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Abstract—In this paper, we have used Compute Unified 
Device Architecture (CUDA) GPU to accelerate pairwise 
sequence alignment using the Smith-Waterman (SW) 
algorithm. Smith-Waterman(SW) is by far the best  
algorithm for its accuracy in similarity scoring.But the 
executing time of this algorithm is too long in sequence 
alignment.So we describe a multi-threaded parallel design 
and implementation of the Smith-Waterman (SW) on 
CUDA to reduce execution time.And according the 
architecure of CUDA,we have divided  the  computation of 
a whole pairwise sequence alignment scoring matrix into 
multiple sub-matrices,using 32 threads to process on sub-
matrice,more over we optimized memory distribution 
scheme, and used reduction to find the maximum element 
of the alignment scoring matrix.We experiment the 
algorimthm on GeForce 9600 GT,connet to Windows xp 
64-bit system.The results show this mplementation 
achieves more better performance than the other parallel 
implementation on the Graphics Processing Unit.
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I. INTRODUCTION 

Sequence analysis finds similarity in biological sequences 
that is an import and widely used operation in bioinformatics. 
The purpose is to find the best possible alignment of a set of 
sequences. However, biological sequence alignment is also a 
computationally expensive application as the growth of the 
volume of sequence data, the sequence alignment algorithms 
 are still very costly in performance . 

 Graphics Processor Units (GPUs) have been proposed 
 recently as a high performance and relatively low cost 
acceleration platform for biological sequence alignment [1].As
modern GPUs have become increasingly powerful, 

inexpensive and relatively easier to program through high 
level API functions, they are increasingly being used for non-
graphic or general purpose applications (called GPGPU 
computing). In this paper, we will present how Compute 
Unified Device Architecture (CUDA) GPUs can be used to 
accelerate pairwise sequence alignment using the Smith-
Waterman (SW) algorithm [2][3]. The SW algorithm uses a 
dynamic programming method to find the best local alignment 
between two query and database sequences, The time 
complexity of SW is O(mn)[4], where m and n are the lengths 
of the two sequences aligned. Due to this computational 
requirement ,many heuristic algorithms used for sequence 
alignment problem Heuristic methods may be faster than SW, 
however they loss accuracy in finding the best possible local 
alignments. 

Smith-Waterman algorithm is widely used in many 
bioinformatical applications, either as the last stage of sequence 
similarity search performed with approximate algorithms [5, 
6], or within more advanced algorithms,such as profile-profile 
methods [7]. Algorithms for sequence matching are also used 
in the so-called next generation sequencing methods [8, 9], 
which are used for rapid sequencing of whole genomes. These 
methods generate millions of relatively short sequences, which 
then need to be assembled. It has been shown that application 
of the exact SW algorithm as a part of the assembly algorithm 
significantly improves the quality of assembled sequence data 
[10].

In this paper we present an improved implementation of the 
SW algorithm on GPU with CUDA. The differences between 
the two implementations are discussed and suggestions for 
development of efficient codes are proposed. 

The rest of this paper is organized as follows: section 2 
describes the GPU architecture and Smith-Waterman 
algorithm. Our implementation of the algorithm on the GPU 
architecture is detailed in section 3. Section 4 contains our 
results and evaluation.Conclusion and future work is shown in 
section 5. 
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II. BACKGROUND AND RELATED WORK

A. GPU Programming with CUDA 
CUDA (Compute Unified Device Architecture) is a parallel 

computing architecture developed by NVIDIA Corporation 
[11].and allows to write and run general-purpose applications 
on the NVIDIA GPU’s.CUDA uses threads for parallel 
exection,and GPU allows thousands of threads for parallel  
exection at the same time. 

The GPU used in our implementation is NVIDIA’s Geforce 
9600GT,and the compute capability of it is 1.1.which has 8 
Stream Multiprocessors. On the GPU, there is a hierarchy of 
memory architecture to program on it . As introduced in the 
CUDA programming guide, we present the memories in our 
implementation: 

 Registers: Read-Write per-thread, each SP has its own   
registers (1024). 

Shared Memory: Read-write per-block, and its size is  
16KB for each multiprocessor. 

Global Memory: Read-write per-grid, has a large space 
 (about 768M)  offers global access but it is a slower  

storage. 
Constant Memory: Read-only per-grid, its size is 8KB
Texture Memory: Read-only per-grid depends on the 
global memory.

In the memory architecture,the fastest memories are the 
shared memories and registers. They are on chip shared by 
all threads in a mutiprocessor,they can be read and written 
to by eachthread directly. but the size is limited. The other 
memories are all located on the GPUs main RAM. The 
constant memory is favorable when multiple processor 
cores load the same value from cache. Texture cache has 
higher latency but it has a better acceleration ratio for 
accessing large amount of data and non-aligned 
accessing.The memory architecture of GPU is describled 
in Figure 1.To gain better performance, we must manage 
the shared memory,registers,and global memory usage. 

Figure 1.Memory  architecture of NVIDIA’s Geforce 9600 GT 

B. Smith-Waterman Algorithm 
The Smith-Waterman algorithm[3] is a dynamic 

programming method to compare between two alignment 
sequences (query and database sequence) to find the best local 
alignment. Smith Waterman Algorithm is one of a widely used 
algorithms in bioinformatics.The algorithm is achieved in two 
stages.First, using the initial conditions and equations of the 
two sequences to calculate the alignment score.Second,using 
the backtracing algorithm to get the alignment result. More 
specifically,let Q denotes a query sequence with a length of n: 

Q=q0q1q2q3……qn-1
Let D denote the a database sequence with a length of m: 

D=d0d1d2d3……dm-1
The equations for computing the alignment scores are as 
follows:          
           E(i,j)=max{E(i,j-1)-G,H(i,j-1)- G }                      (1)                      

           F(i,j)=max{F(i-1,j)-G,H(i-1,j)-G}                        (2)

H(i,j)=max{0,E(i,j),F(i,j),H(i-1,j-1)-W(qi,dj)}      (3)                      

      The algorithm is as following: 
      Let W(qi,dj) denotes the substitution matrix(be given) 
which gives a score describing the likelihood of substitution 
between qi and dj. G is the penalty for a mismatch.From these 
equations,we observe that the value of H(i,j) depends on the 
values of its upper neighbour H(i-1,j-1),left neighbour H(i-1,j) 
and left upper neighbour H(i,j-1),we discribe in Figure 2. 
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Figure 2.alignment matrix of Smith-Waterman 

Since GPU has the ability of allocating thousands of parallel 
threads to compute a task,so it is very suitable to accelerate SW 
algorithm. The GPU’ computation is focused on the alignment 
scoring matric.From the equation(1)(2)(3)and Figure 2, we can 
see that the anti-diagonal element is independce from each 
other,so we use different threads to compute them parallely. 

for i=0 to n do 
      for j=0 to m do 
           calculate H(i,j) use H(i-1,j-1) H(i-1,j) H(i,j-1) 
   end 
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III. OUR IMPLEMENTATION OF SMITH-WATERMAN

As  already analysised in section II, we can see that the 
anti-diagonal element is independent from each other,so we 
can use different threads to compute them parallely.There are 
many Smith-Waterman algorithm implementations on various 
parallel platforms [12] [13] [14] [15] [16],In GPU 
platform,some implementation is  that each thread processes 
one alignment matrix between a database sequence and a query 
sequence. Or it uses a thread block to processes one alignment 
matrix. In our implementation,we divide the computation of a 
whole pairwise sequence alignment matrix into multiple sub-
matrices .and we use 32 threads to process one alignment sub-
matrix parallely. We will discuss it with more detail in this 
section.  

A. Partion and Parallelization 

A sub-matrix

Database Squence N

Q
uery Sequence

32 threads

Shared memory

Figure 3. The partition and parallelization Method of aignment matrix 

The alignment matrix is  size D Q (see Figure 3), D and Q 
are lengths of a database sequence and a query sequence. As D 
and Q could be very large,so we devided the matrix into many 
sub-matrices that the transfer of sub-matrix and the  
computation of  the sub-matrix computation can be parallelized.  

In our implementation ,we use 32 threads to compute sub-
matrix once time in a multiprocess.As the 32 threads  in one 
warp execute the same instruction,so threads in one warp are 
always synchronized.Using 32 threads(one warp) to process 
one sub-matrice can reduce the synchronization statement call 
to improve the efficiency. 

From Figure 2, we can see that the anti-diagonal elements 
parallely could be computed parallely.So constant cache is 
used to store substitution matrix  because  that the substitutin 
matrix is used frequently and the latency of constant cache is 
lower than global memory.The database sequence is stored in 
the global memory as the huge size. As illustrated in Figure 
2,the computation of the i-th row depends on the (i-1)-th row 
and the i-th row ,and the i-th row stored in the shared memory 
should be updated when the elements in the matrix are 

updated.In addition,the intermediate results of computing on 
the row are stored  in the shared memory for the next sub-
matrix’s computation.Each thread stored the maximum of the 
row(i-th row) in the sub-matrice which it has computed in its 
register and transfered  them to the global memory when the 
sub-matrice’s computation is done.After calculating all sub-
matrices,we can trace back to get the maximum element of the 
alignment matrix and return the result to the host. 

The following is the procedure: 
• Before the computing,tranfering the query sequence , 

the database sequence and substitution matrix to the 
shared memory and constant memory. 

• The block of threads computes the sub-matrice with 
the value in the register and the shared 
memory ,storing the result of the last row and the last 
column in the shared memory for the next sub-
matrice’s computation while transferring the next sub-
sequence from the global memory to the shared 
memory for the next computation.Each thread 
storingthe max of the row which it has computed in its 
register,and the max is updated in the computing 
process. 

• Tracing back to get the maximum matching value of 
the whole alignment matrix and transfering the result 
to the host. 

In our implementation,we use NVIDIA GeForce 9600GT 
which has 8 SMs and each SM has 8 Stream Processors(SPs). 
There are 8192 registers,16KB shared memory , 64KB constant 
memory in one SM and Geforce 9600 GT has 768M global 
memory.We haved discussed before that 32 threads have been 
used to process one sub-matrice,and there are 32 8=256(each 
SM has 8 SPs) threads running parallely.So there will be 8 
sequence alignments that can be processed at the same time.As 
there are 256 threads to be executed parallely  in kernel,if the 
query squence is longer than 256,the kernel function has to be 
executed more times. 

B. Reduction of  Results 
As the alignment matrix is computed by many sub- 

parallelogram,we use the optimized reduction to get the 
maximum element of the alignment matrix. Moreover we used 
loop unrolling in reduction,and this method can improve the 
efficiency.the following is the detailed discription: 

• Each thread stored the maximum element of the sub-
matrice which it has computed in the shared memory. 

• As the computation of the sub-matrice is 
completed,using reduction method to get the maximum 
element of the whole alignment matrix. 

C. Other optimization techniques 
In our method,the computation of the alignment matrix has 

two nested loops.The outer loop allocates the thread block to 
compute whole the  alignment matrix.The inner loop 
calculates the  sub-alignment matrix of the allocated thread 
block .We use unrolling  loop(a common means used to 
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enhance efficiency) to unroll inner loop avoiding divergengce 
judgement.This method improved the register usage.And 
more,we used parallel computation and data transmission,this 
method  alos achieved speed-up of the algorithm. 

IV.      RESULT AND EVALUATION

We have tested our implementation on Intel(R) Core(TM) 
920 with 64-bit Windows Xp OS.The computer aslo has 
NVIDA Geforce 9600 GT GPU. 

We used the Swiss-Port protein sequence database (release 
15.12,2009) to evaluate our implementation.And more we 
selected query sequence with the length ranging from 64 to 
2048  amino acids to test the performance.We also used 
BLOSUM 45 as substitution matrix and the gap-penalty is -10. 

First,we compared our experimental results with Liu’s 
method[17], The evaluation of our implementation shows that 
average speed-up is about 1.3x,the results are presented in the 
Table I. However,the two implementations used different 
GPUs,So we compared the performance of our implementation 
with a CPU implementation of  Smith-Waterman 
algorithm,Table IIpresents the comparative results.This shows 
that our GPU implementation is up to 19x compared with CPU 
implementation. 

TABLE I. COMPARE OUR APPROACH WITH LIU’S  IMPLEMENTATION

query 
length 

comparing with Liu’s execution time(sec) 
our implementation Liu’s speedup 

64 5.42 19.5 

1.3 

128 10.37 25 
256 21.16 36.3 
512 45.58 59.2 
1024 90.21 105.1 
2048 183.67 197.9 

TABLE II. COMPARE OUR APPROACH WITH CPU’S  IMPLEMENTATION

Query 
length 

comparing with cpu’s execution time(sec) 
our implementation cpu speedpu 

64 5.42 121.27 
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128 10.37 234.2 
256 21.16 483.9 
512 45.58 975.4 

1024 90.21 1675.6 
2048 183.67 3368.3 

V.     CONCLUSION AND FUTURE WORK

Smith-Waterman is one of the most widely used sequence 
alignment algorithms.And as the rapidly increasing size of 
sequence databases,the requirement of the computer’s 
computing power also is increased.This paper presented a 
better implementation of the Smith-Waterman algorithm on 
GPU with CUDA.We divided a alignment matrix calculation 
to sub-matrice calculation.and used thread block to calculate 
sub-matrix.We used 32 threads to calculate the sub-matrice 
and used the global memory and shared memory avoiding 
bank conflicts.And moreover,some optimization methods were 
used in our implementation such as the reduction and the loop-

unrolling(avoiding divergengce judgement) ,these means 
improved efficiency obviously. 
     Future work will use CUDA to accelerate other biological 
sequence with GPUs,such as multiple sequence alignment. 
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