
BM-Store: A Transparent and High-performance Local Storage Architecture
for Bare-metal Clouds Enabling Large-scale Deployment

Yiquan Chen†∗, Jiexiong Xu†, Chengkun Wei†, Yijing Wang∗, Xin Yuan∗

Yangming Zhang∗, Xulin Yu∗, Yi Chen†, Zeke Wang†, Shuibing He†, Wenzhi Chen†

†Zhejiang University ∗Alibaba Group

Abstract—Bare-metal instances are crucial for high-value,
mission-critical applications on the cloud. Tenants exclusively
use these dedicated hardware resources. Local virtualized disks
are essential for bare-metal instances to provide flexible and
high-performance storage resources. Traditionally tenants can
choose polling-based software virtualization techniques, but they
consume too many valuable host CPU cores and suffer from
performance degradation. Cloud vendors are hard to deploy
existing hardware-assisted local storage solutions in bare-metal
instances due to no access to the host OS to install customized
drivers. Moreover, cloud vendors have difficulties managing and
maintaining the local storage devices in bare-metal instances
because hardware resources and host operating systems are
completely utilized by tenants, then it will impact the availability
of storage devices.

This paper presents our design and experience with BM-Store,
a novel high-performance hardware-assisted virtual local storage
architecture for bare-metal clouds. BM-Store is transparent to
the host that tenants are unaware of the underlying hardware
architecture. Therefore, it can be deployed on a large scale in
cloud vendors. BM-Store consists of two components: an FPGA-
based BMS-Engine and an ARM-based BMS-Controller. The
BMS-Engine accelerates the I/O path to enable high-performance
virtual storage independent of disk devices without consuming
any CPU resource on the host. The BMS-Controller is responsible
for resource management and maintenance to achieve flexible and
high available local storage. The results of the extensive experi-
ments show that BM-Store can achieve near-native performance,
which only introduces about 3 µs extra latency and average 4.0%
throughput overhead to native disks. Compared to SPDK vhost,
BM-Store achieves an average bandwidth improvement of 15.7%
in microbenchmark and a maximum throughput enhancement of
13.4% in real-world applications.

I. INTRODUCTION

Bare-Metal (BM) clouds have become an essential
Infrastructure-as-a-Service (IaaS) that leases dedicated phys-
ical servers (called bare-metal instances) rather than Virtual
Machines (VM). Therefore, bare-metal instances are well
suitable for resource-intensive applications such as big data
applications, database servers, and media servers [26, 31].
Currently, bare-metal instances are widely available on public
clouds (Amazon EC2 m5.metal instance [8], Alibaba Cloud
ECS Bare Metal Instance Families [11], and Microsoft Azure
Bare Metal Infrastructure [29]).

Bare-metal instances generally have two storage options:
local storage [10] and remote storage [15, 20]. In remote
storage, storage devices are located in the remote server,
and tenants must access these storage resources through the

Fig. 1. Bandwidth of SPDK vhost binds with different numbers of CPUs on
four SSDs. We ran fio with the test case of sequential read of 128k block
size, queue depth of 256, 4 threads, using libaio as the I/O engine. Polling-
based schemes consume too many valuable host CPU cores and suffer from
performance degradation.

network. In contrast, local storage means that storage devices
are directly attached to the tenant’s physical server and are
accessed through the PCIe system bus. As a result, local
storage provides high-throughput and low-latency I/O access
for bare-metal instances. Cloud instances with local storage are
widely employed by I/O intensive workloads [10] (e.g., online
gaming [18], e-commerce [36], and live streaming [28]).

Traditionally, cloud vendors directly provide physical stor-
age devices to bare-metal tenants. However, existing local
storage schemes for bare-metal clouds have the following
limitations:

• Lack of hardware-assisted virtualization capability.
Generally, bare-metal tenants would deploy containers or
virtual machines on physical servers. Meanwhile, ten-
ants require flexible and isolated local storage resources.
Therefore, virtualization capability is essential. Tradi-
tionally, tenants can adopt advanced software polling-
based solutions (e.g., SPDK vhost [42] and NVMe-
MDev[32]), but they consume too many valuable host
CPU cores and suffer from performance degradation. For
example, we evaluated the SPDK vhost [42] with four
intel P4510 SSDs. In Fig.1, SPDK vhost needs to bind
at least eight CPU cores for four SSDs to get only 80%
of native performance. Furthermore, cloud vendors may
adopt hardware-assisted virtualization mechanisms (e.g.,
pass through [6] and SR-IOV [13]) in a traditional way
to provide virtual local storage. However, these solutions
lack the sharing capability and compatibility that are

978-1-6654-7652-2/23/$31.00 ©2023 IEEE

2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

1031

20
23

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
H

ig
h-

Pe
rf

or
m

an
ce

 C
om

pu
te

r A
rc

hi
te

ct
ur

e
(H

PC
A

) |
 9

78
-1

-6
65

4-
76

52
-2

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

H
PC

A
56

54
6.

20
23

.1
00

71
02

9

Authorized licensed use limited to: Zhejiang University. Downloaded on April 01,2023 at 00:15:16 UTC from IEEE Xplore. Restrictions apply.

unsuitable for deployment on bare-metal instances.
• Management and maintenance challenges. Cloud ven-

dors have challenges managing and maintaining local
storage devices in existing bare-metal instances due to no
access to the host OS. In the traditional virtual machine
instances, cloud vendors usually run specific programs
in the host OS for these tasks, including disk status
monitoring, disk firmware upgrade, I/O monitoring, etc.
Unfortunately, cloud vendors cannot take the previous
approaches in bare-metal instances.

Many hardware-assisted solutions are proposed to provide
virtual local storage, but these schemes cannot be deployed
on bare-metal clouds. LeapIO [27] proposed a solution to
offload the local storage stack to the ARM SoC. FVM [24, 25]
proposed a hardware solution based on FPGA to provide
virtualization capability to local storage. However, both FVM
and LeapIO adopted the Peer-to-Peer (P2P) architecture, which
inevitably requires the installation of customized drivers. Thus,
it is difficult for cloud vendors to deploy these hardware
solutions on bare-metal instances due to cloud vendors cannot
access the host OS. On the other hand, no existing local
storage solution addresses the management and maintenance
challenges.

This paper proposes BM-Store, the first hardware-assisted
local storage architecture designed for bare-metal clouds,
achieving transparency, virtualization, high performance, man-
ageability, and high availability. BM-Store consists of two core
components: BMS-Engine and BMS-Controller. The key ideas
of BM-Store are: 1) BM-Store adopts transparent architecture
to achieve large-scale deployment in bare-metal instances.
We discuss details in Section IV-A. Bare-metal tenants are
unaware of BM-Store hardware. They can access virtual
local storage resources using standard NVMe drivers without
additional drivers; 2) BM-Store provides high-performance
storage virtualization to bare-metal instances by offloading the
virtualization layer to the BMS-Engine hardware. Specifically,
we design a zero-copy mechanism for data transfer to en-
able back-end SSDs directly access host memory, eliminating
redundant data copy; 3) BM-Store integrates an out-of-band
management mechanism and maintenance functions into the
BMS-Controller, which separates the control path and I/O
path. Cloud vendors can manage and maintain the local storage
through remote management commands, bypassing the host
OS. We also design the hot-plug, hot-upgrade, and I/O monitor
support to enhance the availability.

We implement BM-Store on a Xilinx® Zynq® Ultra-
Scale+™ MPSoC ZU19EG board [40] with Intel P4510
NVMe SSD [2] and deploy BM-Store in production data
centers. Our experimental results show that BM-Store can
achieve near-native performance and only introduces about 3
µs extra latency and only 4.0% average throughput degrada-
tion. BM-Store improves the average bandwidth by 15.7%
than SPDK vhost. More importantly, BM-Store achieves a
maximum throughput improvement of 13.4% in real-world
applications compared to SPDK vhost. The main contributions
of this paper are as follows:

• Novel hardware-assisted local storage architecture for
bare-metal clouds. We propose BM-Store, a novel local
storage architecture designed for bare-metal instances.
BM-Store achieves transparency, virtualization, high per-
formance, manageability, and high availability, which
enables large-scale deployment.

• Transparency and high compatibility. BM-Store
achieves transparency to enable large-scale deployment
on bare-metal clouds regardless of versions of host op-
erating systems or kernels. For high compatibility, BM-
Store can support various NVMe devices independent of
SSD manufacturers. BM-Store architecture can further
support multiple types of devices, including SATA disks,
which are vital in local storage.

• High-performance virtual local storage to bare-metal
instances. BM-Store provides the virtualization capabil-
ity to local storage in bare-metal instances. The back-
end storage resources can be dynamically divided into
multiple namespaces for the front-end virtual function.
BM-Store adopts the hardware-accelerated I/O path and
zero-copy mechanism to achieve extreme performance
with minimal overhead. BM-Store also adopts the QoS
mechanism to ensure the isolation of virtual local storage.

• Manageability and high availability. BM-Store is the
first to implement an out-of-band management mecha-
nism based on MCTP over PCIe, enabling local stor-
age management and maintenance for bare-metal clouds.
Furthermore, BM-Store offloads management and main-
tenance functions to the embedded ARM SoC, which
enhances the availability of local storage services based
on experience in production environments.

II. BACKGROUND

A. Bare-metal Instances in Cloud Computing

The bare metal is an essential cloud instance that leases
the physical machines to tenants rather than virtual machines.
Virtual machine tenants can only access virtual resources
defined by cloud vendors. In contrast, bare-metal tenants
can access the hardware resources directly and install their
own host operating systems and applications. The bare-metal
instances are well suited for resource-intensive applications
such as big data applications, database servers, and media
servers. Generally, cloud vendors provide local storage and
remote storage to bare-metal instances. Among them, local
storage is the first choice for I/O intensive applications due to
its high throughput and low latency.

In bare-metal instances, cloud vendors have no access to the
host OS to install dedicated software. For data security, pri-
vacy, and compatibility concerns, tenants are usually unwilling
to install customized drivers from cloud vendors. In such a
case, cloud vendors can only provide physical hardware-level
services independent of the host OS.

B. NVM Express

NVM Express (NVMe) [30] is a high-performance interface
standard for accessing local non-volatile memory devices over

1032

Authorized licensed use limited to: Zhejiang University. Downloaded on April 01,2023 at 00:15:16 UTC from IEEE Xplore. Restrictions apply.

PCIe [5] bus. The NVMe protocol proposes a large number
of deep and paired Submission Queues (SQ) and Completion
Queues (CQ) for interacting between the NVMe driver and
the NVMe controller, which fully exploits the potential of
the non-volatile memory device. Due to their vastly superior
performance in terms of both bandwidth and latency compared
to SATA-SSDs and SAS-SSDs, NVMe SSDs are widely
chosen in cloud data centers to cater to the ever-increasing
demands of I/O intensive applications.

C. Storage Virtualization

1) Software-based Virtualization: The existing software-
based storage virtualization enables storage device sharing and
presents virtual devices among multiple VMs. Full virtualiza-
tion is a software-based virtualization mechanism that adopts
the trap-and-emulate approach to provide virtual devices to
VMs without modifying the guest OSes. Compared to full
virtualization, paravirtualization creates efficient virtual de-
vice interfaces between guest OSes and hypervisors.

To virtualize emerging high-performance storage devices,
some polling-based approaches are proposed to dedicate mul-
tiple CPU cores for device emulation and completion polling
[32, 42]. These approaches achieve better performance than
previous methods by eliminating VM exits and minimizing
CPU context switches. However, the polling-based methods
consume a large number of computing resources to execute
their polling-based device emulation [24, 27].

2) Hardware-assisted Virtualization: To reduce the perfor-
mance overhead and host CPU inefficiency of the software-
based virtualization mechanism, direct pass-through [6] is
proposed to enable VMs to access storage devices directly
without software intervention, achieving near-native perfor-
mance. Direct Pass-through allows direct assignment of PCIe
storage devices through IOMMU, with its DMA and interrupt
remapping mechanisms. However, it loses device sharing
capability among multiple VMs. The physical device must be
exclusively assigned to a single VM.

To address such shortcomings, PCIe SR-IOV [13] is pro-
posed to share a physical device among many VMs at the
hardware level. An SR-IOV capable device presents multiple
physical functions (PFs) and virtual functions (VFs) at the
PCIe level. SR-IOV can enable resource isolation to serve
multiple VMs that each PF/VF has its own PCIe configuration
registers. SR-IOV capable devices enable hardware virtualiza-
tion through their internal bridge module and do not rely on
any host software.

III. MOTIVATION

We reviewed state-of-the-art solutions in virtual local stor-
age and I/O accelerators, as shown in Table I. However, the
existing local storage solutions have several limitations in
bare-metal instances in terms of performance, host efficiency,
compatibility, transparency, performance, deployability, and
manageability. These factors motivate us to propose BM-Store.

TABLE I
FEATURES OF EXISTING LOCAL STORAGE TECHNIQUES

Mdev
[32]

SPDK
vhost
[42]

SR-IOV
[13]

LeapIO
[27]

FVM
[24] BM-Store

Host efficiency ✓ ✓ ✓ ✓
Compatibility ✓ ✓ ✓ ✓ ✓
Transparency ✓ ✓
Performance ✓ ✓ ✓ ✓ ✓
Deployability ✓ ✓ ✓ ✓
Mangeability ✓

A. Host CPU inefficiency for software storage virtualization
Existing advanced polling-based software solutions [32, 42]

rely on dedicated host CPU cores to emulate virtual NVMe
devices. However, they suffer from high CPU consumption and
performance degradation in practice, as shown in Fig. 1. As
storage virtualization I/O tasks are inherently I/O- and control-
bound, they cannot make use of the full power of super-scalar,
out-of-order general-purpose CPU architecture.

In fact, the limited host CPU cores could be used to
provide more computing resources. Then bare-metal tenants
will significantly benefit from the extra host CPU cores.
This motivates us to offload the local storage virtualization
functions to the BMS-Engine to enable host CPU efficiency.

B. Disadvantages of the existing hardware-assisted design
Performance degradation. Hardware-assisted LeapIO [27]
offloads the entire storage stack to the ARM SoC with the
support of both local and remote storage. However, it suffers
from severe performance degradation that it only achieves
68% [24] throughput of the single native disk due to the
limited computing capabilities of ARM CPU. Hence, BM-
Store offloads the I/O path to the FPGA for high performance.
Lack of compatibility. Existing hardware-assisted solution
SR-IOV [13] can solve CPU inefficiency problems. However,
only a few SR-IOV capable NVMe SSDs can be chosen
since SR-IOV is not yet a standard for NVMe. Thus cloud
vendors cannot exploit various local storage devices [4, 30]
independent of manufacturers. Hence, SR-IOV capable devices
lack compatibility with existing storage devices. At the same
time, SR-IOV capable devices also have management and
maintenance obstacles, which are discussed in Section III-C.
Low deployability. FVM [24] and LeapIO [27] adopts P2P
architecture. They need modified host/guest OS, QEMU, and
inevitable customized drivers for initialization and configura-
tion, which are not transparent to hosts. Tenants are usually
unwilling to install vendor-specific drivers that would cause
concerns about data security, privacy, and compatibility. There-
fore, FVM etc. can hardly be deployed on bare-metal instances
due to cloud vendors cannot access the host OS.

To make BM-Store transparent and deployable on bare-
metal instances, we choose direct-attached architecture instead
of the PCIe peer-to-peer-based solution.

C. Management and availability Challenges
Existing solutions do not solve manageability and the

availability challenges of local storage services in production.

1033

Authorized licensed use limited to: Zhejiang University. Downloaded on April 01,2023 at 00:15:16 UTC from IEEE Xplore. Restrictions apply.

Cloud vendors traditionally run management and configura-
tion programs (kernel modules or user-level applications) in
host operating systems. However, it is tough to deploy these
schemes on bare-metal instances.

The availability of local storage services is one of the pri-
orities for cloud vendors, which ensures the infrastructure can
continue to function even if a component fails. For example,
firmware upgrades and faulty device replacements are common
for cloud vendors to maintain physical devices but usually
have to disrupt local storage services. Cloud vendors have
to minimize the impact on tenants, such as not interrupting
tenant I/O. In bare-metal instances, cloud vendors cannot adopt
previous approaches.

Thus, these challenges motivate BM-Store to implement the
out-of-band management mechanism based on MCTP over
PCIe with enhanced availability (hot-plug, hot-upgrade, and
I/O monitor) for local storage in bare-metal instances.

Summary. Cloud vendors need a host-efficient, compatible,
transparent, high-performance, and manageable local storage
solution. Nevertheless, we did not find a feasible local storage
solution for bare-metal instances that meets the cloud vendors’
requirements. BM-Store addresses all the above challenges
that can be large-scaled deployed in bare-metal clouds.

IV. BM-STORE DESIGN AND IMPLEMENTATION

To deploy virtual local storage to bare-metal instances,
cloud vendors have strong demands for transparent, high-
performance, manageable, and high-availability local storage
solution, which enables deployment on a large scale in cloud
computing centers. To this end, we set the following design
goals to resolve local storage challenges in bare-metal clouds.

Host-efficient: The local storage scheme in bare-metal
clouds should be host-efficient which frees up the valuable
host CPU resources to provide more computing power to bare-
metal tenants.

Transparent and high compatibility: It should be transpar-
ent to the host OS, enabling large-scale deployment on bare-
metal clouds. It also should be compatible to support existing
various types of storage devices to provide local disks (e.g.,
NVMe SSDs and SATA HDDs).

Virtualization and high performance: More importantly,
it should provide the local storage with high-performance
virtualization capability for bare-metal instances.

Manageability and high availability: It should enable
cloud vendors to manage local storage even if they cannot ac-
cess the operating system in bare-metal instances. Meanwhile,
it should enhance local storage service availability.

A. Design Choices for transparency

Architectural transparency is crucial for deploying hardware
virtual local storage solutions on bare-metal clouds. Fig. 2
shows two design options for hardware local storage architec-
ture. In P2P architecture (Fig.2(a)), the storage accelerator and
the storage devices are both connected to the host through the
PCIe bus. In such a case, the accelerator communicates with
the storage devices through the PCIe P2P mechanism, which

Host

Storage Devices

Storage

Accelerator

PCIe

PCIe

(a) P2P Architecture

Host
Storage

Devices

Storage

Accelerator
PCIe PCIe

(b) Direct-attached Architecture

Fig. 2. Architecture design options of hardware local storage architecture:
(a) Peer-to-peer-based architecture (b) Device direct-attached architecture.

requires customized drivers in the host OS. Many previous
hardware solutions [24, 27] adopts the P2P-based architecture
but can hardly be deployed on bare-metal clouds.

In this work, BM-Store adopts the architecture that direct-
attached architecture as shown in Fig.2(b). To achieve trans-
parency, BM-Store adopts a standard SR-IOV layer in the
BMS-Engine and an out-of-band management mechanism
based on MCTP over PCIe in the BMS-Controller.
Standard SR-IOV layer. BM-Store exposes standard NVMe
interfaces to the host operating system through an SR-IOV
layer in the BMS-Engine. Therefore, applications or VMs on
the bare-metal instance can access storage resources by the
standard NVMe driver.
MCTP out-of-band management. In-band management [9]
is the common way to manage and maintain the device.
The host needs to be involved in the device management
and configuration process, requiring drivers or software to be
installed. Therefore, the in-band management cannot handle
the bare-metal instances because tenants own the physical
resources and host OS entirely. In BM-Store, we designed an
out-of-band mechanism and implemented MCTP over PCIe
on the ARM co-processor, which bypasses the host OS. Our
out-of-band management scheme provides fast and efficient
management and maintenance of the virtual local storage.

To this end, our BM-Store adopts a standard SR-IOV layer
and out-of-band management to make it transparent to the
host. This feature enables BM-Store deployment on bare-metal
instances without modifying the host OS. Transparency also
facilitates large-scale deployments, disregarding the various
versions of the host operating systems and kernels in cloud
computing centers.

B. Overall Architecture

BM-Store decouples the front-end (storage interface) and
back-end (storage devices) of the local storage. Fig. 3 presents
the BM-Store architecture and its components. BM-Store is
composed of BMS-Engine and BMS-Controller. BMS-Engine
consists of six modules: 1) standard SR-IOV layer to provide
standard NVMe interfaces to tenants; 2) target controller to
forward I/O and admin commands; 3) I/O mapping module
to map address; 4) QoS module to guarantee isolation and
fairness; 5) DMA routing module to enable zero-copy; 6) host
adaptor to interact with back-end disks. BMS-Controller is
responsible for management and maintenance tasks, such as
configuration, I/O monitor, hot-plug, and hot-upgrade.

For high performance, we offload the entire I/O path
and virtualization functions to the FPGA-based BMS-Engine.

1034

Authorized licensed use limited to: Zhejiang University. Downloaded on April 01,2023 at 00:15:16 UTC from IEEE Xplore. Restrictions apply.

 BM-Store FPGA and

 Embedded ARM SoC

PCIe X16

MCTP

Remote

Mangement

Console

User

Space

Kernel

Space
VFIO

VM1

User

Kernel

space

Applciation1

Standard

NVMe Driver

Application2 …

Standard NVMe Driver

Bare-metal

Host

SSD
…

Back-end

NVMe SSDsSSD SSD

AXI

 BMS-Engine

Target Controller

SR-IOV

VFPF … VF

I/O Mapping Module

QoS

Host Adaptor

…SQ CQ SQ CQ

DMA

Route

 BMS-Controller

TC Driver

NVMe MI

Over MCTP

I/O Monitor

Hot-plug

Hot-upgrade

MCTP-Endpoint

Fig. 3. BM-Store Architecture Overview

BMS-Engine accelerates LBA address mapping to fully exploit
opportunities of parallelization.

We deploy QoS in the BMS-Engine for performance iso-
lation. BMS-Engine also adopts the DMA request routing
mechanism to enable zero-copy, eliminating redundant data
copies. In this way, bare-metal tenants can fast and directly
access the virtual storage resources through NVMe interfaces
with near-native performance.

To enable local storage management and maintenance in
bare-metal instances, we design an out-of-band management
mechanism with enhanced availability on the ARM-based
BMS-Controller.

BM-Store is the first work that pays attention to the local
storage management in bare-metal instances. We also propose
a feasible way to enhance local storage service availability in
the production environment. Overall, We propose a hardware
virtual local storage solution for bare-metal instances that can
be easily deployed on a large scale.

C. Virtualization and Zero-copy I/O Path

BM-Store provides virtualization capability to local storage
in bare-metal clouds. BM-Store adopts the FPGA-accelerated
virtualization functions for high-performance. We design the
LBA mapping and QoS mechanism on the BMS-Engine to vir-
tualize back-end storage resources. Furthermore, we propose a
DMA requests routing mechanism to enable direct data transfer
between SSDs and host memory.
LBA address mapping. We set up an LBA Mapping Table
(MT) in the BMS-Engine to map the host LBA to back-end
physical LBA. BMS-Engine supports multi-namespace and re-

8 * 8 bit = 64 bit8 bit

8
 E

n
tr

ie
s

fo
r

e
a
c
h
 N

S

Valid[7:0] Base LBA[7:2] + SSD ID[1:0] … Base LBA[7:2] + SSD ID[1:0]

Valid[7:0] Base LBA[7:2] + SSD ID[1:0] … Base LBA[7:2] + SSD ID[1:0]

… … … …

Valid[7:0] Base LBA[7:2] + SSD ID[1:0] … Base LBA[7:2] + SSD ID[1:0]

(a) LBA Mapping Table

Reserved (8bit)(7bit) Original (48bit)

Function

ID

(1bit)

PRP list

Flag

(b) Global PRP Entry
Fig. 4. The Address Format of : (a) LBA Mapping Table (b) Global PRP
Entry

I/O Mapping

Need Throttle

Command DispatcherCommand Buffer

Y

N

QoS

Host Adaptor

Fig. 5. Quality of Service Procedure

source isolation. We assign eight mapping table entries to each
namespace (NS). As shown in Fig. 4(a), each mapping entry of
MT contains two components: a base LBA (6-bits) and an SSD
ID (2-bits). Our MT is a two-dimensional array contains eight
rows, and each row contains eight mapping entrys and one
validation entry. The validation entry is an 8-bits vector, and
each bit (1/0) indicates whether the corresponding mapping
entry in the same row is valid or invalid. In practice, we divide
the back-end SSDs storage space into a chunk of 64 GB.
Formally, the address mapping between the Host LBA (HL)
and Physical LBA (PL) is defined as:

i = (HL / CS) / EN (1)
j = (HL / CS) mod EN (2)

SSD ID = MTij [1 : 0] (3)
PL = MTij [7 : 2] ∗ CS +HL mod CS (4)

BMS-Engine can quickly obtain the Mapping Table Entry
(MTE) through the Host LBA (HL), Chunk Size (CS), and
Entry Number (EN) per row. Then it can get the SSD ID
and Physical LBA (PL) of the back-end storage devices from
the Mapping Table Entry. Lastly, the BMS-Engine will update
the LBA field in the NVMe command and then forward the
command to the SQ in the Host Adaptor.
Quality of Service The Quality of Service (QoS) is essential
in the cloud for isolation and fairness to prevent performance
interference and enable performance isolation. The mechanism
of QoS is shown in Fig. 5. We create a command buffer for
every NS in BMS-Engine. In performing QoS service, BMS-
Engine will determine whether the current I/O performance

1035

Authorized licensed use limited to: Zhejiang University. Downloaded on April 01,2023 at 00:15:16 UTC from IEEE Xplore. Restrictions apply.

SSD
…

SSD SSD SSD

QoS

I/O Mapping Module

Mapping Table LBA Translation

Host Adaptor

NVMe SQ/CQ NVMe SQ/CQ…

VM

Standard

NVMe Driver
NVMe SQ/CQ

NVMe SQ/CQ
Standard

NVMe Driver

1

DMA BufferIOMMU

DMA

Request

Routing

SR-IOV

1

2

3

4

5

6

7

BMS-Engine

Bare-metal instance

Fig. 6. I/O Request and Data Transfer Procedure

reaches the threshold limit in each NS. If so, it will send
the current request into the Command Buffer, and then the
Command Dispatcher will reschedule from the buffer.
DMA request routing for zero-copy. BM-Store aims to
provide high-performance local storage. However, BM-Store
adopts direct-attached architecture where the BMS-Engine is
connected between the SSD and the host. Typically, the data
must be transferred to the FPGA memory and then copied to
the host memory. These duplicate data copies will seriously
affect I/O performance.

To mitigate performance degradation, we propose the DMA
requests routing mechanism that enables zero-copy. In this
way, BM-Store enables direct data transfer between the SSD
and the host memory. BMS-Engine does not buffer any data.
BMS-Engine converts the host PRP entry to the global PRP
entry, denoted as global PRP, to route DMA requests. As
shown in Fig. 4(b), our global PRP utilizes the first 8 bits
among the reserved 16 bits of the standard PRP. We set the
first seven bits as the PCIe PF/VF device ID (Function ID) and
the last one as the PRP list flag. When BMS-Engine fetches
a command from the host, it will convert the host PRP to
BM-Store’s global PRP by inserting function ID to the host
PRP entry and storing the global PRP into the chip-memory.
When the SSD is ready, the SSD will initiate a TLP message
to start the DMA operation. Then the BMS-Engine receives
the TLP message, retrieves the function ID from the DMA
destination memory address, and routes the request to the
corresponding PF/VF. In this way, our BMS-Engine combines
separated PCIe domains of the host and back-end devices into
a uniform domain, enabling direct data transfer between the
SSD and the host memory.
The I/O path. Fig. 6 presents details of the command path
in BMS-Engine. We take the process of reading data as an
example. In general, the command processing flow of the
BMS-Engine has the following seven steps:

① The host submits its I/O command into its SQ as the
SQ entry (SQE) and writes the doorbell register in the BMS-
Engine. Then, the BMS-Engine fetches the command through
the corresponding PF/VF.

② The BMS-Engine converts the Host LBA to Physical LBA
by the LBA address mapping mechanism. After that, the QoS
module determines whether the command needs to be put into
the command buffer.

③ Then, the BMS-Engine will fetch commands to the SQ
in the host adaptor and write the doorbell register to notify the
back-end physical SSDs. If there is a PRP list in SQE, BMS-
Engine will fetch the PRP list and modify the PRP address
in the PRP list. After that, the BMS-Engine will write the
doorbell register of the back-end SSD.

④ The SSD receives the signal from the doorbell register
and fetches the command from the host adaptor’s SQ.

⑤ The SSD initiates a TLP message to BMS-Engine.
Then, our DMA request routing mechanism forwards the TLP
message to the corresponding PF/VF. Afterward, the SSD
successfully writes data into the host memory.

⑥ When the SSD completes data transmission, it writes the
complete command (CQE) into the CQ in the host adaptor of
the BMS-Engine.

⑦ Finally, after receiving the CQE, BMS-Engine writes the
CQE back to the corresponding CQ in the host memory and
initiates an interrupt to notify the host.

As a result, the FPGA-based BMS-Engine accelerates the
I/O path, enabling BM-Store to provide extreme performance
close to native disks.

D. Out-of-band management with enhanced availability

To solve the manageability challenge in bare-metal in-
stances, we design an out-of-band management mechanism
based on MCTP over PCIe for local storage.
Out-of-band management. We set the MCTP-endpoint and
the NVMe Management Interface (NVMe MI) over the MCTP
module in the BMS-Controller to receive management com-
mands from the remote console. The MCTP Endpoint receives
management commands from a remote MCTP console. Then,
the NVMe MI protocol analyzer parses these commands
and sends them to the corresponding modules in the BMS-
Controller. The availability of local storage services is essential
in cloud computing centers. Firmware upgrades of SSDs
and faulty disk replacement are common in cloud computing
centers. In traditional ways, these processes need to power
off the machines and suspend cloud services, resulting in
service interruption. Benefiting from the flexibility of the ARM
SoC in the BM-Store architecture, we design I/O monitoring,
hot-upgrade, and hot-plug functions for bare-metal instances.
These functions significantly enhance the availability of local
storage services in BM-Store.
I/O Monitor. We deploy the I/O monitor module in the BMS-
Controller. The BMS-Engine monitors I/O status and saves
relevant data in specific registers. The I/O monitor module
would read the registers to get the I/O status information
through the Advanced Extensible Interface (AXI) bus.

1036

Authorized licensed use limited to: Zhejiang University. Downloaded on April 01,2023 at 00:15:16 UTC from IEEE Xplore. Restrictions apply.

TABLE II
FPGA RESOURCE UTILIZATION FOR BM-STORE CONFIGURATION

Design LUTs Registers BRAMs URAMs Clock Speed

1 SSDs 216711
(41%)

226309
(22%)

526
(53%)

49.4
(39%) 250MHz

2 SSDs 244711
(47%)

270309
(26%)

570
(58%)

59.4
(46%) 250MHz

4 SSDs 300711
(58%)

358309
(34%)

659
(67%)

79.4
(62%) 250MHz

6 SSDs 356711
(68%)

446309
(43%)

748
(76%)

99.4
(78%) 250MHz

Hot-upgrade. The device firmware upgrade is commonly
required in the cloud computing center. In traditional instances,
cloud vendors usually access the host OS to upgrade the
firmware and reset the SSDs. However, cloud vendors cannot
apply the previous method to upgrade the firmware in bare-
metal instances because they cannot access the host OS.

Therefore, we adopt a hot-upgrade module on the BMS-
Controller to enable the hot-upgrade of the firmware without
disrupting local storage services. BMS-Controller notifies the
BMS-Engine to store I/O context during firmware upgrading
and reloads I/O context after upgrade completion. In this
way, we successfully enable the firmware hot-upgrade without
interrupting the local storage service.
Hot-plug. To replace faulty storage devices, shutting down
the entire server is needed if SSDs do not support hot-plug.
It wastes time and affects service availability. Thus BM-Store
adopts the hot-plug module in the BMS-Controller for high
availability. During device replacing, BM-Store reserves the
front-end to the tenants, which means the logic drive identities
in the host OS would not disappear. Then BM-Store can
replace, reset, and reconnect the back-end SSDs with the front-
end NVMe interfaces. Thus, the front-end NVMe devices need
not be reset and rescanned. Tenants would benefit from the
reserved logical drive of hot-plug that they do not redeploy
applications after replacing faulty disks.

Above all, we offload several maintenance functions to the
BMS-Controller to enhance local storage service availability
bypassing the host OS. The hot-upgrade process only intro-
duces extra I/O latency of a few seconds. For the hot-plug
process, it reserves logic drives identities and only needs
to pause the I/O but does not need to reboot machines
or redeploy applications. BM-Store is a novel local storage
architecture specially designed for bare-metal clouds, which
supports hot-plug, hot-upgrade, and I/O monitor to enhance
service availability.

E. Implementation

We implemented BM-Store on the Xilinx® Zynq® Ul-
traScale+™ MPSoC ZU19EG device and developed BMS-
Engine and BMS-Controller on the FPGA and embedded
ARM SoC, respectively.
BMS-Engine. We implemented BMS-Engine in Verilog on
the FPGA. BMS-Engine consists of six major modules: SR-
IOV layer, Target Controller, LBA mapping module, DMA
request routing module, QoS module, and host adaptor. BMS-
Engine receives and returns host I/O requests through the

TABLE III
DETAILS OF OUR EXPERIMENTAL SETUP

Host Description
CPU Intel Xeon Platinum 8163 CPU 2.50GHz
RAM 768GB DDR4

Host OS CentOS 7.9.2009
VM OS CentOS 7.9.2009

Kernel Version 3.10.0
SSD 2.0 TB Intel P4510 NVMe SSD

4x Intel P4510

NVMe SSDs

1x Xilinx Zynq

UltraScale+MPSoC

ZU19EG

SSDs are

Direct-attached

to BMS-engine

Fig. 7. BM-Store Deployment on Production Server

Target Controller and then forwards requests to back-end
SSDs. Specifically, the Target Controller will send general
I/O requests to the I/O mapping module and forward the
device management commands (admin command) to the BMS-
Controller. The mapping information is stored in FPGA on-
chip RAMs. We also implemented I/O counting functions in
the BMS-Engine, which sends the number of requests to the
I/O Monitor to supervise the performance and status of the
BM-Store. We present the resource utilization of BM-Store
FPGA with two and four SSDs in Table II, and BM-Store can
support more SSDs with the remaining resources.

BMS-Engine exposes 4 PFs and 124 VFs to the host at the
front-end, which can provide 128 independent NVMe devices
in total. The existing BMS-Engine has two PCIe X8 interfaces
at the back-end, which can attach four NVMe SSDs. We can
increase the number of PCIe interfaces on the BMS-Engine to
support more NVMe SSDs in the future.
BMS-Controller. For BMS-Controller on the embedded ARM
SoC, we implemented several service modules to support
interaction with BMS-Engine, out-of-band management, I/O
monitor, hot-upgrade, and hot-plug. The BMS-Controller inter-
acts with the FPGA-based BMS-Engine through the AXI bus.
We implemented BMS-Controller with about 15000 LOCs.

V. EVALUATION

This section evaluates BM-Store and compares its I/O
performance with other local storage schemes through syn-
thetic benchmarks and real-world applications in both bare-
metal machines and virtual machines. We also evaluate the
availability of BM-Store in terms of the upgrade time and the
I/O pause time caused by hot-upgrade.

A. Experimental Setup

System Settings. Fig.7 shows our BM-Store deployed on
the production server, and TABLE III presents the detailed

1037

Authorized licensed use limited to: Zhejiang University. Downloaded on April 01,2023 at 00:15:16 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
FIO TEST CASE

Test Case Description
rand-r-1 4K random read, iodepth=1, numjobs=4

rand-r-128 4K random read, iodepth=128, numjobs=4
rand-w-1 4K random write, iodepth=1, numjobs=4
rand-w-16 4K random write, iodepth=16, numjobs=4
seq-r-256 128K sequential read, iodepth=256, numjobs=4
seq-w-256 128K sequential write, iodepth=256, numjobs=4

TABLE V
AVERAGE LATENCY OF BARE-METAL PERFORMANCE WITH ONE DISK

Average Latency (µs) Native Disk BM-Store
rand-r-1 77.2 80.4

rand-r-128 786.7 792.6
rand-w-1 11.6 14.5

rand-w-16 179.8 179.9
seq-r-256 40579.3 40041.3
seq-w-256 92502.3 95030.0

experimental settings for BM-Store. We deploy BM-Store
on the host machine with two 24-core Intel Xeon Platinum
8163 CPUs running at 2.5GHz, 768G DDR4 DRAM, and
four 2.0TB Intel P4510 NVMe SSDs. We plugged the BM-
Store card into the PCIe Gen 3.0 slot on the server and
attached 4 NVMe SSDs directly to the BM-Store card. We also
disabled hyperthreading and power-saving states for accurate
performance measurements on the servers.

Baseline and Compared Methods. We took the perfor-
mance of the native disks as the baseline and evaluated BM-
Store in bare-metal machines. On the other hand, for the virtu-
alization performance, We compared BM-Store with VFIO and
SPDK vhost, the mainstream solution for device passthrough
and the representative software solutions, respectively.

Benchmarks and Applications We leveraged FIO [1] to
generate synthetic I/O workloads. FIO is a powerful tool for
testing the performance of storage devices, which has been
widely used by industry and academia. In particular, we used
libaio as the FIO engine and ran the test cases in TABLE IV,
including random and sequential read and write with various
iodepth and numjobs. To evaluate BM-Store in the production
environment, we adopted TPC-C [39] and Sysbench [22] to
drive the MySQL database in the guest virtual machine, and
YCSB [12] to drive RocksDB database. Furthermore, we set
up the evaluation that mixes YCSB and Sysbench workloads
in virtual machines. Finally, we evaluated the availability of
BM-Store in terms of the hot-upgrade time and the I/O pause
time caused by the hot-upgrade.

B. Bare-metal Performance of Single Disk

To evaluate the I/O performance in bare-metal machines, we
ran FIO and measured the throughput and the average latency
of BM-Store and the native disk. In BM-Store, We allocated
a 1536 GB namespace from a back-end SSD and bound the
namespace to the front-end VF.

Fig. 8 shows the IOPS and bandwidth performance of the
native disk and BM-Store. For all test cases, BM-Store can
achieve performance from 96.2% to 101.4% of native disk

Fig. 8. Bare-metal Performance with 1 disk of Native Disks and BM-Store:
(a) IOPS. (b) Bandwidth.

TABLE VI
THE I/O PERFORMANCE OF BM-STORE DEPLOYED ON DIFFERENT

PLATFORMS.

OS Version Kernel
Version IOPS BW(MB/s) AL(µs)

CentOS
7.4.1708

3.10.0 642K 2629 394.4
4.19.127 642K 2629 395.9

5.4.3 642K 2630 396.1

Fedora 33 4.9.296 603K 2468 207.0
5.8.15 607K 2487 206.4

except for rand-w-1 (82.5%). TABLE V shows the latency
performance of native disk and BM-Store. We can see that
BM-Store constantly introduces about 3 us latency overhead
due to the longer command path. The overhead is negligible
in most cases. Nevertheless, in extremely low latency cases
such as rand-w-1, the proportion of overhead is magnified.
We observed that BM-Store could provide high-performance
local storage thanks to the I/O path accelerated by the BMS-
Engine.

BM-Store can be easily deployed on a large scale regardless
of operating systems and kernel versions. We evaluate BM-
Store on various operating systems and kernels by the 4k
random read test case with iodepth=16 and numjobs=8, as
shown in TABLE VI. The results show that BM-Store can suc-
cessfully run on bare-metal instances without any modification
to the host and provides stable local storage performance.

C. Virtualization Performance

In this section, we set up the virtual machine environment
and evaluated the performance of VFIO, BM-Store, and SPDK
vhost with a single disk. For all schemes, we allocated 4 CPU
cores and 4GB system memory for the VM. Especially for
SPDK vhost, we allocated one extra CPU core for the SPDK
vhost virtualization layer.
IOPS and bandwidth performance. The IOPS and band-
width performance of the three virtualization techniques on a
single virtual machine are demonstrated in Fig. 9. We observe
that BM-Store can achieve performance from 95.6% to 102.7%

1038

Authorized licensed use limited to: Zhejiang University. Downloaded on April 01,2023 at 00:15:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. Single VM Performance with one disk of VFIO, BM-Store, and
SPDK vhost: (a) IOPS. (b) Bandwidth.

TABLE VII
AVERAGE LATENCY OF SINGLE VM PERFORMANCE WITH ONE DISK

Average Latency (µs) VFIO BM-Store SPDK vhost
rand-r-1 79.7 83.7 82.7

rand-r-128 1647.0 1666.0 1893.4
rand-w-1 14.9 19.6 19.2

rand-w-16 264.7 275.5 305.3
seq-r-256 40990.4 40075.6 65197.1
seq-w-256 98819.2 100615.0 112245.7

of VFIO except for the rand-w-1 (81.2%). However, SPDK
vhost can only achieve from 63.0% to 96.0% of VFIO. In
the best case (seq-r-256), the performance of BM-Store is
62.9% higher than that of SPDK vhost. We find that SPDK
vhost suffers from severe performance degradation in seq-
r-256 in CentOS7 with 3.10.0 kernel, which indicates that
SPDK vhost cannot get stable performance in some OS and
kernel versions. In contrast, BM-Store is independent of the
host, achieving near-native performance. VFIO provides entire
storage devices to the virtual machine, which achieves native
performance. However, the virtual machine monopolizes the
storage device, losing the sharing capability. In BM-Store, the
back-end storage disks are divided into multiple namespaces,
bounded to PF/VFs, and directly accessed by the virtual
machine, achieving high-performance I/O under the premise
of namespace split and isolation.

To summarize, the I/O processing accelerated by FPGA
can achieve better performance than software solutions. SPDK
vhost not only suffered from performance degradation but also
consumed 25% more CPU resources than BM-Store.
Latency performance. TABLE VII shows that the average
latency performance of BM-Store is better than SPDK vhost
in most test cases, indicating that BM-Store’s hardware-
accelerated path can provide lower latency compared with
SPDK’s polling-based scheme. We can observe that BM-Store
introduces only about 4 µs constant latency in the virtual
machine in rand-r-1 and rand-w-1. The I/O path accelerated by

Fig. 10. Total Bandwidth of BM-Store in Different Numbers of SSDs in
the Bare-metal Machine.

Fig. 11. Total Bandwidth of BM-Store with 4 SSDs in the Multiple Virtual
Machines.

BMS-Engine has obvious advantages, obtaining constant extra
latency and higher performance with no CPU usage. Under
the test case of rand-r-1 and rand-w-1, BM-Store shows slight
poor performance compared to SPDK vhost. The latency of
VFIO is only 79.7 µs in rand-r-1 and 14.9 µs in rand-w-1.
This is because the constant latency of BM-Store accounts
for a large proportion in these two test cases. We can observe
that BM-Store has a more obvious advantage in handling large
I/O requests and deep queue depth. As a result, BM-Store can
accelerate virtual local storage while ensuring minimal and
constant overhead.

D. Scalability and Fairness

For scalability, we evaluated the bare-metal performance of
BM-Store on different numbers of SSDs. First, we tested the
total bandwidth of 1 to 4 SSDs in the bare-metal machine.

Then we ran different numbers of VMs on BM-Store with
4 SSDs to evaluate the fairness. We created 1, 2, 4, 8, 16,
and 26 VMs, where each VM was assigned with a 256GB
namespace in a Round-Robin style from four SSDs. The 26
is the maximum number of virtual machines running in a
single server in our production environment. We bind these
namespaces to the 26 VFs provided by BM-Store. VMs
directly access these VFs to access virtualized local storage.
Scalability of BM-Store. Fig. 10 shows the result of BM-Store
in seq-r-256. We can see that the total bandwidth increases
linearly with the number of SSDs. BM-Store can saturate 4
SSDs while consuming only half of the FPGA resources (as
shown in TABLE II). Therefore, we can conclude that BM-
Store can ensure promising scalability. Fig. 11 shows the FIO
bandwidth result of BM-Store when running multiple VMs
on four NVMe SSDs. We can see the total throughput linearly

1039

Authorized licensed use limited to: Zhejiang University. Downloaded on April 01,2023 at 00:15:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 12. Tail Latency Distribution of BM-Store under Four Virtual Machines

Fig. 13. MySQL Results: (a) TPC-C: Normalized Number of Transactions.
(b) Sysbench: Normalized Queries and Transactions Number.

scaling with the number of the VMs. With 16 VMs, BM-Store
achieves up to 12.40 GB/s, reaching the maximum bandwidth
of four P4510 SSDs.
Fairness between multiple VMs. Fig. 11 shows that BM-
Store achieves the balanced bandwidth allocation among VMs
without any performance loss. We also demonstrated the tail
latency of four virtual machines in Fig. 13. We can see that the
distribution of the tail latency of each virtual machine is close
to each other in all test cases. The results demonstrate that
BM-Store can maintain the fairness of each virtual machine
as well as the overall performance of I/O and prevent the host
side resources from tilting to some virtual machines.

E. Application

To evaluate the performance of BM-Store in the production
environment, we selected MySQL and RocksDB as real-world
applications. We also deployed native disks through VFIO,
SPDK vhost, and BM-Store to provide local storage to them.
We installed MySQL-5.7.35 and RocksDB-6.4.6 on virtual
machines. To generate workloads, we deployed TPC-C and
Sysbench for MySQL, and YCSB for RocksDB.
TPC-C benchmark. For TPC-C, we configured the relevant
parameters, created test databases in MySQL, and filled the
database with data. The warehouse number in TPC-C is set

TABLE VIII
AVERAGE LATENCY RESULT OF SYSBENCH

VFIO BM-Store SPDK vhost
Average Latency (ms) 8.32 8.54 9.32

Extra Overhead 0 2.6% 11.2%

Fig. 14. Mix Workloads Results: (a) RocksDB Throughput of Transactions.
(b) MySQL Average Latency

to 100. Meanwhile, we set the number of concurrent threads
to 32. After warming up for 300s, we started the test for 60
minutes, with the corresponding results shown in Fig. 13(a).

We observed that BM-Store could reach near-native per-
formance when serving TPC-C workloads. Compared to the
baseline, BM-Store outperforms 13.4% higher transactions
than SPDK vhost in the best case, indicating that BM-Store
architecture provides high-performance I/O virtualized local
storage services for applications in virtual machines.
Sysbench benchmark. Then, we ran OLTP workloads of
Sysbench on MySQL for 120s. As shown in TABLE VIII, BM-
Store architecture incurs only 2.6% extra latency compared to
native disks with VFIO. In contrast, SPDK vhost incurs 11.2%
more latency. When comparing the numbers of queries and
transactions, as shown in Fig. 13(b), the performance of the
BM-Store architecture is only 2.59% lower than that of the
native disks. Compared to the baseline, it is 8.1% better than
SPDK vhost in all query cases.
Mixed workload in multiple VMs. For better evaluating
the BM-Store in the production environment, we implemented
Sysbench and YCSB to generate mixed workloads in multiple
VMs and took MySQL and RocksDB as storage applications,
respectively. From the results in Fig. 14, we can see that BM-
Store achieves near-native performance even under complex
workloads. The consistent performance advantages of different
VMs reveal that BM-Store guarantees extreme performance
and excellent isolation among multiple VMs.

F. Availability

In this section, we evaluated the enhanced availability of
BM-Store in terms of the hot-upgrade time and the I/O pause
time caused by the hot-upgrade. We ran FIO and performed
twice hot-upgrades of the SSD’s firmware during the I/O

1040

Authorized licensed use limited to: Zhejiang University. Downloaded on April 01,2023 at 00:15:16 UTC from IEEE Xplore. Restrictions apply.

TABLE IX
AVERAGE TIME FOR HOT-UPGRADE OF SSD’S FIRMWARE

Virtual Machine Bare Metal
Test Case rand-r rand-w rand-r rand-w

I/O Pause Time (s) 6.2 8.8 6.2 9.2

Fig. 15. The IOPS Performance of Virtual Machine When do Hot-upgrade
of SSD’s Firmware: (a) Rand Read. (b) Rand Write.

operations. In particular, we ran the test case of random
read/write with 4K block size. Then we record the IOPS of
FIO and show the result in Fig.15. Meanwhile, we calculated
the I/O pause time and presented the results in TABLE IX.
In BM-Store, the total time for SSD firmware hot-upgrade
is about 6-9 seconds. Among them, the processing time of
BM-Store is about 100ms, and the remaining part depends
on the time of the SSD firmware upgrade. During the hot-
upgrade process, tenants do not need to stop I/O operations
and will not receive I/O errors. This is because BM-Store
can complete SSD’s firmware hot-upgrade before I/O timeout.
Therefore, BM-Store can provide more availability for local
storage services in the production environment.

VI. DISCUSSION

A. Compatibility of BM-Store Architecture

BM-Store can further easily support various storage devices
such as SATA HDDs and ZNS SSDs [3]. For example, to
support SATA HDD, no modification is needed to the hardware
architecture due to the programmability of the BMS-Engine
and BMS-Controller. First, we have to add the logic of the
SATA controller to the Host Adaptor in BMS-Engine to im-
plement interfaces for SATA HDDs. Then we should develop
a module in BMS-Controller to process SATA protocol and
management. As such, BM-Store is flexible to support SATA
HDDs. BM-Store can also easily be deployed on the traditional
virtual machine instances because BM-Store is transparent to
the host. Virtual machine tenants will also benefit from the
high performance and cost-efficiency of BM-Store.

Hence, BM-Store architecture is compatible with both stor-
age devices and existing host systems. BM-Store architecture
can provide virtual local storage with a standard NVMe
interface independent of the types of back-end storage devices.

Moreover, BM-Store is independent of the host system and
OS, which is transparent to tenants.

B. Experience and Lessons

We want to share some practical lessons from the develop-
ment of BM-Store.

First, TCO is one of the critical factors in choosing solutions
for cloud vendors. In particular, TCO analysis includes too
many variables, such as raw hardware cost, power consump-
tion, IDC cost, sellable resources per server, compatibility
with prior and subsequent architecture, server configuration,
etc. Adopting an FPGA in the initial stages (deployment scale
less than 10000) allows us to develop and optimize BM-Store
quickly. Therefore, we can benefit from the flexibility of FPGA
to quickly get stable performance and verify the effectiveness
of BM-Store architecture. As the development scale grows, we
will consider ASIC to further reduce hardware costs.

Second, hot-upgrade and management capabilities in cloud
services are as essential as service performance. Cloud tenants
are extremely sensitive to the availability of cloud services.
Therefore, BM-Store solves the problem of local storage man-
agement in bare-metal instances and enhances the availability
of services.

Third, industry standards represent a technological trend.
However, we encountered many problems and bottlenecks in
the actual implementation, which required many iterations and
efforts to adapt to the practical application. For example, the
MCTP over PCIe adopted in BM-Store enables out-of-band
local storage management in bare-metal instances. However,
we found issues with the stability and performance of MCTP.
To enable BM-Store deployment in the production environ-
ment, we optimized the protocol to improve performance and
stability and applied it for related patents.

C. TCO Analysis

We calculated the TCO of our solution and confirmed that
the deployment of BM-Store can reduce at least 11.3% TCO
because we can sell 14.3% more instances per server. In our
deployment, the cost of a single server increased 3% from
BM-Store hardware, where each server is equipped with 4
BM-Store hardware and 16 NVMe SSDs. Our typical server
configuration is 128 HT/1024 GB Memory/16 SSDs. Adopting
SPDK vhost scheme inevitably faces the problem of unused
resource fragments (128GB/2 SSDs) due to 16 dedicated CPU
cores for polling. BM-Store can eliminate these fragments and
sell two more instances (8 HT/64 GB Memory/1 SSD) with
these fragments than the SPDK solution.

D. Future Works

BM-Store provides high-performance virtual local storage
and high compatibility to the existing system that is transparent
to the host. Due to the programmability of BM-Store archi-
tecture, we can easily further offload any storage functions to
BMS-Engine and BMS-Controller, providing various storage
services without host CPU usage. While BM-Store currently
focuses on local storage virtualization, we plan to add remote

1041

Authorized licensed use limited to: Zhejiang University. Downloaded on April 01,2023 at 00:15:16 UTC from IEEE Xplore. Restrictions apply.

storage support to cope with more storage scenarios. At the
same time, we are working hard to deploy BM-Store in one
of the largest public cloud data centers to provide high-
performance virtualized local storage to bare-metal clouds.

VII. RELATED WORK

Bare-metal Clouds. Most public cloud vendors have provided
bare-metal instances [8, 11, 29] and many previous works
[26, 31, 43] focus on optimizing bare-metal services. BMcast
[31] improves the agility and elasticity in bare-metal clouds.
BM-Hive [43] provides a multi-tenants bare-metal architecture
to enable secure, flexible, and interoperable bare-metal cloud
service. To better evaluate big data processing on bare-metal
clouds, Lee et al. [26] provide performance analysis on dif-
ferent bare-metal platforms.
Local Storage Virtualization. Virtio [34] is a set of virtu-
alized devices for general I/O devices, but it suffers from
severe performance degradation of device simulation. Yang
et al. [41] analyze the overhead caused by interrupts in the
NVMe protocol when accessing high-speed storage devices
and propose that using polling instead of the interrupt can
significantly improve storage performance. SPDK [42] adopts
a polling mechanism, which provides a user-mode efficient
I/O interface, and it provides a vhost acceleration method
called SPDK vhost for accelerating Virtio-scsi or Virtio-blk.
Similarly, MDev-NVMe [32] proposes a mediated passthrough
mechanism with an active polling mode. To mitigate host CPU
inefficiency, FVM [24] offloads NVMe virtualization to the
hardware, which is a fast and scalable solution. However,
it needs customized drivers, which is tough for bare-metal
instances and large-scale deployment.
Software stack offloading and near-storage processing. As
the speed of accelerators such as FPGA continues to increase,
offloading I/O stack and I/O-related computations becomes
popular, which is host CPU efficient. LeapIO [27] offloads
the entire storage stack for local and remote storage to the
ARM SoC, but it suffers from severe performance degradation.
Linefs [19] offloads part of the distributed file system to
the idle SmartNIC. Recent near-storage processing studies
[14, 16, 17, 21, 33, 35, 37] proposed flexible overlay FPGA
architectures or offloaded part of computing tasks to the smart
SSDs and the SSD controllers, which enhanced the usability
of computational storage devices. DCS [7, 23] and Lynx [38]
offloads the server data and control plane to the accelerator
and enables direct communication between accelerators and
the smart-NIC efficiently. These works optimize the I/O per-
formance while greatly reducing the pressure on the CPU.

VIII. CONCLUSION

We propose BM-Store, a novel transparent and high-
performance virtual local storage architecture for bare-metal
clouds. BM-Store adopts the device direct-attached to the
BMS-Engine and the out-of-band management on the BMS-
Controller to make BM-Store transparent to the host. We
offload the I/O path to the FPGA-based BMS-Engine to pro-
vide high-performance virtual local storage. We also integrate

management and maintenance functions in BMS-Controller
to enhance the availability of BM-Store in the production
environment. BM-Store does not rely on any custom drivers,
so other cloud vendors can benefit from our design and
experience presented in this paper.

IX. ACKNOWLEDGMENT

This research was supported by the key research and devel-
opment plan of Zhejiang province (Grant No.2021C03140).
This research was also supported by the advanced comput-
ing resources provided by the Supercomputing Center of
Hangzhou City University. Chengkun Wei and Wenzhi Chen
are co-corresponding authors.

REFERENCES

[1] “Flexible i/o tester,” https://github.com/axboe/fio.git,
2021.

[2] “Intel ssd dc p4510 series,” https://ark.intel.com/content/
www/us/en/ark/products/series/122570/intel-ssd-dc-
p4510-series.html, 2021.

[3] “Nvme zoned namespaces,” https://zonedstorage.io/docs/
introduction, 2021.

[4] “Sata data storage protocol,” https://www.intel.com/
content/www/us/en/programmable/solutions/technology/
transceiver/protocols/pro-sata-sas.html, 2021.

[5] T. A, “Storage and pci express a natural combination,”
http://www.avagotech.com/applications/datacenters/
enterprise-storage, 2016.

[6] D. Abramson, J. Jackson, S. Muthrasanallur, G. Neiger,
G. Regnier, R. Sankaran, I. Schoinas, R. Uhlig,
B. Vembu, and J. Wiegert, “Intel virtualization technol-
ogy for directed i/o.” Intel technology journal, vol. 10,
no. 3, 2006.

[7] J. Ahn, D. Kwon, Y. Kim, M. Ajdari, J. Lee, and J. Kim,
“Dcs: a fast and scalable device-centric server archi-
tecture,” in 2015 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2015,
pp. 559–571.

[8] AWS, “Amazon ec2 m5.metal instances,” https://aws.
amazon.com/ec2/instance-types/m5/, 2022.

[9] M. Canini, I. Salem, L. Schiff, E. M. Schiller, and
S. Schmid, “A self-organizing distributed and in-band
sdn control plane,” in 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS).
IEEE, 2017, pp. 2656–2657.

[10] A. Cloud, “Local disks in elastic compute service
of alibaba cloud,” https://www.alibabacloud.com/help/en/
elastic-compute-service/latest/local-disks, 2022.

[11] A. Cloud, “Alibaba cloud elastic compute
service (ecs) bare metal instance families,”
https://www.alibabacloud.com/help/en/elastic-compute-
service/latest/ecs-bare-metal-instance-types-overview,
2022.

[12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears, “Benchmarking cloud serving systems with

1042

Authorized licensed use limited to: Zhejiang University. Downloaded on April 01,2023 at 00:15:16 UTC from IEEE Xplore. Restrictions apply.

ycsb,” in Proceedings of the 1st ACM symposium on
Cloud computing, 2010, pp. 143–154.

[13] P. S. I. Group, “Welcome to pci-sig,” https://pcisig.com/,
2020.

[14] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-
U. Kang, M. Kwon, C. Yoon, S. Cho et al., “Biscuit: A
framework for near-data processing of big data work-
loads,” ACM SIGARCH Computer Architecture News,
vol. 44, no. 3, pp. 153–165, 2016.

[15] Z. Guz, H. Li, A. Shayesteh, and V. Balakrishnan,
“Nvme-over-fabrics performance characterization and the
path to low-overhead flash disaggregation,” in Proceed-
ings of the 10th ACM International Systems and Storage
Conference, 2017, pp. 1–9.

[16] Y. Jin, H.-W. Tseng, Y. Papakonstantinou, and S. Swan-
son, “Kaml: A flexible, high-performance key-value ssd,”
in 2017 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA). IEEE, 2017, pp.
373–384.

[17] Y. Kang, Y.-s. Kee, E. L. Miller, and C. Park, “Enabling
cost-effective data processing with smart ssd,” in 2013
IEEE 29th symposium on mass storage systems and
technologies (MSST). IEEE, 2013, pp. 1–12.

[18] A. Khatri, “Offline gaming vs cloud gaming (online
gaming),” National Journal of System and Information
Technology, vol. 11, no. 2, p. 99, 2018.

[19] J. Kim, I. Jang, W. Reda, J. Im, M. Canini, D. Kostić,
Y. Kwon, S. Peter, and E. Witchel, “Linefs: Efficient
smartnic offload of a distributed file system with pipeline
parallelism,” in Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, 2021, pp.
756–771.

[20] A. Klimovic, H. Litz, and C. Kozyrakis, “Reflex: Remote
flash = local flash,” ACM SIGARCH Computer Architec-
ture News, vol. 45, no. 1, pp. 345–359, 2017.

[21] G. Koo, K. K. Matam, I. Te, H. K. G. Narra, J. Li, H.-W.
Tseng, S. Swanson, and M. Annavaram, “Summarizer:
trading communication with computing near storage,” in
2017 50th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2017, pp. 219–
231.

[22] A. Kopytov, “Sysbench: a system performance bench-
mark.” https://github.com/akopytov/sysbench, 2021.

[23] D. Kwon, J. Ahn, D. Chae, M. Ajdari, J. Lee, S. Bae,
Y. Kim, and J. Kim, “Dcs-ctrl: a fast and flexible device-
control mechanism for device-centric server architec-
ture,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). IEEE,
2018, pp. 491–504.

[24] D. Kwon, J. Boo, D. Kim, and J. Kim, “{FVM}: Fpga-
assisted virtual device emulation for fast, scalable, and
flexible storage virtualization,” in 14th {USENIX} Sym-
posium on Operating Systems Design and Implementa-
tion ({OSDI} 20), 2020, pp. 955–971.

[25] D. Kwon, W. Lee, D. Kim, J. Boo, and J. Kim, “Smart-
fvm: A fast, flexible, and scalable hardware-based virtu-

alization for commodity storage devices,” ACM Transac-
tions on Storage (TOS), vol. 18, no. 2, pp. 1–27, 2022.

[26] H. Lee and G. Fox, “Big data benchmarks of high-
performance storage systems on commercial bare metal
clouds,” in 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD). IEEE, 2019, pp. 1–8.

[27] H. Li, M. Hao, S. Novakovic, V. Gogte, S. Govindan,
D. R. Ports, I. Zhang, R. Bianchini, H. S. Gunawi, and
A. Badam, “Leapio: Efficient and portable virtual nvme
storage on arm socs,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020,
pp. 591–605.

[28] P. Liu, J. Yoon, L. Johnson, and S. Banerjee, “Greening
the video transcoding service with low-cost hardware
transcoders,” in 2016 {USENIX} Annual Technical Con-
ference ({USENIX}{ATC} 16), 2016, pp. 407–419.

[29] Mircosoft, “Baremetal infrastructure on azure,”
https://docs.microsoft.com/en-us/azure/baremetal-
infrastructure/concepts-baremetal-infrastructure-
overview, 2022.

[30] NVMEXPRESS, “Nvm express specification,” http://
www.nvmexpress.org/specifications/, 2011.

[31] Y. Omote, T. Shinagawa, and K. Kato, “Improving agility
and elasticity in bare-metal clouds,” in Proceedings of
the Twentieth International Conference on Architectural
Support for Programming Languages and Operating
Systems, 2015, pp. 145–159.

[32] B. Peng, H. Zhang, J. Yao, Y. Dong, Y. Xu, and H. Guan,
“Mdev-nvme: A nvme storage virtualization solution
with mediated pass-through,” in 2018 USENIX Annual
Technical Conference (USENIX ATC 18), 2018, pp. 665–
676.

[33] Z. Ruan, T. He, and J. Cong, “{INSIDER}: Design-
ing in-storage computing system for emerging high-
performance drive,” in 2019 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 19), 2019, pp. 379–394.

[34] R. Russell, “virtio: towards a de-facto standard for virtual
i/o devices,” ACM SIGOPS Operating Systems Review,
vol. 42, no. 5, pp. 95–103, 2008.

[35] R. Schmid, M. Plauth, L. Wenzel, F. Eberhardt, and
A. Polze, “Accessible near-storage computing with fp-
gas,” in Proceedings of the Fifteenth European Confer-
ence on Computer Systems, 2020, pp. 1–12.

[36] G. Soundararajan, M. Mihailescu, and C. Amza,
“Context-aware prefetching at the storage server.” in
USENIX Annual Technical Conference, 2008, pp. 377–
390.

[37] D. Tiwari, S. Boboila, S. Vazhkudai, Y. Kim, X. Ma,
P. Desnoyers, and Y. Solihin, “Active flash: Towards
energy-efficient, in-situ data analytics on extreme-scale
machines,” in 11th {USENIX} Conference on File and
Storage Technologies ({FAST} 13), 2013, pp. 119–132.

[38] M. Tork, L. Maudlej, and M. Silberstein, “Lynx: A
smartnic-driven accelerator-centric architecture for net-
work servers,” in Proceedings of the Twenty-Fifth Inter-

1043

Authorized licensed use limited to: Zhejiang University. Downloaded on April 01,2023 at 00:15:16 UTC from IEEE Xplore. Restrictions apply.

national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2020, pp.
117–131.

[39] TPC, “Tpc-c, an on-line transaction processing bench-
mark,” http://www.tpc.org/tpcc/, 2021.

[40] Xilinx, “Zynq ultrascale+ mpsoc: Heterogeneous
multiprocessing platform for broad range of embedded
applications,” https://www.xilinx.com/products/silicon-
devices/soc/zynq-ultrascale-mpsoc.html, 2021.

[41] J. Yang, D. B. Minturn, and F. Hady, “When poll is better
than interrupt.” in FAST, vol. 12, 2012, pp. 3–3.

[42] Z. Yang, C. Liu, Y. Zhou, X. Liu, and G. Cao, “Spdk
vhost-nvme: accelerating i/os in virtual machines on
nvme ssds via user space vhost target,” in 2018 IEEE 8th
International Symposium on Cloud and Service Comput-
ing (SC2). IEEE, 2018, pp. 67–76.

[43] X. Zhang, X. Zheng, Z. Wang, H. Yang, Y. Shen, and
X. Long, “High-density multi-tenant bare-metal cloud,”
in Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, 2020, pp. 483–495.

1044

Authorized licensed use limited to: Zhejiang University. Downloaded on April 01,2023 at 00:15:16 UTC from IEEE Xplore. Restrictions apply.

