poor hybrid PFS performance is
that traditional layout schemes may lead to load imbalance
among hybrid servers. Generally, a large file request will be
divided into multiple sub-requests, concurrently served by
the underlying servers. With fixed-size file striping, HSer-
vers and SServers possibly handle same-size sub-requests.
As SServers are faster storage devices, they will finish the
I/O operations quickly and waste much time on waiting
for HServers. To verify this, we tested the I/O times of all
servers in the sequential read test for Hybrid configura-
tion in Fig. 2a, we find that HServers take roughly 3.5X
time to complete I/O operations compared with SServers
(Other layouts have the similar imbalance). Because the
I/O time of the application depends on the slowest

server, this load imbalance will largely offset the overall
system performance.

2.3.2 Single Server I/O Inefficiency

Even the inter-server load balance can be maintained, exist-
ing layout polices may incur severe I/O inefficiency on a
single server, affecting the overall system performance. For
example, for requests with a large number of processes,
1–DH produces much higher I/O concurrency than 1–DV
on each server. In this case, the performance of a single
server under 1–DH can be largely degraded due to more
I/O contention from multiple processes. Therefore, a layout
policy not considering application access patterns will offset
the overall system performance even the inter-server load
balance is obtained.

3 DESIGN AND IMPLEMENTATION

In this section, we first describe the basic idea of the hetero-
geneity-aware selective data layout scheme. Then we intro-
duce a cost model to evaluate the data access time in a
hybrid PFS. Based on this model, we present the selective
data layout schemes for applications with specific access
patterns and mixed access patterns respectively. Finally, we
give the detailed implementation.

3.1 Basic Idea

Since traditional layout schemes lead to severe performance
degradation, the proposed data layout scheme, HAS, aims
to optimize the performance of hybrid PFSs through skewing
data distribution on heterogeneous servers. Fig. 3 shows the
optimized data layout polices of HAS. As opposed to tradi-
tional layout policies which assign each server with fixed-
size file stripes or fixed-number of files, HAS distributes file
data on heterogeneous servers with varied-size file stripes or
various number of files based on the server performance.
This can alleviate inter-server load imbalance. Further more,
HAS selectively chooses the layout scheme with lowest
access cost from three typical layout candidates as the final
layout for an application with a specific access pattern to
improve I/O efficiency. Finally, to adapt to complex applica-
tions with mixed access patterns, HAS uses a dynamic data
layout strategy, which stores file data with multiple copies,
each using a different layout policy, to selectively serve
requests with the best fit copy incurring lowest cost.

One might expect to determine the proper skewing data
layout for an application’s access pattern to be simple. In
reality, it is a complex issue for several reasons. First, the
server performance can be significantly impacted by request

Fig. 2. Throughputs of IOR with three typical data layout schemes. The system is tested with homogeneous and heterogeneous server configura-
tions, the file stripe is 64 KB, and the group size is two in 2–D layout.

2494 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 9, SEPTEMBER 2016

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:47 UTC from IEEE Xplore. Restrictions apply.

access patterns, such as request size, access type (read or
write), access concurrency (number of processes), etc. Sec-
ond, the server performance is also related with the storage
media. Even under the same pattern, HServer and SServer
exhibit different performance behaviors. Finally, besides the
storage cost, the network cost, affected by application access
patterns, is also an integral part of the overall data access
cost. To overcome these issues, we built a cost model
accounting for the above factors application, network, and
storage characteristics to evaluate the data access time of a
request in a heterogeneous I/O system.

3.2 Data Access Model in a Hybrid PFS

3.2.1 Assumptions and Definitions

The overall I/O time is a function of various parameters,
which are listed in Table 1. The system and application pattern
parameters are used as known inputs, and data layout
parameters are optimized depending on the inputs.

Note that the storage related parameters show distinct
characteristics on heterogeneous servers. First, the start up
time of SServer is much smaller than HServer’s. Second, the
data transfer time of SServer is several times smaller than
that of HServer’s. Finally, while HServer may have identical
read and write performance, SServer usually has a faster
read performance than writes because write operations lead
to many background activities due to garbage collection
and wear leveling [16].

We only consider 1–DH, 1–DV, and 2–D layout policies
due to their popularities [1], [2], [3]. In each policy, the files
are distributed on the underlying servers as in Fig. 3. We
assume each process accesses one file and only that file. For
1–DH and 2–D, stripe sizes are varied depending on the
type of server. Note that, for 1–DV, since all file data is dis-
tributed on one server, varying stripe sizes will not affect
the request cost and improve the I/O performance. Hence,
we vary the number of files on heterogeneous servers
instead. Due to symmetry, we assume perfect load balance
of data access within HServers and SServers but not
between different types of servers. In addition, we have the
following assumptions for each policy:

� For 1–DH, we assume each file request is served by
all the m þ n servers, so that each storage node can
contribute to the aggregate I/O performance. Each
sub-request on the server has the same size with the
stripe on that server. Thus we have the following
constraint:

m� sh þ n� ss ¼ r: (1)

Usually ss is larger than sh to achieve load balance.
In an extreme case, sh can be zero (which means file
data are only distributed on SServers) if there is a
possibility to improve performance.

� For 1–DV, the number of processes on each server
equals the number of files. We assume all files are
distributed on themþ n servers, thus

Fig. 3. The three data layout policies in hybrid PFSs after optimization. For 1–DH and 2–D, HServer and SServer are assigned with varied-size file
stripes. For 1–DV, HServer and SServer are distributed different number of files.

TABLE 1
Parameters in Cost Analysis Model

System Parameters

m Number of HServers
n Number of SServers
c Number of process on one client node
e Average network establishing time per connection
t Unit data network transmission time
ah Average startup time of one operation on HServer
bh Unit data transfer time on HServer
asr Average startup time for read on SServer
bsr Unit data transfer time for read on SServer
asw Average startup time for write on SServer
bsw Unit data transfer time for write on SServer

Application Pattern Parameters

p Number of client processes
r Size of the file request
o Type of the file request (read or write)

Data Layout Parameters

sh Stripe size on HServer in 1–DH and 2–D layout
ss Stripe size on SServer in 1–DH and 2–D layout
ph Number of process on HServer in 1–DV layout
ps Number of process on SServer in 1–DV layout
g Number of storage groups in 2–D layout

HE ETAL.: BOOSTING PARALLEL FILE SYSTEM PERFORMANCE VIA HETEROGENEITY-AWARE SELECTIVE DATA LAYOUT 2495

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:47 UTC from IEEE Xplore. Restrictions apply.

m� ph þ n� ps ¼ p: (2)

Similarly, ps is larger than ph, and ph can be zero.
� For 2–D, we assume each group includes m=g

HServers and n=g SServers, and a file request is dis-
tributed on all the ðmþ nÞ=g servers in that group as
in 1–DH policy, thus

m� sh þ n� ss ¼ g� r: (3)

3.2.2 Access Cost Analysis

Our cost model divides the overall I/O time of a parallel
data access into four parts. TE is the network establishing
time, TX is the network transferring time, TS is the storage
startup time, and TT is the storage transfer time. The former
two parts are network related access costs (TNET), and the
latter two are storage related access costs (TSTO). The cost
model is derived from our earlier work [8] and it considers
storage heterogeneity. Taking their sum gives the overall I/
O time (T):

T ¼ TE þ TX þ TS þ TT : (4)

Establishing cost. TE depends on the number of establish-
ing operations for the parallel data accesses. Since a network
establishing operation is related with both the client and
the server, TE is determined by the higher cost of the two.
Take the 1–DH layout as an example, each client needs to
establish network connections with all servers serially, thus
TE ¼ cðmþ nÞe. From a server’s point of view, it is accessed
by p processes, thus TE ¼ pe. Then, the final establishing
time TE ¼ maxfcðmþ nÞe; peg.

Transfer cost. TX is related with the network data transfer
size and the network data transfer rate. Similarly, it is deter-
mined by the maximal cost of a client and a server. We still
use the 1-DH layout as an example. For a client, TX ¼ crt;
for HServer, TX ¼ psht; for SServer, TX ¼ psst. Since sh will
always be at most ss, TX ¼ maxfcrt; psstg.

Startup cost. TS is relatively straightforward and deter-
mined by the number of I/O operations on one server,
namely the number of client processes assigned on that
server. For a parallel request, TS is determined by the maxi-
mal cost among all involved file servers.

Read/write cost. TT is the time spent on actual data read/
write operations. It can be calculated by the ratio of the
request size over the data transfer rate of storage devices.
Similarly, TT is determined by the maximal value of all file
servers for a parallel request.

We refer to the data access cost in the three layout polices
as T1-DH , T1-DV and T2-D respectively, which is calculated as
in Table 2. T1-DH is derived from our previous work [17],
which expresses the cost as a function of sh and ss. For the
new proposed formulas, T1-DV describes the cost as a func-
tion of ph and ps, and T2-D utilizes sh, ss and g for the same
goal. Table 2 only displays the access cost for read requests;
writes will be similar except the startup time and the unit
data transfer time for SServers will change. These three poli-
cies imply more pattern-aware and effective layout optimi-
zation methods for a hybrid PFS.

By examining the formulas, we can capture the following
implications for data layout optimizations.

� With fixed-size stripes on HServers and SServers,
1–DH and 2–D lead to severely server load imbal-
ance, which can significant degrade the overall I/O
system performance. With uniform file distribution
on HServers and SServers, 1–DV also incurs poor
I/O performance.

� For 1–DH and 2–D, the storage read/write cost TTH

and TTS on the two types of servers can be balanced
by increasing the stripe size of SServer (ss) and
decreasing that of HServer (sh), but doing so may
increase the network transfer time TX on SServer,
possibly delaying the overall completion time (T).

� For 1–DV, the storage read/write cost TTH and TTS

can be balanced by increasing the number of files on
SServer (ps) and decreasing that on HServer (ph).
Similarly, this may increase the network transfer
time TX , offsetting the reduction of T .

3.3 Selective Static Data Layout Scheme
for Specific Accesses

For a specific access pattern, different layout policies (and
the related layout parameters) lead to different access cost.
We note that the model consists of linear equalities and
inequalities of unknown variables (max can be expressed as

TABLE 2
Data Access Cost for Read Requests on Hybrid HServers and SServers

2496 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 9, SEPTEMBER 2016

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:47 UTC from IEEE Xplore. Restrictions apply.

multiple linear inequalities). Therefore, the model can be
solved exactly to minimize the total I/O cost under three
layout policies, subject to the above constraints. We first
show the local data layout optimization for each policy, then
describe the selective global optimization for applications
with specific access patterns which do not change in the
run-time environment during the application’s execution.

3.3.1 1–DH Layout Optimization

The system and pattern related parameters can be regarded
as constants, and T1-DH is a function of two unknowns—sh
and ss. The final problem is to choose the values of sh and ss
to minimize T1-DH . For the case where p � cðmþ nÞ, accord-
ing to the member values in the corresponding maximum
expressions in the formulas in Table 2, we translate this
optimization problem into four linear programming (LP)
problems shown below

Case 1: Minimize T 1
1-DH ¼ cðmþ nÞeþ crtþ pðah þ shbhÞ

(5)

subject to

msh þ nss ¼ r
pss � cr
asr þ sbsr � ah þ hbh

0 � sh � r=m
0 � ss � r=n:

8>>>><
>>>>:

(6)

Case 2: Minimize T 2
1-DH ¼ cðmþ nÞeþ pðsstþ ah þ shbhÞ

(7)

subject to

msh þ nss ¼ r
cr � pss
asr þ sbsr � ah þ hbh

0 � sh � r=m
0 � ss � r=n:

8>>>><
>>>>:

(8)

Case 3: Minimize T 3
1-DH ¼ cðmþ nÞeþ crtþ pðasr þ ssbsrÞ

(9)

subject to

msh þ nss ¼ r
pss � cr
ah þ hbh � asr þ sbsr

0 � sh � r=m
0 � ss � r=n:

8>>>><
>>>>:

(10)

Case 4: Minimize T 4
1-DH ¼ cðmþ nÞeþ pssðtþ ah þ shbhÞ

(11)

subject to

msh þ nss ¼ r
cr � pss
ah þ hbh � asr þ sbsr

0 � sh � r=m
0 � ss � r=n:

8>>>><
>>>>:

(12)

Then

T1-DH ¼ minfT 1
1-DH; T

2
1-DH; T

3
1-DH; T

4
1-DHg: (13)

The first constraint of Equations (6), (8), (10), and (12) is
Equation (1). The second constraint accounts for the two
possible values of TX in Table 2. The third shows the

possible values of TSTO. The fourth and fifth constraints are
directly derived from Equation (1). For example, the max of
sh is achieved by letting ps ¼ 0 in Equation (1), as goes for
calculating the max of ss. The final cost for 1DV determined
by Equation (13) is the minimum of the four cases.

The cases for the alternate condition will be similar to the
four above, except some values will be interchanged accord-
ing to the formulas in Table 2.

3.3.2 1–DV Layout Optimization

For T1-DV , it is a function of two unknowns—ph and ps. The
final problem is to choose the values of ph and ps to mini-
mize T1-DV . For condition c � ps, according to the formulas
in Table 2, we similarly translate the layout optimization
problem as as following:

Case 1: Minimize T 1
1-DV ¼ psðeþ rtÞ þ phðah þ rbhÞ (14)

subject to

mph þ nps ¼ p
psðasr þ rbsrÞ � phðah þ rbhÞ
0 � ph � p=m
c � ps � p=n:

8>><
>>:

(15)

Case 2: Minimize T 2
1-DV ¼ psðeþ rtÞ þ psðasr þ rbsrÞ (16)

subject to

mph þ nps ¼ p
phðah þ rbhÞ � psðasr þ rbsrÞ
0 � ph � p=m
c � ps � p=n:

8>><
>>:

(17)

Then

T1-DV ¼ minfT 1
1-DV ; T

2
1-DV g: (18)

The first constraint of Equations (15) and (17) is Equa-
tion (2). The second constraint is the only difference
between case 1 and case 2; they account for the two possible
values of TSTO in Table 2. The third and fourth constraints
for 1–DV are directly derived from Equation (2). For exam-
ple, the max of ph is achieved by letting ps ¼ 0 in Equa-
tion (2), as goes for calculating the max of ps. The final cost
for 1–DV determined by Equation (18) is the minimum of
the two cases.

The cases for the alternate condition will be similar to the
two above, except some values will be interchanged accord-
ing to the formulas in Table 2.

3.3.3 2–D Layout Optimization

T2�D is a function of three unknown parameters sh, ss, and
g. Similarly, based on the member values in the maximum
expressions in Table 2, we translate the optimization prob-
lem into two linear programming problems for the condi-
tion p � g

Case 1: Minimize T 1
2-D ¼ cððp=gÞeþ rtÞ þ ðp=gÞðasr þ ssbsrÞ

(19)

subject to

msh þ nss ¼ gr
1 < g < ðmþ nÞ
ah þ shbh � asr þ ssbsr
0 � sh
0 � ss:

8>>>><
>>>>:

(20)

HE ETAL.: BOOSTING PARALLEL FILE SYSTEM PERFORMANCE VIA HETEROGENEITY-AWARE SELECTIVE DATA LAYOUT 2497

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:47 UTC from IEEE Xplore. Restrictions apply.

Case 2: Minimize T 2
2-D ¼ cððp=gÞeþ rtÞ þ ðp=gÞðah þ shbhÞ

(21)

subject to

msh þ nss ¼ gr
1 < g < ðmþ nÞ
asr þ ssbsr � ah þ shbh

0 � sh
0 � ss:

8>>>><
>>>>:

(22)

Then

T2-D ¼ minfT 1
2-D; T

2
2-Dg: (23)

The first constraint is Equation (3). The second constraint
ensures the achieved layout remains 2D. Similar to the
second constraint of Equation (15), the third constraint
accounts for the possible values of TSTO. The last two con-
straints for Equations (19) and (21) simply ensure the stripe
sizes remain positive. The cases for other conditions will be
similar to the two above.

The above optimizations for 1–DH, 1–DV, and 2–D use
the storage values for reads, the optimizations for writes
can be done similarly. Note that because the above linear
program is expressed with only two or three unknown vari-
ables, the search space is very small and solving the pro-
gram requires acceptable time overhead.

3.3.4 Selective Global Data Layout Scheme

After the above local linear optimizations, there will be
three potential layout methods (1–DH, 1–DV, and 2–D) for a
given access patten, each with their own sub-optimal cost
T1-DH , T1-DV , and T2-D. Then, it is nature to select the mini-
mum of three candidates as the most optimal data layout
distribution for the given access pattern, which fully
accounts for application, storage, and network characteris-
tics. Namely, the global optimal data access cost

Topt ¼ minfT1-DH; T1-DV ; T2-Dg: (24)

If we have a prior knowledge of data accesses of an appli-
cation, we can use it to determine the global optimal data
layout from the three candidates. Fortunately, most data-
intensive HPC applications access their files with predict-
able access patterns and they often run multiple times [18],
[19], thus I/O behavior can be learned from previous runs
and it provides an opportunity to achieve the proposed
data layout scheme. By comparing the three access costs,
HAS takes one layout manner which requires the lowest
cost as the optimal data layout method for that application.
The implementation is described in Section 3.5

3.4 Selective Dynamic Data Layout Strategy for
Mixed Accesses

In the previous section, we described three typical data lay-
out policies to adapt to diverse data access patterns in an
efficient way. However, each of these layouts is designed
for a specific data access pattern, and as such, it might not
be applied to the case where an application exhibits differ-
ent I/O behaviors during its execution. For example, the
application may have a small number of concurrent I/O

requests at one moment, but a burst of I/O requests at
another, and the requests in each I/O phase have different
sizes. As a result, it is impossible for any static data layout
policy to effectively serve all data access patterns.

To address this issue, we propose a dynamic data layout
strategy, which leverages the data replication technology [8],
to facilitate the I/O accesses with different patterns at the
runtime. Each file has several copies with different data
layout policies in the parallel file system. For each data
access, the strategy dynamically chooses one copy with the
minimal access cost to serve the request. Since each file
request is assigned to the best fit copy, this replication-based
dynamic data layout strategy can serve various kinds of I/O
workloads with high performance.

In terms of data replication, the first question is how
many replicas (denoted by k) should be created for the
application with various access patterns. Ideally, we can
minimize the overall I/O cost of the application if we create
a corresponding replica for each access pattern with a per-
fect data layout policy. However, it results in unfeasible
space cost. Hence, we account for both storage performance
and space when determining a practical k value. For the
sake of simplicity, we assume that there are three replicas
for each file throughout this paper. Of course, users can
choose different value of k depends on their performance
and cost trade-offs.

The second issue is how to determine the data layout
policy for each replica. Since an application may have
many access patterns during it’s execution, we can’t mini-
mize the overall I/O cost if we create k replicas with lay-
out policies based on randomly chosen access patterns.
To address this challenge, we propose an data grouping
scheme that classifies file requests of the application into
k groups based on I/O trace analysis, and then create one
replica with an optimal layout policy for requests with
closed access patterns in that group.

The effectiveness of data grouping depends on the
grouping criteria. In fact, improper criteria may co-locate
requests with different access patterns into the same group,
thus deteriorating the effectiveness of grouping. To cor-
rectly reflect the access pattern distribution of file requests,
we propose an iterative request grouping algorithm to deter-
mine the grouping criteria. Inspired by the data clustering
approach in statistics [20], we divides file requests into k
groups and tries to find the centers of these groups with an
iterative refinement method.

The detailed description of the algorithm is as Algo-
rithm 1, where each request is characterized by two-element
tuple, denoted by ðpro; sizeÞ, pro refers to the number of
processes while size is the request size. As such, all requests
can be represented by a set of points in a two-dimensional
Euclidean Space. For any point P1ðx1; y1Þ and P2ðx2; y2Þ,
their distance can be defined as

jjP1 � P2jj ¼
ffi
ðx1 � x2Þ2 þ ðy1 � y2Þ2

q
: (25)

As shown in Algorithm 1, if the number of requests is less
than or equal to k, a randomly selected request point is
assigned to Pgi as a center of the ith group. Otherwise, each

request point is assigned to group Gi whose center is closest

2498 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 9, SEPTEMBER 2016

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:47 UTC from IEEE Xplore. Restrictions apply.

to the request point. After all the request points have been
processed, the algorithm re-compute the new center for
each group. This procedure is repeated until Pgi is no longer

changed or three times at most.

Algorithm 1. Iterative Request Grouping

1: Procedure GROUPING(Requests: R[1; i])
2: if ði � kÞ then
3: for ð8i 2 ½1; k�Þ do
4: Pgi randomly selected R[t]
5: end for
6: else
7: count 0
8: while ðPgi is changedjjcount � 3Þ do
9: Gi argmin

jGj j
fjjPsj � Pgi jjg

10: Pgi 1
jGij

P
Psj2Gi

Psj

11: countþþ
12: end while
13: end if
14: end Procedure

For the sake of simplicity, we assume that there are three
replicas for each file in Algorithm 1 throughout this paper.
Although the computational overhead of the algorithm
increases in proportion to the number of requests, the
request grouping is an off-line method and it only runs
once based on I/O trace analysis, so the computation over-
head in a practical HPC system is acceptable.

Once the grouping finishes, the dynamic layout scheme
will create k replicas for each file. The optimal data layout
policy for each replica is determined by the access pattern
of one center of the groups, according to the static data lay-
out scheme in previous Section 3.3.4. Since file requests in
each group have closed access patterns, they will have high
likelihoods to benefit from the given replica for that group.
During the later run of the application, the dynamic data
layout scheme will estimate the request access cost if it were
redirected to the created replicas, and assign it to the corre-
sponding replica with lowest access cost.

Despite the fact that data read in the later runs of the
application is quite simple, data write is more complicated
since it involves several replicas. There are a lot of possible
alternatives to process data write operations. In our design
and implementation, we use a lazy synchronization mecha-
nism [14] for data writes. First, we write data to the selected
replica. Then, we apply lazy updates to synchronize data
from the first replica to other replicas. Hence, we only con-
sider data access cost on the chosen replica for data writes,
and ignore the background data synchronization cost.

3.5 Implementation

We implemented HAS in the MPI-IO library MPICH2 and
parallel file system OrangeFS. We choose OrangeFS because
it is a popular parallel file system and directly provides the
varied-size striping method for file servers.

3.5.1 Selective Static Data Layout

The procedure of the static data layout of HAS scheme
includes the following three phases, as shown in Fig. 4.

The estimation phase consists of two parts, system testing
and application tracing. For system testing, the network
parameters, e and t, the storage parameters, ah;bh;asr=w;
bsr=w, and the system parameters, such as m and n can be

regarded as constants. We use all file servers in the parallel
file system to test the storage parameters for HServers and
SServers with sequential/random and read/write patterns
and then we calculate the average for HServers and SSer-
vers. We use many pairs of clients and file servers to
estimate the network parameters. Again the tests are con-
ducted thousands of times for the purpose of accuracy, and
we use the average value for the network parameters. For
application tracing, we use a trace collector, IOSIG [19], to
obtain the run-time statistics of data accesses during the
application’s first execution. Based on the I/O trace, we
obtain the application’s I/O pattern related parameters,
such as p, r, and o.

In the optimization phase, using the parameters obtained
in the estimation phase, we apply the cost model and linear
programming optimization methods in Section 3.3 to deter-
mine the optimal file data distribution on HServers and
SServers for each of the three layout policies. Since each pol-
icy may only give sub-optimal performance because of
unique characteristics of applications, HAS compares their
performance and chooses the one with lowest cost as the
final data layout policy.

In the distribution phase, we distribute the file data
with the optimal data layout policy and the correspond-
ing layout parameters for later runs of the applications.
For 1–DH and 2–D, we utilize the APIs supported by
OrangeFS to implement the specific variable stripe distri-
bution and group distribution. In OrangeFS, a file can
either be accessed by the PVFS2 or the POSIX interface.
For PVFS2 interface, we utilize the “pvfs2-xattr” com-
mand to set the data distribution policy and the related
layout parameters for directories where the application
files are located. For POSIX interface, we use the “setfattr”
command to reach the similar data layout optimization
goal. For 1–DV policy, we create different numbers of
process files on HServers and SServers.

Fig. 4. The static data layout optimization procedure.

HE ETAL.: BOOSTING PARALLEL FILE SYSTEM PERFORMANCE VIA HETEROGENEITY-AWARE SELECTIVE DATA LAYOUT 2499

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:47 UTC from IEEE Xplore. Restrictions apply.

3.5.2 Selective Dynamic Data Layout

The selection of the replica for each file request is based on
the cost analysis with the proposed model. We made a pro-
totype of the cost estimation and dynamic data replica selec-
tion by modifying the standard MPI-IO functions.

MPI_File_open. While opening a file, the dynamic
strategy opens all the corresponding replica files, each
are distributed on the underlying servers with a different
data layout.

MPI_File_read. For each I/O read, the dynamic strategy
first evaluate the data access costs for all replicas based on
the proposed model, and then chooses the replica with the
lowest cost to handle the I/O request. When data access is
finished, the offsets of all replicas are synchronized.

MPI_File_Write. For each I/O write, the strategy synchro-
nize related data blocks and then perform I/O operation on
one replica with the lowest cost. Then the strategy insert the
write requests of other replicas into a lazy synchronization
queue. When data access is finished, the offsets of all repli-
cas are synchronized.

MPI_File_seek. It calculates the offset and conducts the
seek operation in the opened replica files.

MPI_File_close. It synchronizes data for all replicas and
closes all the opened replica files.

For data writes, all write requests issued to other replicas
are insert into a lazy request queue right after writing to the
selected replica. In order to avoid interfering with the nor-
mal I/O operations, a dedicated data synchronization
thread is implemented to conduct these lazy write requests
in the queue. Since the data synchronization is a back-
ground operation, each write request can return immedi-
ately after inserting the lazy write requests into the queue.

4 PERFORMANCE EVALUATION

4.1 Experimental Setup

We conducted the experiments on a 65-node SUN Fire
Linux cluster, where each node has two AMD Opteron(tm)
processors, 8 GB memory and a 250 GB HDD. Sixteen nodes
are equipped with additional OCZ-REVODRIVE 100 GB
SSD. All nodes are equipped with Gigabit Ethernet inter-
connection. The operating system is Ubuntu 9.04, the MPI-
IO library is MPICH2-1.4.1p1, and the parallel file system is
OrangeFS 2.8.6. Among the available nodes, we select eight
as client computing nodes, eight as HServers, and eight as
SServers. In the experiments, the hybrid OrangeFS file sys-
tem is built on four HServers and four SServers unless oth-
erwise specified.

We compare HAS with two other data layout schemes:
the application-aware scheme (ADL) [8] and the storage-
aware scheme (SDL) [17]. In ADL, file data is placed across
the hybrid file servers with one of the three policies accord-
ing to the application’s access pattern, but each server is
assigned a fixed-size file stripe. In SDL, the file stripe sizes
for the hybrid servers are determined by the server perfor-
mance but only 1–DH policy is chosen, without fully consid-
ering application access patterns. Since ADL and SDL have
shown considerable performance improvements over the
default data layout scheme namely the fixed-size striping in
previous work [8], [17], we do not compare HAS with the
default scheme in this paper.

We use the popular benchmark IOR [15], BTIO [21],
HPIO [22] and a real application [23] to test the perfor-
mance. We first show the efficiency of the selective static
data layout scheme for a specific access pattern, then we
show the efficiency of the dynamic data layout for mixed
access patterns.

4.2 Selective Static Data Layout

4.2.1 IOR Benchmark

We provide two sets of experiments, varying application
characteristics and varying storage characteristics. Unless
otherwise specified, IOR runs with 32 processes, each of
which performs I/O operations on an individual 256 MB
parallel file with request size of 512 KB. We illustrate the
importance of considering both application and storage
characteristics for an efficient layout scheme, by comparing
to schemes which only consider one type of characteristics.

Varying application characteristics. We vary the following
application related traits: I/O operation type, number of
processes, and request size.

First we ran IOR with sequential and random read and
write I/O operations. Fig. 5 shows the throughput of IOR.
We observe that HAS outperforms ADL and SDL. By using
the optimal data distribution for HServers and SServers,
HAS improves read performance up to 189.7 percent over
ADL with all I/O access patterns, and write performance
up to 242.7 percent. Compared with SDL, HAS improves
the performance up to 23.8 percent for reads and 21.1 per-
cent for writes. Although ADL accounts for I/O operation
type variation, HAS has superior performance than ADL
because it considers file server performance differences.
HAS provides optimal performance for read and write
operations, but SDL degrades in performance because its
lack of application awareness.

To give a detailed explanation for HAS’s performance,
Fig. 6 plots the I/O time of each file server when IOR issued
sequential read operations under the three layout schemes.

Fig. 5. Throughputs of IOR under different layout schemes with different
I/O modes.

2500 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 9, SEPTEMBER 2016

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:47 UTC from IEEE Xplore. Restrictions apply.

The I/O time refers to the aggregated data access completion
time of all sub-requests assigned to a server. We use PVFS2
utilities such as “pvfs2-set-eventmark” and “pvfs2-set-
debugmark” to trace I/O access information in the pvfs2-
server.log on each file server, and then analyze the log file to
get the I/O time. The I/O time is normalized to that of the
minimal I/O time of all file servers under the HAS layout.
Among the eight file servers, server 0 to 3 are HServers, and
the rest are SServers. We observe that the I/O loads of HSer-
vers and SServers are severely skewed under ADL since it
uses a fixed-size stripe. In contrast, SDL and HAS have
nearly even I/O loads. However, HAS leads to less I/O time
on each server than SDL because it selects the data layout
policy (1–DV) with the lowest cost while SDL uses 1–DH.
Thus, HAS improves the file system performance.

Then we evaluated the layout schemes with different
number of processes. The IOR benchmark was executed
under the random access mode with 16, 64 and 128 pro-
cesses. As displayed in Fig. 7, the result is similar to the pre-
vious test. HAS has the best performance among the three
schemes. Compared with ADL, HAS improves the read per-
formance by 140.3, 179.7, and 200.2 percent respectively
with 16, 64 and 128 processes, and write performance by
174.3, 200.7, and 292.7 percent. Compared with SDL, HAS

achieves similar performance for 16 processes. For 64 and
128, HAS improves read performance by 16.1 and 27.3
percent respectively, and write performance by 14.2 and
21.3 percent. When the number of processes is large, the 1-
DV policy, implemented in HAS, provides better perfor-
mance than the 1–DH layout used by SDL. As the number
of processes increase, the performance of the hybrid PFS
decreases because more processes lead to server I/O con-
tention in HServers and SServers. These results show that
HAS scales excellently with the number of I/O processes.

Finally, the I/O performance was examined with differ-
ent request sizes. We set the request size to 128 and
4,096 KB, and the number of processes to 32. From Fig. 8a,
we can observe that HAS can improve the read performance
up to 110.3 percent, and write up to 151.6 percent in com-
parison with ADL. Compared with SDL, HAS also has bet-
ter performance: the read performance is increased up to
13.4 percent, and write performance is increased up to 37.7
percent. As the request size increases, 1–DH tends to be the
best layout policy. For example when the request size is
4,096 KB, HAS selects the same data layout policy as SDL,
1–DH. These results validate that HAS can choose appropri-
ate data distribution for HServers and SServers when the
request size varies.

Varying system characteristics. We examined the I/O per-
formance with different server configurations. We varied
the numbers of HServers and SServers with the ratios of 5:3
and 6:2. Fig. 9 shows the bandwidth of IOR with different
file server configurations. Based on the results, HAS can
improve I/O throughput for both read and write opera-
tions. When the ratio is 5:3, HAS improves the read and
write performance by up to 171.6 and 232.4 percent respec-
tively, when compared to ADL. Compared with SDL, HAS
increases the read performance by 21.9 percent, and write
performance by 17.1 percent. When the ratio is 6:2, the per-
formance gap is decreased because the server configuration
is more homogeneous. In the experiments, the read and
write performance disparity between HAS and ADL

Fig. 6. I/O time on each server under different data layout schemes.

Fig. 7. Throughputs of IOR with varied number of processes.

Fig. 8. Throughputs of IOR with varied request sizes.

HE ETAL.: BOOSTING PARALLEL FILE SYSTEM PERFORMANCE VIA HETEROGENEITY-AWARE SELECTIVE DATA LAYOUT 2501

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:47 UTC from IEEE Xplore. Restrictions apply.

enlarges as the number of SServers increase because HAS is
storage device conscious. By varying the system characteris-
tics, we prove that the consideration of system traits is
essential to optimal data distribution.

4.2.2 BTIO Benchmark

We also use the BTIO benchmark [21] to evaluate the pro-
posed scheme. BTIO represents a typical scientific applica-
tionwith interleaved intensive computation and I/O phases.

We consider the Class B and epio subtype BTIO work-
load. That is, we write and read a total size of 1.69 GB data.
We use 16, 36, and 64 compute processes since BTIO
requires a square number of processes. Each process
accesses its own independent file. Output files are distrib-
uted across six HServers and two SServers on the hybrid
OrangeFS file system.

As shown in Fig. 10, compared to ADL and SDL, HAS
achieves better throughput and scalability. Compared to
ADL, HAS improves the performance by 153.1, 157.6, and
175.2 percent with 16, 36, 64 processes, respectively. For
SDL, HAS achieves the improvement by up to 48.2 percent.

4.3 Selective Dynamic Data Layout

To verify the efficiency of the dynamic replication-based
data layout strategy, we first ran several IOR or HPIO

instances one by one with various parameters to simulate
mixed access patterns at different moments, then we used a
real application to evaluate the performance.

4.3.1 IOR Benchmark

We varied the request size in each instance of IOR. The num-
ber of process was 32, the requests were random read opera-
tions, and the request sizes were 32, 64, 128, 512 KB, 1, and
2 MB. We measured the performance of all IOR instances
under six static layout policies (HAS-S1 to HAS-S6), each
optimized for one kind of request size respectively. For
example, inHAS-4, the stripe size pairs onHServer and SSer-
ver was <28, 100 KB> , optimized for random reads with
size of 512 KB. We set these layout policies to different direc-
tories in OrangeFS system. As for the dynamic layout policy
(HAS-D), it first chose one directory to access based on the
cost estimation, and thenwrote/read files in that directory.

Fig. 11 shows the results of the mixed IOR workloads,
where y-axis represents the comparative performance with
HAS-S1 layout policy. Here the performance is represented
by the average I/O bandwidth, which is calculated by the
total data size divided by the total running time. As shown
in Fig. 11, the proposed replication-based dynamic data lay-
out policy can get the best performance. The performance
improvement is up to 174.5 percent compared with the
other data layout policies.

4.3.2 HPIO Benchmark

We also varied the number of processes in each HPIO
instance. HPIO can generate variousdata access patterns by
changing three parameters: region count, region spacing,
and region size. We set the region count to 1,024, and keep
the region spacing to 0. The region size is fixed to 512 KB,
and the numbers of processes were 8, 64, 256, and 512. We
changed HPIO code to make each process access one file.
We measured the performance of all IOR instances under
four static layout policies (HAS-S1 to HAS-S4), each opti-
mized for requests with one kind of process number respec-
tively, and then compared them with the dynamic data
layout policy. For instance, if the process number is 8, the
static layout policy (HAS-S1) was 1–DH and the stripe size
pair on HServer and SServer was <24, 104 KB> ; if the pro-
cess number is 256, the layout policy (HAS-S3) was 1–DV
and the process number pair on HServer and SServer was
<16, 48> . Fig. 12 shows the results, in which y-axis repre-
sents the comparative performance normalized to HAS-S1
data layout policy. The performance improvement of the
dynamic replication-based strategy (HAS-D) is around 29.8-
130.6 percent compared with other static layout policies.

Fig. 9. Throughputs of IOR with varied file server configurations.

Fig. 10. Throughputs of BTIO under different data placement schemes.

Fig. 11. Performance of IOR with mixed access patterns.

2502 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 9, SEPTEMBER 2016

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:47 UTC from IEEE Xplore. Restrictions apply.

4.3.3 Real Application

Finally, we used a real application, ‘Anonymous LANL App
2’ [23], to evaluate the proposed layout scheme. In this appli-
cation, each process issues I/O requests in a non-uniform
way at different parts of a shared file. The request size is var-
ied at different moments during the application’s execution.
For example, in one part of the file, the request size of each
process is relative small, which is less than 8 KB. In another
part of the file, each process issues relative large requests of
131,072 and 131,056 bytes iteratively. The data accesses of
this application were replayed according to the I/O trace,
butwemanually enforce each process to access an individual
file. We measured the performance of the application with
three static layout policies (HAS-S1 to HAS-S3), optimized
for the top-three frequently accessed request sizes, and
under the dynamic layout policy (HAS-D). Similar to the pre-
vious tests, Fig. 13 indicates that the dynamic data layout
scheme can achieve 26.8-63.1 percent performance improve-
ment compared to other static data layout policies.

From the above experiments, we can find that for IOR,
HPIO and the real application, the selective dynamic layout
strategy is superior to any static data layout policy. Hence,
such dynamic layout strategy based on data replication is
effective for mixed I/O workloads, which implies a great
potential of trading unused storage space for better I/O
performance.

5 RELATED WORK

5.1 I/O Request Stream Optimization

A great deal of research has focused on reorganizing I/O
request streams to minimize access time spent on I/O
device and network. Generally, such optimizations are
implemented at the I/O middleware layer. For example,
instead of accessing multiple small, noncontiguous
requests, data sieving [24] applies the strategy of accessing
a contiguous chunk created by gathering the noncontiguous
requests. Datatype I/O [25] and List I/O techniques [26]
allow noncontiguous I/O requests to be converted into a
single I/O request, thereby limiting the number of total
requests. Collective I/O [24] also rearranges I/O accesses
into a larger contiguous request, but considers the multi-
process level instead of a single process.

5.2 Data Layout in Homogeneous File Systems

Parallel file systems have different data layout strategies,
which allow for numerous data layout optimization meth-
ods [8]. Several techniques, including data partition [27],
[28], data migration [29], and data replication [8], [10], [14],

are applied to optimize data layouts depending on I/O
workloads. Segment-level layout scheme logically divides a
file to several parts and appoints an optimal stripe size for
each part [30]. Another methodology, server-level adaptive
layout strategy, selects different stripe sizes depending
upon the type of the file server [9]. PARLO is designed for
accelerating queries on scientific datasets by applying user
specified optimizations [11]. Tantisiriroj et al. [31] use
HDFS-specific layout optimizations [32] to improve the per-
formance of PVFS. However, all these studies are designed
for homogeneous HDD-based file systems, and can’t be
applied to heterogeneous environments.

5.3 Data Layout in Heterogeneous File Systems

SSDs are commonly integrated into parallel file systems due
to their performance benefits. For now, most SSDs are used
as a cache [33] or as a hybrid storage device [12], [34]. How-
ever, the vast majority of research is focused on a single file
server. In contrast, AdaptRaid confronts load imbalance in
heterogeneous disk arrays [35], which cannot be imple-
mented in PFSs. Liu et al. use SSD-based nodes as buffers to
handle burst requests [36]. CARL [37] situates data regions
with high access costs onto SSD-based file servers.Welch and
Noer place small files and file metadata onto SSDs, and large
file extents onto HDDs [38]. However, these schemes cannot
simultaneously utilize HDDs and SSDs. The PADP [17]
employs stripe size variation to improve the performance of
hybrid PFSs, yet the schemes are only optimized for the one-
horizontal (1DH) layout policy. Our previous work [13]
adaptively selects the optimal data layout for heterogeneous
parallel file systems. However, it is only suitable for applica-
tions with specific access patterns. This work can be further
applied to applicationswithmixed access patterns.

6 DISCUSSION

Admittedly, the proposed replication-based dynamic data
layout strategy requires more storage space for both HSer-
vers and SServers, which might be an unwanted feature by
users. This is a trade-off between data access performance
and storage capacity, like almost all other replication-based
strategies. Since the capacities of current HDDs and SSDs
are increasing quickly, and HAS can be used to only rep-
licate a small portion active data based on data access
pattern for performance-critical data, the space trade-off
may not be a subject of concern. With replications of per-
formance-critical data, the proposed data layout scheme
provides a good alternative to existing approaches for
data-intensive applications.

Fig. 12. Performance of HPIO with mixed access patterns. Fig. 13. Performance of LANL App2 with different layouts.

HE ETAL.: BOOSTING PARALLEL FILE SYSTEM PERFORMANCE VIA HETEROGENEITY-AWARE SELECTIVE DATA LAYOUT 2503

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:47 UTC from IEEE Xplore. Restrictions apply.

7 CONCLUSIONS

In this study, we propose a heterogeneity-aware selective
data layout scheme for parallel file systems with both HDD
and SSD-based servers. We alleviates the inter-server load
imbalance by varying the file stripe sizes or the number of
files on different servers based on their storage perfor-
mance. In addition, we selects the optimal static data layout
from three types of candidates for applications with specific
access patterns. Moreover, to adapt to dynamic changes of
access behaviors in some complex applications, we also
developed a dynamic data layout strategy that stores file
with multiple copies, each using a different layout policy,
and selects the proper copy with the lowest cost to serve
I/O requests. Generally, a large number of copies for the
dynamic layout policy would lead to a better performance,
but also come at a higher cost. In principle, HAS improves
hybrid parallel file system performance by matching data
layout with both application characteristics and storage
capabilities. We have developed and presented the pro-
posed layout optimization scheme under MPICH2 and
OrangeFS. Experimental results show that HAS improves
the I/O performance by up to 292.7 percent over the exist-
ing file data layout schemes.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
valuable feedback and comments, which substantially
improved the quality of this paper. We would also like to
thank Ning Liu, who helped to further improve this paper.
This research is supported in part by the China National
Basic Research Program (973 Program, No. 2015CB352400),
NSFC under grant U1401258, No. 61572377, No. 61572370,
and No. 61373040, the PhD Programs Foundation of Minis-
try of Education of China under Grant No. 20120141110073,
the Natural Science Foundation of Hubei Province of China
under Grant No. 2014CFB239, the Open Fund from HPCL
under Grant No. 201512-02, the Open Fund from SKLSE
under Grant No. 2015-A-06, and the US National Science
Foundation under Grant CNS-1162540.

REFERENCES

[1] Orange File System. (2015) [Online]. Available: http://www.
orangefs.org/

[2] S. Microsystems, “Lustre file system: High-performance storage
architecture and scalable cluster file system,” Tech. Rep. Lustre
File SystemWhite Paper, 2007.

[3] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system for
large computing clusters,” in Proc. 1st USENIX Conf. File Storage
Technol., 2002, pp. 231–244.

[4] R. Latham, R. Ross, B. Welch, and K. Antypas, “Parallel I/O in
practice,” Tech. Rep. Tutorial of the Int. Conf. High Perform.
Comput., Netw., Storage Anal., 2013.

[5] A. Caulfield, L. Grupp, and S. Swanson, “Gordon: Using flash
memory to build fast, power-efficient clusters for data-intensive
applications,” in Proc. 14th Int. Conf. Architectural Support Program.
Languages Operating Syst., 2009, pp. 217–228.

[6] M. Zhu, G. Li, L. Ruan, K. Xie, and L. Xiao, “HySF: A striped file
assignment strategy for parallel file system with hybrid storage,”
in Proc. IEEE Int. Conf. Embedded Ubiquitous Comput., 2013,
pp. 511–517.

[7] S. He, X.-H. Sun, and B. Feng, “S4D-cache: Smart selective SSD
cache for parallel I/O systems,” in Proc. Int. Conf. Distrib. Comput.
Syst., 2014, pp. 514–523.

[8] H. Song, Y. Yin, Y. Chen, and X.-H. Sun, “A cost-intelligent
application-specific data layout scheme for parallel file sys-
tems,” in Proc. 20th Int. Symp. High Perform. Distrib. Comput.,
2011, pp. 37–48.

[9] H. Song, H. Jin, J. He, X.-H. Sun, and R. Thakur, “A server-level
adaptive data layout strategy for parallel file systems,” in Proc.
IEEE 26th Int. Parallel Distrib. Process. Symp. Workshops PhD Forum,
2012, pp. 2095–2103.

[10] J. Jenkins, X. Zou, H. Tang, D. Kimpe, R. Ross, and N. F.
Samatova, “RADAR: Runtime asymmetric data-access driven
scientific data replication,” in Proc. Int. Supercomput. Conf.,
2014, pp. 296–313.

[11] Z. Gong, D. A. B. II, X. Zou, Q. Liu, N. Podhorszki, S. Klasky,
X. Ma, and N. F. Samatova, “PARLO: PArallel run-time layout
optimization for scientific data explorations with heterogeneous
access patterns,” in Proc. 13th IEEE/ACM Int. Symp. Cluster, Cloud,
Grid Comput., 2013, pp. 343–351.

[12] F. Chen, D. A. Koufaty, and X. Zhang, “Hystor: Making the best
use of solid state drives in high performance storage systems,” in
Proc. Int. Conf. Supercomput., 2011, pp. 22–32.

[13] S. He, X.-H. Sun, and A. Haider, “HAS: Heterogeneity-aware
selective data layout scheme for parallel file systems on hybrid
servers,” in Proc. 29th IEEE Int. Parallel Distrib. Process. Symp.,
2015, pp. 613–622.

[14] Y. Yin, J. Li, J. He, X.-H. Sun, and R. Thakur, “Pattern-direct
and layout-aware replication scheme for parallel I/O sys-
tems,” in Proc. 27th IEEE Int. Parallel Distrib. Process. Symp.,
2013, pp. 345–356.

[15] Interleaved Or Random (IOR) Benchmarks. (2014) [Online]. Avail-
able: http://sourceforge.net/projects/ior-sio/

[16] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding intrinsic
characteristics and system implications of flash memory based
solid state drives,” in Proc. 11th Int. Joint Conf. Meas. Model. Com-
put. Syst., 2009, pp. 181–192.

[17] S. He, X.-H. Sun, B. Feng, and F. Kun, “Performance-aware data
placement in hybrid parallel file systems,” in Proc. 14th Int. Conf.
Algorithms Archit. Parallel Process., 2014, pp. 563–576.

[18] Y. Liu, R. Gunasekaran, X. Ma, and S. S. Vazhkudai, “Automatic
identification of application I/O signatures from noisy Server-
side traces,” in Proc. 12th USENIX Conf. File Storage Technol., 2014,
pp. 213–228.

[19] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp,
“Parallel I/O prefetching using MPI file caching and I/O sig-
natures,” in Proc. Int. Conf. High Perform. Comput., Netw., Stor-
age Anal., 2008, pp. 1–12.

[20] A.-I. A. Wang, P. Reiher, G. J. Popek, and G. H. Kuenning,
“Conquest: Better performance through a disk/persistent-RAM
hybrid file system,” in Proc. USENIX Annu. Techn. Conf., 2002,
pp. 15–28.

[21] The NAS parallel benchmarks. (2014) [Online]. Available: www.
nas.nasa.gov/publications/npb.html

[22] A. Ching, A. Choudhary, W.-K. Liao, L. Ward, and N. Pundit,
“Evaluating I/O characteristics and methods for storing struc-
tured scientific data,” in Proc. 20th Int. Parallel Distrib. Process.
Symp., 2006.

[23] Application I/O Traces: Anonymous LANL App2. (2014)
[Online]. Available: http://institutes.lanl.gov/plfs/maps/

[24] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective
I/O in ROMIO,” in Proc. 7th Symp. Frontiers Massively Parallel Com-
put., 1999, pp. 182–189.

[25] A. Ching, A. Choudhary, W.-k. Liao, R. Ross, and W. Gropp,
“Efficient structured data access in parallel file systems,” in Proc.
IEEE Int. Conf. Cluster Comput., 2003, pp. 326–335.

[26] A. Ching, A. Choudhary, K. Coloma, L. Wei-keng, R. Ross,
and W. Gropp, “Noncontiguous I/O accesses through MPI-
IO,” in Proc. 3rd IEEE/ACM Int. Symp. Cluster Comput. Grid,
2003, pp. 104–111.

[27] Y. Wang and D. Kaeli, “Profile-guided I/O partitioning,” in Proc.
17th Annu. Int. Conf. Supercomputing, 2003, pp. 252–260.

[28] S. Rubin, R. Bodik, and T. Chilimbi, “An efficient Profile-analysis
framework for Data-layout optimizations,” ACM SIGPLAN Noti-
ces, vol. 37, no. 1, pp. 140–153, 2002.

[29] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Liptak,
R. Rangaswami, and V. Hristidis, “Borg: Block-reorganization for
Self-optimizing storage systems,” in Proc. 7th Conf. File Storage
Technol., San Francisco, CA, USA, 2009, pp. 183–196.

2504 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 9, SEPTEMBER 2016

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:47 UTC from IEEE Xplore. Restrictions apply.

http://www.orangefs.org/
http://www.orangefs.org/
http://sourceforge.net/projects/ior-sio/
www.nas.nasa.gov/publications/npb.html
www.nas.nasa.gov/publications/npb.html
http://institutes.lanl.gov/plfs/maps/

[30] H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang, “A segment-
level adaptive data layout scheme for improved load balance in
parallel file systems,” in Proc. 11th IEEE/ACM Int. Symp. Cluster,
Cloud Grid Comput., 2011, pp. 414–423.

[31] W. Tantisiriroj, S. Patil, G. Gibson, S. Seung Woo, S. J. Lang, and
R. B. Ross, “On the duality of data-intensive file system design:
Reconciling HDFS and PVFS,” in Proc. Int. Conf. High Perform.
Comput., Netw., Storage Anal., 2011, pp. 1–12.

[32] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proc. IEEE 26th Symp. Mass Storage
Syst. Technol., 2010, pp. 1–10.

[33] T. Pritchett and M. Thottethodi, “SieveStore: A highly-selective,
ensemble-level disk cache for cost-performance,” in Proc. 37th
Annu. Int. Symp. Comput. Archit., 2010, pp. 163–174.

[34] J. Guerra, H. Pucha, J. Glider, W. Belluomini, and R. Rangaswami,
“Cost effective storage using extent based dynamic tiering,” in
Proc. 9th Conf. File Storage Technol., 2011, pp. 273–286.

[35] T. Cortes and J. Labarta, “Taking advantage of heterogeneity in
disk arrays,” J. Parallel Distrib. Comput., vol. 63, no. 4, pp. 448–464,
2003.

[36] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider,
A. Crume, and C. Maltzahn, “On the role of burst buffers in Lead-
ership-class storage systems,” in Proc. IEEE 28th Symp. Mass Stor-
age Syst. Technol., 2012, pp. 1–11.

[37] S. He, X.-H. Sun, B. Feng, X. Huang, and K. Feng, “A cost-aware
region-level data placement scheme for hybrid parallel I/O sys-
tems,” in Proc. IEEE Int. Conf. Cluster Comput., 2013, pp. 1–8.

[38] B. Welch and G. Noer, “Optimizing a hybrid SSD/HDDHPC stor-
age system based on file size distributions,” in Proc. IEEE 29th
Symp. Mass Storage Syst. Technol., 2013, pp. 1–12.

Shuibing He received the PhD degree in com-
puter science and technology from Huazhong
University of Science and Technology, China, in
2009. He is currently an assistant professor at
the Computer School, Wuhan University, China.
His current research areas include parallel I/O
systems, file and storage systems, high-perfor-
mance computing, and distributed computing.

Yang Wang received the BSc degree in applied
mathematics from Ocean University of China,
1989, and the MS and PhD degrees in computer
science from Carleton University (2001) and the
University of Alberta, Canada (2008), respec-
tively. He is currently with Shenzhen Institute of
Advanced Technology, Chinese Academy of Sci-
ence, as a professor. His research interests
include cloud computing, big data analytics, and
Java Virtual Machine on multicores.

Xian-He Sun received the BS degree in 1982 in
mathematics from Beijing Normal University,
China, and the MS and PhD degrees in 1987 and
1989, respectively, in computer science from
Michigan State University. He is a distinguished
professor in the Department of Computer Sci-
ence, the Illinois Institute of Technology (IIT),
Chicago, and the director in the Scalable Com-
puting Software laboratory, IIT. He is a guest fac-
ulty in the Mathematics and Computer Science
Division at the Argonne National Laboratory. His

research interests include parallel and distributed processing, memory
and I/O systems, software systems, and performance evaluation and
optimization. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HE ETAL.: BOOSTING PARALLEL FILE SYSTEM PERFORMANCE VIA HETEROGENEITY-AWARE SELECTIVE DATA LAYOUT 2505

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:46:47 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

