
Application and Storage-Aware Data Placement

and Job Scheduling for Hadoop Clusters¤

Tao Li

College of Computer Science and Electronic Engineering,

Hunan University, Changsha, P. R. China
litao1310@hnu.edu.cn

Shuibing He†, Ping Chen‡ and Siling Yang§

College of Computer Science and Technology,

Zhejiang University, Hangzhou, P. R. China
†heshuibing@zju.edu.cn
‡zjuchenping@zju.edu.cn
§slingzjunet@zju.edu.cn

Yanlong Yin

Intelligent Computing System Research Center,

Institute of Arti¯cial Intelligence,

Zhejiang Lab, Hangzhou, P. R. China

yyin@zhejianglab.com

Cheng Xu

College of Computer Science and Electronic Engineering,

Hunan University, Changsha, P. R. China

cheng_xu@yeah.net

Received 20 December 2019

Accepted 17 March 2020

Published 21 December 2020

As one of the most popular frameworks for large-scale analytics processing, Hadoop is facing two

challenges: both applications and storage devices become heterogeneous. However, existing data

placement and job scheduling schemes pay little attention to such heterogeneity of either

application I/O requirements or I/O device capability, thus can greatly degrade system e±-
ciencies. In this paper, we propose ASPS, an Application and Storage-aware data Placement

and job Scheduling approach for Hadoop clusters. The idea is to place application data and

schedule application tasks considering both application I/O requirements and storage device
characteristics. Speci¯cally, ASPS ¯rst introduces novel metrics to quantify I/O requirements of

applications. Then, based on the quanti¯cation, ASPS places data of di®erent applications to

*This paper was recommended by Regional Editor Tongquan Wei.
†Corresponding author.

Journal of Circuits, Systems, and Computers
Vol. 29, No. 16 (2020) 2050254 (24 pages)

#.c World Scienti¯c Publishing Company

DOI: 10.1142/S0218126620502540

2050254-1

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.

https://dx.doi.org/10.1142/S0218126620502540


the preferred storage devices. Finally, ASPS tries to launch jobs with high I/O requirements on

the nodes with the same type of faster devices to improve system e±ciency. We have imple-
mented ASPS in Hadoop framework. Experimental results show that ASPS can reduce the

completion time of a single application by up to 36% and the average completion time of six

concurrent applications by 27%, compared to existing data placement policies and job sched-

uling approaches.

Keywords: Hadoop; MapReduce; HDFS; data placement; job scheduling; SSDs.

1. Introduction

Over the past decade, MapReduce1 has become one of the most popular parallel

frameworks for big data analytics processing. Hadoop2 is the de facto open-source

implementation of MapReduce framework, which consists of Hadoop MapReduce,

Hadoop YARN, and Hadoop Distributed File System (HDFS).3 The Apache com-

munity has developed the Hadoop ecosystem to address big-data challenges. Pre-

vious study4 has shown that more than 30% of the companies had already deployed

Hadoop. Hadoop has attracted much attention not only in industry but also in

academia.

Many large-scale data analytics applications are I/O-intensive. For example,

workload analysis from Facebook and Microsoft shows that 79% of job execution

time is spent on I/O operations.5 To accommodate the large volumes of data from

such applications, Hadoop leverages HDFS to provide e±cient data storage services.

In addition to Hadoop MapReduce, HDFS is also used in the in-memory data pro-

cessing framework Spark6 as well as Hadoop database HBase.7 However, while HDFS

o®ers promising I/O potential for data-intensive applications, current Hadoop

(version 3) is still facing the following challenges due to recent application and

storage trends in data centers.

First, Hadoop clusters face multiple heterogeneous applications, which may de-

grade system performance. For better system resource utilization, Hadoop clusters

are commonly shared by multiple applications concurrently.8–11 Due to their in-

herent natures, applications may have various I/O requirements to process data

(Sec. 2). Unfortunately, current Hadoop cannot intelligently recognize such re-

quirement heterogeneity and still allocates storage resources equally to each appli-

cation. As a result, some applications may need less bandwidth/capacity than they

are assigned while others need more, leading to sub-optimal system performance.

Second, current Hadoop systems host increasingly heterogeneous storage devices,

which can also o®set system e±ciency. To achieve high throughputs with acceptable

costs, each node is evolving to heterogeneous storage devices, e.g., hard disk drives

(HDDs) and solid-state drives (SSDs).12,13 However, HDFS is initially designed for

homogeneous devices, and thus, it places data uniformly across nodes regardless of

device characteristics. Consequently, the tasks of a job on the nodes with faster SSDs

will often execute quickly and wait for the tasks on the nodes with HDDs. This task

T. Li et al.

2050254-2

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



skewness will under-utilize the potential of SSDs. While storage heterogeneity could

occur in di®erent fashions, in this paper, we focus on the case where each node hosts

an HDD and an SSD.

Several previous approaches address the heterogeneity issues by optimizing data

placement of Hadoop systems.4,13–16 Other e®orts improve Hadoop throughput by

designing new task schedulers.17–21 Also some approaches tackle the issues with

integrated data placement and job scheduling optimization.22 However, we note that

none of them are e±cient for Hadoop clusters where applications have heterogeneous

I/O requirements and each node hosts heterogeneous storage devices.

In this study, we propose ASPS, an Application and Storage-aware data Place-

ment and job Scheduling approach for Hadoop clusters. Besides data locality in

existing approaches, ASPS places application data and schedules application tasks

considering application I/O requirements and storage device characteristics. Spe-

ci¯cally, ASPS proposes two metrics to quantify the I/O requirements of the map

and the reduce task of an application. Then, based on the quanti¯cation, ASPS

places application data on the proper devices to make full utilization of storage

devices. The optimized data placement involves the input data, the intermediate

data, and the output data of an application. Finally, ASPS tries to schedule tasks of

an application on the same type of nodes to alleviate task skewness within a job

execution. It also preferentially schedules applications with higher I/O requirements

on the nodes with faster storage devices to enhance system e±ciency for multiple

jobs. We have implemented ASPS in Hadoop system and demonstrated its

advancements through extensive experimental tests on six benchmark applications.

Experimental results show that ASPS can signi¯cantly reduce application comple-

tion time and achieve better cost-e®ectiveness on storage-heterogeneous Hadoop

clusters.

Speci¯cally, this study makes the following contributions:

. We present two new metrics, which can be measured with a simple sampling

approach, to respectively quantify the I/O requirements of the map task (mapper)

and the reduce task (reducer) of a MapReduce application.

. Based on the metrics, we design and develop ASPS, an application and storage-

aware data placement and task scheduling approach to enhance Hadoop system

performance.

. We implemented ASPS in the Hadoop framework. Experimental results with

extensive tests on six benchmark applications validate the e®ectiveness of ASPS.

The remainder of this paper is organized as follows. In Sec. 2, we describe the

background and motivation. In Secs. 3 and 4, we propose the design and imple-

mentation of ASPS, respectively. Section 5 presents the evaluation results. Section 6

discusses the related work. Finally, we conclude this paper in Sec. 7.

Application and Storage-Aware Data Placement and Job Scheduling for Hadoop Clusters

2050254-3

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2. Background and Motivation

2.1. Hadoop data placement and job scheduling

Hadoop is an open-source implementation of the MapReduce framework. The ¯rst

version of Hadoop1 is composed of Hadoop runtime subsystem that executes the

MapReduce applications, and HDFS that provides data storage. The runtime system

includes one JobTracker and multiple TaskTrackers. The JobTracker schedules

tasks onto the TaskTrackers. The Hadoop 2.0/3.0 version has a new module called

YARN, which separates the role of JobTracker into two parts: ResourceManager and

AppMaster. These two parts manage system resources and monitor task execution,

respectively. There are multiple nodes in the Hadoop system. A small number of

nodes are connected to form a rack. A Hadoop cluster may consist of one or more

racks.

HDFS3 is composed of one NameNode that manages ¯le metadata and multiple

DataNodes that store ¯le data. To provide high throughput, HDFS divides all ¯les

into ¯xed-size blocks (e.g., 64MB) and places them uniformly across various Data-

Nodes. Moreover, to provide resilience against both node and rack failures, HDFS

defaults to maintain three replicas for each block and places them on DataNodes in a

network-aware fashion: one is placed on the local node where the client is running,

one on a node in another rack, and one on a di®erent node in the remote rack. Each

input data block corresponds to one map task (mapper). When a job begins to run,

the scheduler (Capacity Scheduler) uses a network-aware policy to assign each map

task on a DataNode where the nearest replica of the required data resides. These

network-aware policies can signi¯cantly improve data locality and reduce data

transfer time on the network.

As described in Sec. 1, the original Hadoop implementation regards all appli-

cations and storage devices to be homogeneous. While recent versions of Hadoop

have supported heterogeneous storage devices,23–25 they only provide interfaces for

users to choose the desired device types rather than intelligently determining the

preferred devices and scheduling the jobs in the system. When various applications

and storage devices occur, existing Hadoop systems may lead to sub-optimal sys-

tem performance.

2.2. Motivating examples

To highlight these issues, we measure the Hadoop system performance in two dif-

ferent scenarios: homogeneous applications on heterogeneous devices and heteroge-

neous applications on homogeneous devices. We use three PUMA benchmark

applications,26 i.e., DFSIO, TeraSort, and Grep, each with 40GB input data.

Heterogeneous device impact. Figure 1(a) shows the completion times of dif-

ferent phases of TeraSort on three storage con¯gurations. The HDD, SSD, and

Hybrid con¯gurations refer to 8 HDD DataNodes, 8 SSD DataNodes, and 4 HDDþ4

T. Li et al.

2050254-4

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



SSD DataNodes, respectively. As shown, for all the three phases, i.e., Map, Shu®le,

and Reduce phase, Hybrid con¯guration slightly outperforms the homogeneous HDD

cluster and is much worse than the homogeneous SSD con¯guration. This shows the

potential of SSD DataNodes is substantially under-utilized in storage-heterogeneous

environments.

The reason is that heterogeneous devices lead to skewed task execution, which

o®sets application performance. To illustrate this issue, we use Fig. 2(a) as an ex-

ample to describe job execution on a storage-heterogeneous cluster. There are two

jobs, J1 and J2, running on four nodes, N1 to N4. Each job represents an application.

For J1, its two input blocks (the nearest replicas) are placed on N1 and N3, which

have an HDD and an SSD device, respectively. With the default policy, two tasks of

J1 are scheduled on N1 and N3. Because an SSD has higher I/O performance than an

HDD, N3 ¯nishes its task more quickly than N1. However, J1's completion time is t4
because a job is not completed until the slowest task complete.5 This is called the

\all-or-nothing" property of job execution, which o®sets SSD potential, although it

has superior performance. The case is similar for job execution of J2.

(a) Default policy

Task of J1 HDD node SSD nodeTask of J2

(b) Storage-aware policy (c) Cost-effective policy

!12.
t2 t4t3 t4t1 t2

Time of J1 Time of J2

N1

N2

N3

N4

t0 t0 t3 t4t1 t2t0

Fig. 2. Job execution under di®erent policies in Hadoop system.

0
500

1000
1500
2000
2500
3000
3500

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Map Shuffle Reduce

HDD Hybrid SSD

(a) Heterogeneous devices

0
500

1000
1500
2000
2500
3000
3500

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Map Shuffle Reduce

DFSIO TeraSort Grep

(b) Heterogeneous applications

Fig. 1. The system performance in heterogeneous environments.

Application and Storage-Aware Data Placement and Job Scheduling for Hadoop Clusters

2050254-5

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



To overcome the above issue, an alternative approach is to place data of a job in

the same type of devices and schedule its tasks from the same type of nodes. We refer

this policy to storage-aware policy. As shown in Fig. 2(b), the input blocks of J1 are

placed on HDD nodes, namely N1 and N2, and those of J2 are on SSD nodes, namely

N3 and N4. During job execution, J1 is scheduled on HDD nodes and J2 on SSD

nodes. As a result, the job completion times of J1 and J2 are t4 and t2, respectively.

Compared to the default policy, the storage-aware policy reduces the job completion

time from t3 þ t4 to t2 þ t4.

Heterogeneous application impact. Figure 1(b) shows the completion times of

the three heterogeneous applications with the HDD con¯guration. One can observe

that these times in the three phases vary signi¯cantly for the three applications. The

reason is that applications access the data with di®erent I/O requirements. Usually,

each task of an application handles a data block consisting of several records. The

number of records, the record size, and the read/write intensity can vary greatly from

application to application. This means allocating enhanced resource to di®erent

applications results in various performance bene¯ts. For example, the Mapper exe-

cution times of TeraSort and Grep are reduced by 1.6X and 1.1X, respectively, when

running them on SSD nodes compared to running them on HDD nodes. Therefore,

such storage-aware policy may still be sub-optimal because it ignores application

characteristics. We will illustrate this in Sec. 3.1 later.

Summary. The above studies show that both heterogeneous devices and hetero-

geneous applications can substantially impact Hadoop system e±ciency. This

motivates us to propose ASPS to tackle these challenges.

3. ASPS Design

ASPS aims to enhance Hadoop with a cooperative data placement and job sched-

uling approach. In this section, we ¯rst introduce the idea of ASPS and then describe

its architecture, followed by the details of each of its key components.

3.1. Idea of ASPS

Since applications own di®erent I/O requirements and storage devices provide var-

ious I/O capacities, ASPS places application data and schedules their tasks con-

sidering both application and device characteristics. ASPS centers on two key

designs: (1) it tries to place an application's data on the same type of devices like in

the storage-aware policy. Moreover, as applications with high I/O requirements will

bring signi¯cant performance bene¯ts from fast devices, it prioritizes to place data of

such applications on faster devices, i.e., SSDs; (2) it preferentially schedules the tasks

of applications with high I/O requirements on the nodes with the same type of faster

devices.

T. Li et al.

2050254-6

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



Figure 2(c) shows the idea of ASPS, which we call a cost-e®ective policy. In the

example, as J1 has higher I/O requirement than J2, the blocks of J1 are placed on

SSD nodes (N3 and N4) and those of J2 are on HDD nodes (N1 and N2). Moreover,

by scheduling J1 and J2 on the same type of SSD nodes and HDD nodes, respec-

tively, the overall job completion time is t1 þ t3, which is smaller than t2 þ t4, namely

the time achieved by the storage-aware policy in Fig. 2(b).

The proposed approach requires prior knowledge of applications' I/O require-

ments. Fortunately, periodic jobs make up the majority of cluster workloads, as

reported by Refs. 27 and 28. This provides an opportunity to obtain the I/O

requirements of application via I/O sampling techniques.

3.2. System architecture

Figure 3 shows the system architecture of ASPS. In this system, we assume that each

node in the cluster is equipped with homogeneous CPU and memory resource but

with heterogeneous storage devices: an HDD and an SSD. There are concurrent jobs

(applications) submitted to the cluster. To enable the proposed application and

storage-aware data placement and job scheduling approach, ASPS includes the

following three components.

. The I/O quanti¯er. It uses a simple but e®ective sampling technique to quantify

the I/O requirements of applications. Based on these metrics, ASPS makes opti-

mized data placement and task scheduling.

. The data placer. It places application data on the proper devices based on their

I/O requirements. The data include the input data, the intermediate data, and the

output data of the application in the I/O path of the job execution.

. The job scheduler. It makes e±cient scheduling for concurrent jobs by consid-

ering application I/O requirements and storage device types.

Fig. 3. The system architecture of ASPS.

Application and Storage-Aware Data Placement and Job Scheduling for Hadoop Clusters

2050254-7

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



The above components operate as follows. First, the quanti¯er recognizes the I/O

requirements of applications and then forwards these requirements to the Name-

Node. Then, when the input data of applications are imported into HDFS, the data

placer makes careful data placement on the proper storage devices based on the

application's I/O requirements. Finally, when multiple jobs are concurrently sub-

mitted to the system, the scheduler allocates the jobs to the proper nodes based on

application and device characteristics. This process is repeated until all jobs are

completed.

3.3. I/O requirement quanti¯cation

To enable the proposed data placement and task scheduling approach, we need to

quantify the I/O requirements of applications. These requirements are highly ap-

plication-dependent, thus the measurements change for di®erent applications. Since

map tasks and reduce tasks may require various I/O operations (Sec. 2.2), we further

quantify the I/O requirements of mappers and reducers, respectively.

Inspired by previous studies that use disk-based sampling technique to learn the

features of MapReduce applications,29 we propose a disk-based sampling approach to

measure the I/O requirements of mappers and reducers. We use an in-disk directory

as the local HDFS storage and capture the I/O timing information and the input/

output data amounts of applications.

For mappers, we use one tailored map task and run it on a dedicated node to

process a split that is approximately a block. We measure the split size and the

mapper I/O times on di®erent storage devices. Assume the split size is B, the I/O

times on an HDD and an SSD device are T h
m and T s

m, respectively; then the I/O

requirement of the mapper is de¯ned as

rm ¼ T h
m � T s

m

B
: ð1Þ

For reducers, they will read input data from the outputs of mappers, which are

expected to be materialized in the local ¯le system. Assume the output size of a

mapper isD, then the input size of a reducer is D�m
r , wherem and rmean the number

of mappers and reducers, respectively. We also measure the reducer I/O times on

di®erent storage devices. Assume the I/O times on an HDD node and an SSD node

are T h
r and T s

r , then the I/O requirement of the reducer is

rr ¼
r� ðT h

r � T s
r Þ

D�m
: ð2Þ

Both rm and rr re°ect the I/O time reduction brought by per unit of fast storage

resource. The larger the values of rm and rr, the higher the I/O requirements of the

mapper and the reducer.

T. Li et al.

2050254-8

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



Note that rm and rr are e±cient for all mappers and reducers only when they have

uniform workloads. For example, all mappers have a uniform number of input and

output key-value pairs, and the number of values for each output key is similar. In

this case, rm is relatively stable in terms of di®erent sampling split sizes and mappers,

and the mapper completion time is often linearly proportional to the input size.16 As

such, we can quantify the requirements of all mappers with a sampling task and a

split. However, this assumption does not always hold true for some nontrivial

applications in real-world scenarios. To address this issue, we run the sampling

procedure with multiple randomly selected splits and choose the averages as the ¯nal

metrics of rm and rr, respectively.

The quanti¯er identi¯es I/O requirements of all applications one by one. Once

this process is over, it will store the obtained information into a global requirement

table, which is used by the placer and scheduler later. Note that the two metrics only

consider limited parameters in characterizing I/O accesses. There are other factors

that a®ect the application's I/O performance. However, such metrics account for the

major I/O access features. As shown in the evaluation, they are a reliable indicator to

direct data placement and job scheduling.

3.4. Data placement

With the proposed metrics in Sec. 3.3, the placer distributes application data on the

cluster with the following rules. (1) It tries to place the data of an application from

the same type of devices as in the storage-aware policy. (2) As applications with high

I/O requirements will bring signi¯cant performance bene¯ts from fast devices, it tries

to place data of such applications on SSD nodes in a high priority. Speci¯cally, if the

application has high I/O requirements (a high value of rm) and the SSDs have

enough space, the placer will store two of the replicas of each block on SSDs and one

replica on HDDs. Otherwise, the placer will store all the replicas on HDDs. This

policy tries to allocate more space for applications with high I/O requirements so

that SSDs can be e±ciently used.

The default HDFS places three replicas of a block on DataNodes in a network-

aware fashion (Sec. 2). Note that the placer does not break this policy: it ¯rst uses the

network-aware policy to ¯nd the physical node that hosts an HDD and an SSD, and

then it adopts the above rules to place the replica on the ultimate device, an SSD or

an HDD, according to application characteristics. To shorten the write response time

of a client, the placer stores the primary replica of the block on SSDs if it is possible.

Besides the input data of map tasks, the placer also optimizes the data placement

of the intermediate data. We do this because the intermediate data materialization is

an I/O-intensive procedure and it can substantially impact overall job execution.30,31

Figure 4 shows the typical I/O path of Hadoop application. We adopt the following

rules to optimize the placement of intermediate data on local devices. For map tasks,

if the value of rm is high and the local SSD has enough free space, we store the

Application and Storage-Aware Data Placement and Job Scheduling for Hadoop Clusters

2050254-9

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



outputs of the map tasks in the local SSDs. Otherwise, the data will be stored on local

HDDs. For reduce tasks, we use similar rules to place their input data except that rm
changes to rr.

Finally, the placer also optimizes the data placement of the output data of the

application. Similar to the rules for the input data of map tasks, we store the output

data of reduce tasks in the HDFS ¯le system as following. If the value of rr is high and

SSDs have enough space, we will store two replicas of each block in the output ¯le on

SSD nodes and one replica on an HDD node. Otherwise, we will store all the replicas

on HDD nodes.

3.5. Job scheduling

Based on the proposed data placement policy and I/O metrics, the scheduler assigns

multiple jobs to the nodes in the cluster as Algorithm 1. The key idea consists of two

aspects. First, considering the all-or-nothing property within a single job execution,

the algorithm tries to launch tasks of each job on the nodes with the same types of

devices. Second, to achieve the cost-e®ectiveness of multi-job execution, the algo-

rithm schedules the tasks of application with high I/O requirements on SSD nodes to

utilize the potential of SSDs.

To this end, the algorithm leverages two helper threads to schedule the tasks of

multiple jobs in the system. One thread is responsible for scheduling map tasks and

the other for reduce tasks. The two threads are synchronized by a waiting job set

(Jw) in the current sliding time window. Each thread uses its own I/O metric, i.e., rm
or rr, to determine if all tasks of a job in a wave can get the same I/O resource. If yes,

the corresponding resources, including CPU, memory, and storage device, are allo-

cated to the job, and this job will be scheduled with these resources. Otherwise, the

job is scheduled as the default policy as long as the system has available resources for

Fig. 4. Typical I/O path in our system.

T. Li et al.

2050254-10

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



the current wave of job execution. Each thread uses a loop to schedule all tasks in the

job set until all jobs are completed.

For a single job, as all of its tasks may be launched onto the nodes with the same

type of devices, the task skewness within the job execution will be substantially

alleviated. For multiple jobs in the system, as those jobs with high I/O requirements

Algorithm 1. Cost-effective job scheduler.
1: procedure Job Scheduling(j, R)
2: m ← number of map tasks of job j

3: r ← number of reduce tasks of job j

4: Jw ← waiting job set in current sliding window
5: Ja ← active job set in current sliding window
6: rm ← map task I/O requirement of job j

7: rr ← reduce task I/O requirement of job j

8: Jw ← Jw + j

9:

10: while Jw = 0 do Thread 0
11: pick a job i with the highest rm

12: if all its map tasks can be assigned on SSD nodes then
13: allocate the resource on SSD nodes to job i

14: else
15: allocate the resource as default policy to job i

16: end if
17: update current available resource R

18: Jw ← Jw − i

19: Ja ← Ja + i

20: end while
21:

22: while Ja = 0 do Thread 1
23: pick a job k with the highest rr

24: if all its reduce tasks can be assigned to SSD nodes then
25: allocate the resource on SSD nodes to job k

26: else
27: allocate the resource as default policy to job k

28: end if
29: update current available resource R

30: Ja ← Ja − k

31: end while
32: end procedure

Application and Storage-Aware Data Placement and Job Scheduling for Hadoop Clusters

2050254-11

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



are preferentially executed on the nodes with fast SSDs, the overall system e±ciency

will be improved as the high-performance SSDs are used in a more e±cient fashion.

Note that this algorithm does not break the data locality in traditional network-

aware scheduler: it ¯rst tries to use the network-aware policy to ¯nd the physical

node that hosts the required data, then it adopts the above rules to schedule the jobs

on the node by accessing the ultimate device, an SSD or an HDD, according to

application characteristics. Moreover, the algorithm is not only limited by one-wave

task execution, but it also applies to multi-wave workloads, namely large jobs.

4. Implementation

We implemented ASPS under Hadoop version 3.0.3. Figure 5 shows the overview of

the system implementation, which includes three phases. In the sampling phase, the

map task of each application is pro¯led on a sampling node to measure application

I/O requirements. In the data placement phase, the NameNode guides the data

placements of each application on storage devices according to the collected I/O

requirements. In the scheduling phase, the scheduler assigns tasks to the proper

nodes based on the rating information.

4.1. Heterogeneous device management

To manage the heterogeneous storage within a single physical node, we run two

DataNodes simultaneously on the same machine. We specify di®erent server

addresses and ports in the con¯guration ¯le to di®erentiate the DataNodes. Mean-

while, we con¯gure the dfs.data.dir to an HDD and SSD-mounted directory to access

the HDD and SSD devices, respectively. The start-up script of HDFS is also modi¯ed

to make the DataNodes start with di®erent con¯guration ¯les. The NodeManager,

Fig. 5. System Implementation overview of ASPS.

T. Li et al.

2050254-12

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



which manages the task running on its hosting node, is the same as the conventional

YARN deployment. However, it interacts with both DataNodes.

To enable our proposed schemes, the ResourceManager or Scheduler in YARN

needs to know the storage device information in each NodeManager. However,

existing computing resources in YARN are abstracted by container, which mainly

include CPU and memory resources without storage information. To overcome this

issue, we encode the storage information into the port number of the NodeManager,

such that the ResourceManager can recognize what the storage device the Node-

Manager owns according to the port number.

4.2. I/O metric sampling

Before importing the input data of applications into HDFS, we use a dedicated

machine as a sampling agent to measure their I/O requirements. As we discussed in

Sec. 3.3, we use disk-based storage to quantify application I/O features. This can be

achieved by specifying the data storage path to an HDD or SSD-based local ¯le

system. We tailor the copyFromLocal approach to load one or more data blocks into

the memory. We run a customized map task to generate the desired metrics, i.e., rm
and rr. Speci¯cally, we add timing information at the beginning and the ending of the

map task execution in MapRunner and record the map output size.

The sampling information is kept in a data structure in NetworkTopology in-

stance. This information will be periodically delivered to the NameNode and the task

scheduler via customized RPCs.

4.3. Data placement

To place input data blocks on desired devices of DataNodes, we modify the block

placement function executed by NameNode. The existing data placer chooses

DataNodes in a network-aware fashion by considering the NetworkTopology, where

leaf nodes represent data nodes while intermediate nodes denote routers of a rack. To

make the data placement policy application- and storage-aware, we hack the Net-

workTopology with storage device information. We then intercept the DataNode

choosing function and choose the desired DataNode by the IP address and port

number. Similar to the default data placement policy, we avoid allocating two

replicas of a block on the same physical node.

By default Hadoop stores the intermediate data in the path speci¯ed by hadoop.

tmp.dir in the pre-con¯gured mapred-site.xml ¯le. However, all applications in the

system share the same con¯guration. To store the intermediate data on the desired

type of devices, we modify the implementation of the AppMaster and the Resour-

ceManager. When the AppMaster executes its ServiceInit procedure, we capture the

appName and put it into the PRC issued to the ResourceManager. The Resource-

Manager determines the data store paths for the intermediate data according to the

appName and sends this information to the AppMaster. Once the AppMaster

Application and Storage-Aware Data Placement and Job Scheduling for Hadoop Clusters

2050254-13

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



receives the feedback from the ResourceManager, it knows the application-speci¯c

path to store the intermediate data for map task outputs and reduce task inputs.

For the outputs of reduce tasks, we use a similar method as in the input placement

of map tasks to distribute their data on the speci¯c DataNodes in the HDFS ¯le

system.

4.4. Task scheduling

A computing resource in YARN is denoted by a container. The ResourceManager

manages all resources in the cluster. When a job is submitted to the system, the

scheduler in ResourceManager will allocate resources to the AppMaster, which is in

charge of executing the tasks of the job. The AppMaster asks the ResourceManager

for desired resources, including resource priorities, desired nodes, the number of

containers, and resource types. The default scheduler in YARN is Capacity Sched-

uler, which tries to ful¯ll the container requests from the AppMaster following a

node-local, rack-remote, and rack-remote order. However, it does not consider the

storage heterogeneity information.

To schedule tasks cost-e®ectively, we modify the Capacity Scheduler to meet the

I/O requirement of a particular application with a high priority. We add a control

switch in the container selection strategy to choose the DataNode with a speci¯c

storage device. In the system, each NodeManager periodically reports its resource

information to ResourceManager via heartbeats. ResourceManager acknowledges

back a heartbeat, including container releasing information. Since the container has

application and task information, the ResourceManager learns if it can get the

preferred resource according to the port numbers of the NodeManagers.

5. Evaluation

In this section, we ¯rst evaluate ASPS in a storage-heterogeneous cluster for a

single application. Then, we further prove the e±ciency of ASPS in the storage-

heterogeneous cluster for multiple heterogeneous applications.

5.1. Experimental setup

We conduct experiments on a 17-node Linux cluster, including 1 head node and 16

computing nodes. The head is equipped with dual 2.7GHz Opteron quad-core pro-

cessors, 8 GB memory and a RAID5 array. Each computing node has two Opteron

quad-core processors, 8 GB memory, a 250 GB HDD, and a 100 GB SSD. Gigabit

Ethernet connects all nodes. We use the head node as Master and the 16 computing

nodes as Slaves. The operating system on each node is Ubuntu 13.04. The Hadoop

version is 3.0.3.

We compare ASPS with three other schemes: Def is the default policy in Hadoop,

which only considers network characteristics (or data locality) but ignores storage

T. Li et al.

2050254-14

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



and application information; Stor accounts for both storage and network but is

unaware of application characteristics; Rand is totally random and oblivious of all

information. Both Def and Stor are discussed in Sec. 3. In contrast, ASPS considers

network, storage, and application factors. By default, the replication factor in HDFS

is three and the block size is 64 MB. The input size is 128 GB for each application and

the number of reducers is 4.

5.2. Evaluation with a single application

In this set of experiments, we use three MapReduce applications, i.e., TeraSort,

Grep, and K-Means from the PUMA benchmark.26 To evaluate ASPS for a single

application, we conduct the experiments by running each benchmark, respectively.

Mapper input placement and scheduling optimization. Figure 6 shows the

application performance when only the mapper input data placement and map task

scheduling are enabled in ASPS. As shown in Fig. 6(a), Rand has the longest com-

pletion times because it does not consider network, storage, and application char-

acteristics. Compared to Rand and Def, ASPS reduces the job completion times of

TeraSort, Grep, and K-Means by 47% and 31%, 25% and 21%, and 19% and 16%,

respectively. The reason for these improvements is that ASPS places application

data on SSDs and launches all mappers from the nodes with the same type of devices,

such that the data retrieval of each mapper can be accelerated and the task skewness

across mappers can be alleviated. In contrast, Rand and Def fully ignore storage

device characteristics. We also observe that ASPS is comparable to Stor since there is

only one application in the system thus ASPS defaults to Stor. Figure 6(b) shows the

map phase times of the three applications. Similar to Fig. 6(a), we can ¯nd ASPS

outperforms Rand and Def in reducing the map task completion times of the three

applications.

Another observation from Fig. 6 is that ASPS achieves larger performance

improvements for Grep and TeraSort than for K-Means. By analyzing the I/O times

0

1000

2000

3000

4000

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

TeraSort Grep K-Means

Rand Def Stor ASPS

(a) Application completion time

0

1000

2000

3000

4000

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

TeraSort Grep K-Means

Rand Def Stor ASPS

(b) Map task completion time

Fig. 6. Application performance when mapper input placement and scheduling optimization are enabled
in ASPS.

Application and Storage-Aware Data Placement and Job Scheduling for Hadoop Clusters

2050254-15

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



and overall completion times of the three applications, we ¯nd that Grep and

TeraSort are I/O intensive workloads while K-Means is a CPU intensive workload.

Since ASPS focuses on data storage optimization in the I/O path, it accordingly

brings more performance bene¯ts for I/O intensive workloads Grep and TeraSort.

Mapper output placement optimization. Figure 7(a) compares application

completion times when only mapper output data placement optimization is enabled

in ASPS. This means that ASPS will store the output data of map tasks on local

SSDs. One can ¯nd that ASPS improves job completion times by 10%–17% against

Rand and Def. This shows placing the intermediate data on fast devices can e±-

ciently improve the overall application performance. Figure 7(b) shows the corre-

sponding map task completion times. ASPS contributes 15%–26% performance

improvements, which are larger than those improvements of the overall application

completion times. Similarly, ASPS has comparable performance with Stor because it

defaults to Stor in the single-application case.

Reducer input placement optimization. Figure 8 shows the application exe-

cution times when only the reducer input data placement optimization is enabled in

ASPS. This means that ASPS will store the input data of reduce tasks on SSDs if the

intermediate data are materialized in the local ¯le system. To show the impacts of

reduce task data placement on application performance, we set the number of

reducers to 16. ASPS improves job completion time by 7%–13% compared to Rand

and Def. The reason is that both Rand and Def randomly store the materialized

input data of reduce tasks in the local ¯le system on HDDs while ASPS stores them

on fast SSDs. This can greatly speed up the I/O materialization procedure.

Reducer output placement and scheduling optimization. Figure 9 plots the

application completion times when only the reducer output placement and sched-

uling optimization are enabled. In this case, ASPS tries to place application data on

SSDs and to schedule all reducers on the nodes with the same type of devices. We set

the number of reducers to 16. ASPS improves the job completion time of TeraSort by

0

1000

2000

3000

4000

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

TeraSort Grep K-Means

Rand Def Stor ASPS

(a) Application completion time

0

1000

2000

3000

4000

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

TeraSort Grep K-Means

Rand Def Stor ASPS

(b) Map task completion time

Fig. 7. Application performance when mapper output placement optimization is enabled in ASPS.

T. Li et al.

2050254-16

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



14% and 27% compared to Rand and Def on the heterogeneous cluster, respectively.

The reason is that both Rand and Def place data and schedule tasks in a storage-

unaware fashion; thus, some reducers are allocated to nodes with HDDs and others

are allocated to nodes with SSDs, leading to severe task skewness in the reducer

execution. In contrast, ASPS attempts to launch reducers on the nodes with the

same type of fast SSDs, which not only speeds up write accesses but also alleviates

task skewness across reducers, leading to enhanced system performance.

Comprehensive optimization. Figure 10 plots the application performance when

all the optimizations in ASPS are enabled. While it only shows the results of Ter-

aSort with four reducers (4R) and 16 reducers (16R), the results of other applications

bring a similar conclusion. Compared to Def, we can see that ASPS improves the

overall performance by 36% and 32%, respectively, for four reducers and 16 reducers.

This indicates that ASPS can e±ciently reduce application completion time when

combining all optimizations compared to the case where only one optimization is

used. However, the overall improvement cannot be the sum of that of each optimi-

zation. This is because some of the execution phases run concurrently. For example,

0

1000

2000

3000

4000

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

TeraSort Grep K-Means

Rand Def Stor ASPS

(a) Application completion time

0

1000

2000

3000

4000

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

TeraSort Grep K-Means

Rand Def Stor ASPS

(b) Reducer completion time

Fig. 8. Application performance when reducer input placement optimization is enabled in ASPS.

0

1000

2000

3000

4000

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

TeraSort Grep K-Means

Rand Def Stor ASPS

(a) Application completion time

0

1000

2000

3000

4000

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

TeraSort Grep K-Means

Rand Def Stor ASPS

(b) Reducer completion time

Fig. 9. Application performance when reducer output placement and scheduling optimizations are
enabled in ASPS.

Application and Storage-Aware Data Placement and Job Scheduling for Hadoop Clusters

2050254-17

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



the reduce phase overlaps with the map phase, which will compromise the perfor-

mance improvement of each phase.

5.3. Evaluation with multiple applications

In this set of experiments, we evaluate ASPS on the storage-heterogeneous cluster

with six concurrent applications, i.e., WordCount, GrepSort, GrepSearch, TeraSort,

Sorter, and BigramCount. The former four applications are from the PUMA

benchmark.26 The BigramCount is from Cloud9 MapReduce toolkit32 and the Sorter

is from HiBench benchmark suite.33

The input size of each application is 48 GB. As the baseline case, we use \fsck"

command to check the data placement of ¯les and ensure that the ratio between the

consumed HDD capacity and SSD capacity is approximately 1 to 1, which is con-

sistent to the policy used by the current HDFS data placement policy. We submit the

six jobs sequentially but within a short interval, such that each test has the same

order of submission for a fair comparison.

Completion time. Figure 11(a) demonstrates the average completion times of the

six applications under di®erent placement and scheduling policies. In these tests, we

enable all the optimization techniques in ASPS. As shown in the ¯gure, ASPS

0

500

1000

1500

2000

2500

3000

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

MapReduce Map Sort-Reduce

4R-ASPS 4R-Def 16R-ASPS 16R-Def

Fig. 10. TeraSort performance when all optimizations are enabled in ASPS.

0

1000

2000

3000

4000

E
xe

cu
tio

n 
T

im
e 

(s
ec

) Rand Def Stor ASPS

(a) Average completion time

0

1000

2000

3000

4000

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

WordCount
Sorter

GrepSort

GrepSearch
TeraSort

BigramCount

Rand Def Stor ASPS

(b) Individual completion time

Fig. 11. Completion times of applications.

T. Li et al.

2050254-18

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



reduces the average application completion time by 36% and 27% compared to Rand

and Def on the heterogeneous cluster, respectively. The reason is that both Rand and

Def are storage- and application-unaware; thus, they are obviously ine±cient for

multiple jobs in a heterogeneous Hadoop cluster.

Figure 11(a) also reveals that ASPS outperforms Stor. This is due to the fact that

Stor only considers device heterogeneity but it ignores application I/O requirements.

Thus, while Stor tries to place data of a job on the same type of devices and schedule

the tasks of the job from the same types of devices, it does not consider how to make

better utilization of the storage resources for multiple jobs. In contrast, ASPS can

carry out cost-e®ective job execution for multiple applications by trying to place the

data of applications with high I/O requirements on high-performance SSDs and to

execute the tasks of these applications from the nodes with SSDs.

Figure 11(b) shows the completion time of each individual application. One can

¯nd that ASPS does not always outperform Stor in terms of individual application

performance in multi-application cases. For example, ASPS increases the completion

times of WordCount and GrepSearch compared to Stor. This is because ASPS treats

them as applications with low I/O requirements and it leaves the chance of utilizing

high-performance SSDs to other applications. According to the I/O metrics in

Sec. 3.3, only Sorter and TeraSort are I/O intensive applications and thus, SSDs are

reserved for these applications. As the rest of applications are insensitive to storage

devices, their data placement and task scheduling prefer to HDDs. However, in terms

of overall system performance, ASPS reduces the overall application completion time

compared to Stor, Rand, and Def. This result indicates that ASPS is e±cient for

multi-application Hadoop cluster environments.

I/O throughput. Figure 12(a) demonstrates the average throughput of all appli-

cations in the above experiments. Similar to the previous tests, the result shows that

ASPS can largely improve the average I/O throughput of the six applications rela-

tive to Rand, Def, and Stor. Compared to Def, ASPS improves the average I/O

throughput by 9.3%. Figure 12(b) plots the I/O throughput of each individual ap-

plication. One can ¯nd that with ASPS, some applications' throughputs are

0

20

40

60

80

I/O
 T

hr
ou

gh
pu

t (
M

B
/s

) Rand Def Stor ASPS

(a) Average I/O throughput

0

20

40

60

80

I/O
 T

hr
ou

gh
pu

t (
M

B
/s

)

WordCount
Sorter

GrepSort

GrepSearch
TeraSort

BigramCount

Rand Def Stor ASPS

(b) Individual I/O throughput

Fig. 12. I/O throughputs of applications.

Application and Storage-Aware Data Placement and Job Scheduling for Hadoop Clusters

2050254-19

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



improved and some applications' throughputs are decreased relative to the other

three approaches. However, the overall system throughput is still signi¯cantly

enhanced.

6. Related Work

Data placement. Researchers have paid attention to optimize data placement of

HDFS to improve Hadoop performance. VENU14 uses SSDs as caches to place

preferred data in the Hadoop system incorporating heterogeneous storage media.

Triple-H4 proposes a hybrid architecture to distribute data on heterogeneous storage

resources on high-performance computing (HPC) clusters. NVFS15 places perfor-

mance-critical data on NVMs in a novel HDFS that utilizes NVM and remote direct

memory access (RDMA). hatS13 proposes a hybrid locality- and tier-aware data

placement policy for HDFS with heterogeneous tiered storage devices. In Ref. 16, Xie

et al. allocated a di®erent number of blocks to nodes according to the node data

processing capacity. The recent implementation of HDFS provides heterogeneous

storage types in each data node.23,24 However, these e®orts focus on a single appli-

cation while our work focuses on multiple concurrent applications. We also assume

the CPU and memory resource are homogeneous and only the storage devices are

heterogeneous in each data node.

Numerous e®orts improve parallel program performance by optimizing the data

placement of parallel ¯le systems.34,35 While these techniques are designed for HPC

platform, our approach is designed for the Hadoop platform. Given the inherent

di®erences between HPC and Hadoop architectures, such as network topology, data

redundancy, etc., existing approaches in the HPC community cannot be simply

applied to the Hadoop environment. This study e±ciently addresses these challenges.

Task scheduling.Optimizing task scheduling is another e®ective approach to boost

Hadoop performance. LATE scheduler optimizes backup tasks for straggler tasks to

improve system e±ciency.17 SkewTune18 breaks the atomic task into subtasks to

gain data processing parallelism. Zacheilas et al. scheduled heterogeneous workloads

onto heterogeneous nodes.19 Tarazu20 uses on-line trace and scheduling techniques to

optimize the trade-o® between parallelism of computing power and data transfer in a

heterogeneous hardware environment. MROnline21 schedules di®erent resources for

di®erent applications according to their resource needs. Morpheus27 utilizes dynamic

resource reservations to mitigate execution variance. However, all these studies focus

on CPU and data partition heterogeneity while our research focuses on storage and

application heterogeneity. H-Scheduler36 proposes a storage-aware scheduling ap-

proach in Spark clusters, but it is designed for multiple tasks of an application

instead of multiple applications. In order to better optimize task scheduling of

our research, many works in other heterogeneous environments are also worth

studying.37–40

T. Li et al.

2050254-20

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



For scheduling of dependent jobs, such as work°ow systems, task schedulers are

proposed to optimize cost and makespan.41,42

For traditional scienti¯c workloads, Ucar et al. presented a clustering task

scheduling approach to assign tasks in heterogeneous computing systems.43 This

method considers task execution costs as well as communication costs between dif-

ferent tasks. However, this scheme focuses on HPC environments, while our ap-

proach is designed for Hadoop platforms.

Integrated approach. Some researchers use integrated approaches to boost

Hadoop system performance. A closest related work is �Sched,22 which is a hard-

ware-aware work°ow scheduler for Hadoop. It treats a Hadoop deployment as a

collection of multiple heterogeneous clusters; thus, it examines the current cluster

load along with data availability information to schedule the job to an appropriate

cluster. In addition, �Sched enhances the data placement of HDFS across a multi-

cluster deployment, so that it can handle data locality as well as enable pre-staging of

data to appropriate clusters as needed.

Our work di®ers from �Sched in that we target one Hadoop cluster, where each

node has heterogeneous storage devices but with homogeneous CPU and memory

resources, while �Sched focuses on multiple clusters, where di®erent clusters have

heterogeneous hardware. We also assume applications may have di®erent I/O

requirements when concurrently accessing a shared cluster.

7. Conclusions

In the big data era, heterogeneous application and storage become the trends in data

centers. However, as one of the most popular big data processing frameworks,

Hadoop has not e±ciently updated in the face of such changes. This paper presents

ASPS, cooperative data placement and task scheduling approach for Hadoop clus-

ters. ASPS relies on three key techniques: deriving application I/O requirements

from a sampling method, placing application data according to application I/O

requirements to better utilize fast devices, and scheduling application jobs based on

I/O requirements and device types to achieve cost-e®ectiveness. We have validated

our design and implementation with extensive tests in a Hadoop cluster. In the

future, we plan to evaluate ASPS in a large-scale Hadoop cluster that is not currently

available to us. We also intend to extend ASPS on other big data platforms and

evaluate its e®ectiveness in practical environments.

Acknowledgments

This work was supported in part by the National Natural Science Foundation

of China No. 61772185, the National Natural Science Foundation of China

No. 61572377 and the Zhejiang Lab Research Project No. 2019KC0AC01.

Application and Storage-Aware Data Placement and Job Scheduling for Hadoop Clusters

2050254-21

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



References

1. J. Dean and S. Ghemawat, MapReduce: Simpli¯ed data processing on large clusters,
Proc. USENIX Symp. Operating Systems Design and Implementation (OSDI) (San
Francisco, CA, USA, 2004), pp. 137–150.

2. Apache Software Foundation, Apache Hadoop Project (2018). Available at http://
hadoop.apache.org.

3. K. Shvachko, H. Kuang, S. Radia and R. Chansler, The Hadoop distributed ¯le system,
Proc. IEEE Symp. Mass Storage Systems and Technologies (MSST) (NW Washington,
DC, USA, 2010), pp. 1–10.

4. N. S. Islam, X. Lu, M. Wasi-ur Rahman, D. Shankar and D. K. Panda, Triple-H: A hybrid
approach to accelerate HDFS on HPC clusters with heterogeneous storage architecture,
Proc. 15th IEEE/ACM Int. Symp. Cluster, Cloud Grid Computing (CCGrid) (Shenzhen,
China, 2015), pp. 101–110.

5. G. Ananthanarayanan, A. Ghodsi, A. War¯eld, D. Borthakur, S. Kandula, S. Shenker
and I. Stoica, PACMan: Coordinated memory caching for parallel jobs, Proc.
9th USENIX Conf. Networked Systems Design and Implementation (NSDI) (San Jose,
CA, USA, 2012), pp. 267–280.

6. Apache Software Foundation, Apache Spark (2018). Available: https://spark.apache.
org.

7. Apache HBase, (2018). Available: http://hbase.apache.org.
8. S. Ibrahim, H. Jin, L. Lu, B. He and S. Wu, Adaptive disk I/O scheduling for MapReduce

in virtualized environment, Proc. 40th Int. Conf. Parallel Processing (ICPP) (Taipei,
Taiwan, 2011), pp. 335–344.

9. X. Bu, J. Rao and C.-Z. Xu, Interference and locality-aware task scheduling for
MapReduce applications in virtual clusters, Proc. 22nd Int. Symp. High-Performance
Parallel and Distributed Computing (HPDC) (New York, NY, USA, 2013), pp. 227–238.

10. X. Li, Y. Wang, Y. Jiao, C. Xu and W. Yu, CooMR: Cross-task coordination for e±cient
data management in MapReduce programs, Proc. Int. Conf. High Performance Com-
puting, Networking, Storage and Analysis (SC), Article No.: 42 (Denver, CO, USA, 2013),
pp. 1–11.

11. F. Ahmad, S. T. Chakradhar, A. Raghunathan and T. Vijaykumar, Shu®leWatcher:
Shu®le-aware scheduling in multi-tenant MapReduce clusters, Proc. USENIX Conf.
USENIX Annual Technical Conf. (ATC) (Philadelphia, PA, USA, 2014), pp. 1–12.

12. E. Pettijohn, Y. Guo, and P. Lama, User-centric heterogeneity-aware MapReduce job
provisioning in the public cloud, Proc. 11th Int. Conf. Autonomic Computing (ICAC)
(Philadelphia, PA, USA, 2014), pp. 137–143.

13. K. Krish, A. Anwar and A. R. Butt, hatS: A heterogeneity-aware tiered storage for
Hadoop, Proc. 14th IEEE/ACM Int. Symp. Cluster, Cloud and Grid Computing
(CCGrid) (IEEE, 2014), pp. 502–511.

14. K. Krish, M. S. Iqbal and A. R. Butt, Venu: Orchestrating SSDs in Hadoop storage, Proc.
2014 IEEE Int. Conf. Big Data (Big Data) (Washington DC, USA, 2014), pp. 207–212.

15. N. S. Islam, M. Wasi-ur Rahman, X. Lu and D. K. Panda, High performance design for
HDFS with byte-addressability of NVM and RDMA, Proc. 2016 Int. Conf. Super-
computing (ICS) (Istanbul, Turkey, 2016), pp. 1–14.

16. J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares and X. Qin, Im-
proving Mapreduce performance through data placement in heterogeneous Hadoop
clusters, Workshops and PhD forum of the Int. Symp. Parallel & Distributed Processing
(IPDPSW) (Atlanta, GA, USA, 2010), pp. 1–9.

T. Li et al.

2050254-22

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



17. M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz and I. Stoica, Improving MapReduce
performance in heterogeneous environments, Proc. 8th USENIX Conf. Operating Systems
Design and Implementation (OSDI) (San Diego, CA, USA, 2008), pp. 29–42.

18. Y. Kwon, M. Balazinska, B. Howe and J. Rolia, Skewtune: Mitigating skew in MapRe-
duce applications, Proc. 2012 ACM Int. Conf. Management of Data (SIGMOD)
(Scottsdale, Arizona, USA, 2012), pp. 25–36.

19. N. Zaheilas and V. Kalogeraki, Real-time scheduling of skewed MapReduce jobs in het-
erogeneous environments, Proc. 11th Int. Conf. Autonomic Computing (ICAC) (Phila-
delphia, PA, USA, 2014), pp. 189–200.

20. F. Ahmad, S. T. Chakradhar, A. Raghunathan and T. N. Vijaykumar, Tarazu: Opti-
mizing MapReduce on heterogeneous clusters, Proc. Int. Conf. Architectural Support for
Programming Languages and Operating Systems (ASPLOS) (London, UK, 2012), pp. 61–
74.

21. M. Li, L. Zeng, S. Meng, J. Tan, L. Zhang, A. R. Butt and N. Fuller, MRONLINE:
MapReduce online performance tuning, Proc. 23rd Int. Symp. High-Performance Parallel
and Distributed Computing (HPDC) (Vancouver, Canada, 2014), pp. 165–176.

22. K. Krish, A. Anwar and A. R. Butt, �Sched: A heterogeneity-aware Hadoop work°ow
scheduler, Proc. IEEE 22nd Int. Symp. Modelling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS) (Paris, France, 2014), pp. 255–264.

23. Con¯guring Heterogeneous Storage in HDFS, (2018). Available at https://www.clou-
dera.com/documentation/enterprise/5-8-x/topics/admin heterogeneous storage oview.
html.

24. Enable Support for Heterogeneous Storages in HDFS (2018). Available at https://issues.
apache.org/jira/browse/HDFS-2832.

25. Heterogeneous Storage Phase 2 — APIs to Expose Storage Types (2018). Available at
https://issues.apache.org/jira/browse/HDFS-5682.

26. F. Ahmad, PUMA Benchmarks and Dataset Downloads (2018). Available at https://
engineering.purdue.edu/puma/datasets.htm.

27. S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tumanov, J. Yaniv, R.
Mavlyutov, I. Goiri, S. Krishnan and J. Kulkarni, Morpheus: Towards automated SLOs
for enterprise clusters, Proc. 12th USENIX Symp. Operating Systems Design and Im-
plementation (OSDI) (2016), pp. 117–134.

28. J. Rasley, K. Karanasos, S. Kandula, R. Fonseca, M. Vojnovic and S. Rao, E±cient queue
management for cluster scheduling, Proc. Eleventh European Conf. Computer Systems
(EuroSys) (London, UK, 2016), pp. 36:1–36:15.

29. H. Herodotou and S. Babu, Pro¯ling, what-if analysis, and cost-based optimization of
MapReduce programs, Proc. VLDB Endow. 4 (2011) 1111–1122.

30. A. Rasmussen et al., Themis: An I/O-e±cient MapReduce, Proc. Third ACM Symp.
Cloud Computing (SOCC), Article No.: 13 (San Jose, CA, USA, 2012), pp. 1–14.

31. A. Shinnar, D. Cunningham, V. Saraswat and B. Herta, M3R: Increased performance for
in-memory Hadoop jobs, Proc. VLDB Endow. 5 (2012) 1736–1747.

32. J. Lin, A Hadoop Toolkit for Working with Big Data, (2014). Available at http://lintool.
github.io/Cloud9/.

33. S. Huang, J. Huang, J. Dai, T. Xie and B. Huang, The HiBench benchmark suite:
Characterization of the MapReduce-based data analysis, Proc. IEEE 26th Int. Conf. Data
Engineering Workshops (ICDEW) (Long Beach, CA, USA, 2010), pp. 41–51.

34. S. He, X.-H. Sun and A. Haider, HAS: Heterogeneity-aware selective data layout scheme
for parallel ¯le systems on hybrid servers, Proc. 29th IEEE Int. Parallel and Distributed
Processing Symp. (IPDPS) (Hyderabad, India, 2015), pp. 613–622.

Application and Storage-Aware Data Placement and Job Scheduling for Hadoop Clusters

2050254-23

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



35. S. He, X.-H. Sun, Y. Wang and C. Xu, A migratory heterogeneity-aware data layout
scheme for parallel ¯le systems, Proc. 32nd IEEE Int. Parallel and Distributed Processing
Symp. (IPDPS) (Vancouver, British Columbia, Canada, 2018), pp. 1133–1142.

36. F. Pan, J. Xiong, Y. Shen, T. Wang and D. Jiang, H-Scheduler: Storage-aware task
scheduling for heterogeneous-storage spark clusters, Proc. IEEE 24th Int. Conf. Parallel
and Distributed Systems (ICPADS) (Singapore, 2018), pp. 1–9.

37. J. Zhou, T. Wei, M. Chen, J. Yan, X. S. Hu and Y. Ma, Thermal-aware task scheduling
for energy minimization in heterogeneous real-time MPsoC systems, IEEE Trans.
Comput. Aided Design Integr. Circuits Syst. 35 (2015) 1269–1282.

38. J. Zhou, J. Yan, K. Cao, Y. Tan, T. Wei, M. Chen, G. Zhang, X. Chen and S. Hu,
Thermal-aware correlated two-level scheduling of real-time tasks with reduced processor
energy on heterogeneous MPSoCs, J. Syst. Arch. 82 (2018) 1–11.

39. J. Li, G. Xie, K. Li and Z. Tang, Enhanced parallel application scheduling algorithm with
energy consumption constraint in heterogeneous distributed systems, J. Circuits Syst.
Comput. 28(11) (2019) 1950190.

40. J. Jiang, W. Li, L. Pan, B. Yang and X. Peng, Energy optimization heuristics for budget-
constrained work°ow in heterogeneous computing system, J. Circuit Syst. Comput. 28
(2019) 1950159.

41. X. Zhou, G. Zhang, J. Sun, J. Zhou, T. Wei and S. Hu, Minimizing cost and makespan for
work°ow scheduling in cloud using fuzzy dominance sort based HEFT, Future Gener
Comput. Syst. 93 (2019) 278–289.

42. P. Lu, G. Zhang, Z. Zhu, X. Zhou, J. Sun and J. Zhou, A review of cost and makespan-
aware work°ow scheduling in clouds, J. Circuits Syst. Comput. 28 (2019) 1930006.

43. B. Ucar, C. Aykanat, K. Kaya and M. Ikinci, Task assignment in heterogeneous com-
puting systems, J. Parallel Distrib. Comput. 66 (2006) 32–46.

T. Li et al.

2050254-24

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

20
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.


	Application and Storage-Aware Data Placement and Job Scheduling for Hadoop Clusters&lowast;
	1. Introduction
	2. Background and Motivation
	2.1. Hadoop data placement and job scheduling
	2.2. Motivating examples

	3. ASPS Design
	3.1. Idea of ASPS
	3.2. System architecture
	3.3. I/O requirement quantification
	3.4. Data placement
	3.5. Job scheduling

	4. Implementation
	4.1. Heterogeneous device management
	4.2. I/O metric sampling
	4.3. Data placement
	4.4. Task scheduling

	5. Evaluation
	5.1. Experimental setup
	5.2. Evaluation with a single application
	5.3. Evaluation with multiple applications

	6. Related Work
	7. Conclusions
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 900
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


