
Accelerating Biological Sequence Alignment Algorithm
on GPU with CUDA

Fang Zheng1 2

1 School of Computer
Wuhan University

Wuhan,China
2 School of Science,

Huazhong Agricultural
University,Wuhan,China

zf22_00@163.com

Xianbin Xu
School of Computer
Wuhan University

Wuhan,China
xbxu@whu.edu.cn

Yuanhua Yang1 2

1 School of Computer
Wuhan University

Whuhan,China
2 Jianghan Art

Vocational College
Qianjiang,hubei Province

P.R,China
yangyuanhua123@163.com

Shuibing He
1 School of Computer
Wuhan University

Wuhan,China
2 Laboratory of High
Confidence Software
Technologies (Peking
University), Ministry

of Education,Beijing
China

hesbingxq@163.com

Yuping Zhang
School of Computer
Wuhan University

Wuhan,China

Abstract—In this paper, we have used Compute Unified
Device Architecture (CUDA) GPU to accelerate pairwise
sequence alignment using the Smith-Waterman (SW)
algorithm. Smith-Waterman(SW) is by far the best
algorithm for its accuracy in similarity scoring.But the
executing time of this algorithm is too long in sequence
alignment.So we describe a multi-threaded parallel design
and implementation of the Smith-Waterman (SW) on
CUDA to reduce execution time.And according the
architecure of CUDA,we have divided the computation of
a whole pairwise sequence alignment scoring matrix into
multiple sub-matrices,using 32 threads to process on sub-
matrice,more over we optimized memory distribution
scheme, and used reduction to find the maximum element
of the alignment scoring matrix.We experiment the
algorimthm on GeForce 9600 GT,connet to Windows xp
64-bit system.The results show this mplementation
achieves more better performance than the other parallel
implementation on the Graphics Processing Unit.

Keywords- Sequence Alignment, Global Alignment, Local

Alignment, Dynamic Programming, GPU, CUDA

I. INTRODUCTION

Sequence analysis finds similarity in biological sequences
that is an import and widely used operation in bioinformatics.
The purpose is to find the best possible alignment of a set of
sequences. However, biological sequence alignment is also a
computationally expensive application as the growth of the
volume of sequence data, the sequence alignment algorithms
 are still very costly in performance .

 Graphics Processor Units (GPUs) have been proposed
 recently as a high performance and relatively low cost
acceleration platform for biological sequence alignment [1].As
modern GPUs have become increasingly powerful,

inexpensive and relatively easier to program through high
level API functions, they are increasingly being used for non-
graphic or general purpose applications (called GPGPU
computing). In this paper, we will present how Compute
Unified Device Architecture (CUDA) GPUs can be used to
accelerate pairwise sequence alignment using the Smith-
Waterman (SW) algorithm [2][3]. The SW algorithm uses a
dynamic programming method to find the best local alignment
between two query and database sequences, The time
complexity of SW is O(mn)[4], where m and n are the lengths
of the two sequences aligned. Due to this computational
requirement ,many heuristic algorithms used for sequence
alignment problem Heuristic methods may be faster than SW,
however they loss accuracy in finding the best possible local
alignments.

Smith-Waterman algorithm is widely used in many
bioinformatical applications, either as the last stage of sequence
similarity search performed with approximate algorithms [5,
6], or within more advanced algorithms,such as profile-profile
methods [7]. Algorithms for sequence matching are also used
in the so-called next generation sequencing methods [8, 9],
which are used for rapid sequencing of whole genomes. These
methods generate millions of relatively short sequences, which
then need to be assembled. It has been shown that application
of the exact SW algorithm as a part of the assembly algorithm
significantly improves the quality of assembled sequence data
[10].

In this paper we present an improved implementation of the
SW algorithm on GPU with CUDA. The differences between
the two implementations are discussed and suggestions for
development of efficient codes are proposed.

The rest of this paper is organized as follows: section 2
describes the GPU architecture and Smith-Waterman
algorithm. Our implementation of the algorithm on the GPU
architecture is detailed in section 3. Section 4 contains our
results and evaluation.Conclusion and future work is shown in
section 5.

2011 International Conference on Computational and Information Sciences

978-0-7695-4501-1/11 $26.00 © 2011 IEEE

DOI 10.1109/ICCIS.2011.61

18

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:47:20 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND AND RELATED WORK

A. GPU Programming with CUDA
CUDA (Compute Unified Device Architecture) is a parallel

computing architecture developed by NVIDIA Corporation
[11].and allows to write and run general-purpose applications
on the NVIDIA GPU’s.CUDA uses threads for parallel
exection,and GPU allows thousands of threads for parallel
exection at the same time.

The GPU used in our implementation is NVIDIA’s Geforce
9600GT,and the compute capability of it is 1.1.which has 8
Stream Multiprocessors. On the GPU, there is a hierarchy of
memory architecture to program on it . As introduced in the
CUDA programming guide, we present the memories in our
implementation:

 Registers: Read-Write per-thread, each SP has its own
registers (1024).

Shared Memory: Read-write per-block, and its size is
16KB for each multiprocessor.

Global Memory: Read-write per-grid, has a large space
 (about 768M) offers global access but it is a slower

storage.
Constant Memory: Read-only per-grid, its size is 8KB
Texture Memory: Read-only per-grid depends on the
global memory.

In the memory architecture,the fastest memories are the
shared memories and registers. They are on chip shared by
all threads in a mutiprocessor,they can be read and written
to by eachthread directly. but the size is limited. The other
memories are all located on the GPUs main RAM. The
constant memory is favorable when multiple processor
cores load the same value from cache. Texture cache has
higher latency but it has a better acceleration ratio for
accessing large amount of data and non-aligned
accessing.The memory architecture of GPU is describled
in Figure 1.To gain better performance, we must manage
the shared memory,registers,and global memory usage.

Figure 1.Memory architecture of NVIDIA’s Geforce 9600 GT

B. Smith-Waterman Algorithm
The Smith-Waterman algorithm[3] is a dynamic

programming method to compare between two alignment
sequences (query and database sequence) to find the best local
alignment. Smith Waterman Algorithm is one of a widely used
algorithms in bioinformatics.The algorithm is achieved in two
stages.First, using the initial conditions and equations of the
two sequences to calculate the alignment score.Second,using
the backtracing algorithm to get the alignment result. More
specifically,let Q denotes a query sequence with a length of n:

Q=q0q1q2q3……qn-1
Let D denote the a database sequence with a length of m:

D=d0d1d2d3……dm-1
The equations for computing the alignment scores are as
follows:
 E(i,j)=max{E(i,j-1)-G,H(i,j-1)- G } (1)

 F(i,j)=max{F(i-1,j)-G,H(i-1,j)-G} (2)

H(i,j)=max{0,E(i,j),F(i,j),H(i-1,j-1)-W(qi,dj)} (3)

 The algorithm is as following:
 Let W(qi,dj) denotes the substitution matrix(be given)
which gives a score describing the likelihood of substitution
between qi and dj. G is the penalty for a mismatch.From these
equations,we observe that the value of H(i,j) depends on the
values of its upper neighbour H(i-1,j-1),left neighbour H(i-1,j)
and left upper neighbour H(i,j-1),we discribe in Figure 2.

G

G

A

...

...

T

C

AQ D C T T

H0,0 H0,1 H0,2

H1,0

Hn-2,0

Hn-1,0

H1,1

Hn-2,1

Hn-1,1

H1,2

Figure 2.alignment matrix of Smith-Waterman

Since GPU has the ability of allocating thousands of parallel
threads to compute a task,so it is very suitable to accelerate SW
algorithm. The GPU’ computation is focused on the alignment
scoring matric.From the equation(1)(2)(3)and Figure 2, we can
see that the anti-diagonal element is independce from each
other,so we use different threads to compute them parallely.

for i=0 to n do
 for j=0 to m do
 calculate H(i,j) use H(i-1,j-1) H(i-1,j) H(i,j-1)
 end

19

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:47:20 UTC from IEEE Xplore. Restrictions apply.

III. OUR IMPLEMENTATION OF SMITH-WATERMAN

As already analysised in section II, we can see that the
anti-diagonal element is independent from each other,so we
can use different threads to compute them parallely.There are
many Smith-Waterman algorithm implementations on various
parallel platforms [12] [13] [14] [15] [16],In GPU
platform,some implementation is that each thread processes
one alignment matrix between a database sequence and a query
sequence. Or it uses a thread block to processes one alignment
matrix. In our implementation,we divide the computation of a
whole pairwise sequence alignment matrix into multiple sub-
matrices .and we use 32 threads to process one alignment sub-
matrix parallely. We will discuss it with more detail in this
section.

A. Partion and Parallelization

A sub-matrix

Database Squence N

Q
uery Sequence

32 threads

Shared memory

Figure 3. The partition and parallelization Method of aignment matrix

The alignment matrix is size D Q (see Figure 3), D and Q
are lengths of a database sequence and a query sequence. As D
and Q could be very large,so we devided the matrix into many
sub-matrices that the transfer of sub-matrix and the
computation of the sub-matrix computation can be parallelized.

In our implementation ,we use 32 threads to compute sub-
matrix once time in a multiprocess.As the 32 threads in one
warp execute the same instruction,so threads in one warp are
always synchronized.Using 32 threads(one warp) to process
one sub-matrice can reduce the synchronization statement call
to improve the efficiency.

From Figure 2, we can see that the anti-diagonal elements
parallely could be computed parallely.So constant cache is
used to store substitution matrix because that the substitutin
matrix is used frequently and the latency of constant cache is
lower than global memory.The database sequence is stored in
the global memory as the huge size. As illustrated in Figure
2,the computation of the i-th row depends on the (i-1)-th row
and the i-th row ,and the i-th row stored in the shared memory
should be updated when the elements in the matrix are

updated.In addition,the intermediate results of computing on
the row are stored in the shared memory for the next sub-
matrix’s computation.Each thread stored the maximum of the
row(i-th row) in the sub-matrice which it has computed in its
register and transfered them to the global memory when the
sub-matrice’s computation is done.After calculating all sub-
matrices,we can trace back to get the maximum element of the
alignment matrix and return the result to the host.

The following is the procedure:
• Before the computing,tranfering the query sequence ,

the database sequence and substitution matrix to the
shared memory and constant memory.

• The block of threads computes the sub-matrice with
the value in the register and the shared
memory ,storing the result of the last row and the last
column in the shared memory for the next sub-
matrice’s computation while transferring the next sub-
sequence from the global memory to the shared
memory for the next computation.Each thread
storingthe max of the row which it has computed in its
register,and the max is updated in the computing
process.

• Tracing back to get the maximum matching value of
the whole alignment matrix and transfering the result
to the host.

In our implementation,we use NVIDIA GeForce 9600GT
which has 8 SMs and each SM has 8 Stream Processors(SPs).
There are 8192 registers,16KB shared memory , 64KB constant
memory in one SM and Geforce 9600 GT has 768M global
memory.We haved discussed before that 32 threads have been
used to process one sub-matrice,and there are 32 8=256(each
SM has 8 SPs) threads running parallely.So there will be 8
sequence alignments that can be processed at the same time.As
there are 256 threads to be executed parallely in kernel,if the
query squence is longer than 256,the kernel function has to be
executed more times.

B. Reduction of Results
As the alignment matrix is computed by many sub-

parallelogram,we use the optimized reduction to get the
maximum element of the alignment matrix. Moreover we used
loop unrolling in reduction,and this method can improve the
efficiency.the following is the detailed discription:

• Each thread stored the maximum element of the sub-
matrice which it has computed in the shared memory.

• As the computation of the sub-matrice is
completed,using reduction method to get the maximum
element of the whole alignment matrix.

C. Other optimization techniques
In our method,the computation of the alignment matrix has

two nested loops.The outer loop allocates the thread block to
compute whole the alignment matrix.The inner loop
calculates the sub-alignment matrix of the allocated thread
block .We use unrolling loop(a common means used to

20

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:47:20 UTC from IEEE Xplore. Restrictions apply.

enhance efficiency) to unroll inner loop avoiding divergengce
judgement.This method improved the register usage.And
more,we used parallel computation and data transmission,this
method alos achieved speed-up of the algorithm.

IV. RESULT AND EVALUATION

We have tested our implementation on Intel(R) Core(TM)
920 with 64-bit Windows Xp OS.The computer aslo has
NVIDA Geforce 9600 GT GPU.

We used the Swiss-Port protein sequence database (release
15.12,2009) to evaluate our implementation.And more we
selected query sequence with the length ranging from 64 to
2048 amino acids to test the performance.We also used
BLOSUM 45 as substitution matrix and the gap-penalty is -10.

First,we compared our experimental results with Liu’s
method[17], The evaluation of our implementation shows that
average speed-up is about 1.3x,the results are presented in the
Table I. However,the two implementations used different
GPUs,So we compared the performance of our implementation
with a CPU implementation of Smith-Waterman
algorithm,Table IIpresents the comparative results.This shows
that our GPU implementation is up to 19x compared with CPU
implementation.

TABLE I. COMPARE OUR APPROACH WITH LIU’S IMPLEMENTATION

query
length

comparing with Liu’s execution time(sec)
our implementation Liu’s speedup

64 5.42 19.5

1.3

128 10.37 25
256 21.16 36.3
512 45.58 59.2
1024 90.21 105.1
2048 183.67 197.9

TABLE II. COMPARE OUR APPROACH WITH CPU’S IMPLEMENTATION

Query
length

comparing with cpu’s execution time(sec)
our implementation cpu speedpu

64 5.42 121.27

19

128 10.37 234.2
256 21.16 483.9
512 45.58 975.4

1024 90.21 1675.6
2048 183.67 3368.3

V. CONCLUSION AND FUTURE WORK

Smith-Waterman is one of the most widely used sequence
alignment algorithms.And as the rapidly increasing size of
sequence databases,the requirement of the computer’s
computing power also is increased.This paper presented a
better implementation of the Smith-Waterman algorithm on
GPU with CUDA.We divided a alignment matrix calculation
to sub-matrice calculation.and used thread block to calculate
sub-matrix.We used 32 threads to calculate the sub-matrice
and used the global memory and shared memory avoiding
bank conflicts.And moreover,some optimization methods were
used in our implementation such as the reduction and the loop-

unrolling(avoiding divergengce judgement) ,these means
improved efficiency obviously.
 Future work will use CUDA to accelerate other biological
sequence with GPUs,such as multiple sequence alignment.

VI. ACKNOWLEDGMENTS

This work is supported by upported by Fundamental
Research Funds for the Central Universities (Grant
No.3101012),and by Key Laboratory of High Confidence
Software Technologies Program (Grant No.HCST201104).

REFERENCES

[1] M. Charalambous, P, Transcoso and A. Stamatakis. “Intial experiences
porting a bioinformatics application to a graphics processor”. In
Processings of 10th Panhellenic Conference on Informatics, 2005.

[2] O. Gotoh, “An improved algorithm for matching biologicalsequences, ”
J Mol Biol, vol. 162, pp. 707 708, 1982.

[3] T. F. Smith and M. S. Watermann. Identification of common molecular
subsequence. Journal of Molecular Biology, 147:196-197, 1981.

[4] K. Elissa, “Title of paper if known,” unpublished.Sanchéz, F., Salamí E.,
Ramierez, A., Valero, M.: Performance Analysis of Sequence Alignment
Applications. In: Proceedings of the IEEE International Symposium on
Workload Characterization.

[5] Pearson W. and D. Lipman, Improved tools for biological sequence
comparison. Proc Natl Acad Sci USA, 1988. 85: p.

[6] Rognes, T., PARALIGN: rapid and sensitive sequence similarity
searches powered by parallel computing technology.Nucleic Acids
Research, 2001. 29: p. 1647-1652.2444 - 2448.

[7] Rychlewski, L., et al., Comparison of sequence profiles.Strategies for
structural predictions using sequenceinformation. Protein Science, 2000.
9: p. 232 241.

[8] Margulies, M., et al., Genome sequencing in microfabricated high-
density picolitre reactors. Nature, 2005. 437(7057): p. 376-380.

[9] Mardis, E.R., The impact of next-generation sequencing technology on
genetics. Trends in Genetics, 2008. 24: p. 133-141.

[10] Blazewicz, J., et al., A new algorithm for genome assembly from short
reads in 1st-International-Conference-on-Information-Technology-IT-
2008. 2008, IEEE: Gda sk,Poland.

[11] NVIDI A CUDA programming guide 2.3. [Online].Available:
http://developer.download.nvidia.com/compute/cuda/23/toolkit/docs/NV
IDIA CUDA Programming Guide 2.3.pdf

[12] M. Farrar, Striped smith-waterman speeds database searches six times
over other simd implementations, Bioinformatics,vol. 23, no. 2, pp.
156 161, 2007.

[13] A. Szalkowski, C. Ledergerber, P. Krahenbuhl, and C. Dessimoz,
SWPS3 - fast multi-threaded vectorized Smith-Waterman for IBM
Cell/B.E. and x86/SSE2, BMC Research Notes, vol. 1, p. 107, 2008..

[14] M. Farrar, Optimizing smith-waterman for the cell broadband engine.
 [Online]. Available: http://farrar.michael googlepages.com/

SW-CellBE.pdf.
[15] S. Manavski and G. Valle, CUDA compatible GPU cards as efficient

hardware accelerators for Smith-Waterman sequence alignment, BMC
Bioinformatics, vol. 9, no. Suppl 2, p. S10, 2008.

[16] K. Benkrid, Y. Liu, and A. Benkrid, A highly parameterized and
efficient fpga-based skeleton for pairwise biological sequence
alignment, Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 17, no. 4, pp. 561 570,2009. [Online]. Available:
http://dx.doi.org/10.1109/TVLSI.2008.2005314

[17] W. Liu, B. Schmidt, G. Voss, A. Schroder and W. Muller-Wittig.
Bio-Sequence Database Scanning on GPU . Inproceeding of 20th
IEEE International parallel &distributed processing symposium: 2006
(IPDSP 2006)HICOMB workshop Rhode Island, Greece. 2006.

21

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:47:20 UTC from IEEE Xplore. Restrictions apply.

