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Abstract—Parallel I/O systems represent the most commonly
used engineering solution to mitigate the performance mismatch
between CPU and disk performance; however, parallel I/O sys-
tems are application dependent and may not work well for certain
data access requests. New emerging solid state drives (SSD) are
able to deliver better performance but incur a high monetary
cost. While SSDs cannot always replace HDDs, the hybrid SSD-
HDD approach uniquely addresses common performance issues
in parallel I/O systems. The performance of hybrid SSD-HDD
architecture depends on the utilization of the SSD and scheduling
of data placement. In this paper, we propose a cost-aware region-
level (CARL) data placement scheme for hybrid parallel I/O
systems. CARL divides large files into several small regions,
calculates the region costs according to the data access patterns,
and selectively places regions with high access costs onto the SSD-
based file servers. We have implemented CARL under MPI-IO
and the PVFS2 parallel file system environment. Experimental
results of representative benchmarks show that CARL is both
feasible and able to improve I/O performance significantly.

Keywords-Parallel I/O System; I/O Middleware; Solid State
Drive

I. INTRODUCTION

The advance of semiconductor technology has dramatically

improved the performance of CPUs during the past three

decades. However, I/O performance has not improved at the

same rate. While processor speeds have increased nearly 50%

each year, the access latency of a single hard disk drive (HDD)

has only reduced by roughly 7% [1]. Moreover, many HPC

applications in scientific computing fields are becoming in-

creasingly data intensive. Table I shows the data requirements

of several representative applications run at Argonne National

Laboratory in 2011 [2]. The large data access requirements

of these applications are putting unprecedented pressure on

computer I/O systems to store data effectively. Data access

has become the major performance bottleneck of many HPC

applications.
Parallel I/O systems are an effective approach to meet the

high I/O demands of data intensive applications. In HPC

clusters, a parallel I/O system typically consists of several

layers including applications, I/O middleware, parallel file

systems (PFS), and storage systems. In general, a PFS, such as

PVFS [3], Lustre [4], GPFS [5] and PanFS [6], stripes file data

across a cluster of file (I/O) servers which allows data requests

from a compute node to be served concurrently by multiple

file servers. Thus, I/O system performance is significantly

improved by exploiting parallelism with PFSs.

However, the performance of PFSs is impacted by ap-

plication I/O characteristics [7]–[9]. PFSs favor some I/O

patterns, but perform poorly for others. For example, while

PFSs are effective to improve I/O system performance for large

requests; they fail to perform well for small requests due to the

lack of parallelism and increased access latency. Even worse,

PFSs hardly provide any benefit for small random requests

because of the mechanical nature of disk head movements

in HDDs. Typically, many data-intensive applications issue

non-uniform data requests to a large file. Request sizes can

be large when accessing one chunk of the file and small

at another; some chunks are accessed more frequently than

others. For applications with varied I/O access patterns, PFSs

usually exhibit poor performance.

New emerging storage technologies, such as flash memory

based SSDs, provide a possible hardware solution that can

revolutionize I/O system design. Unlike traditional HDDs,

SSDs are built on semiconductor chips without any mechanical

component [10]. SSDs are able to provide one order of

magnitude higher performance than HDDs, and are an ideal

storage medium for building high performance I/O systems.

For example, to improve the performance of data intensive

applications, San Diego Supercomputer Center has built a

large SSD-based high-performance computing cluster, called

Gordon [11]. Even considering the price-drop trend led by

technology advance, the cost of building I/O systems com-

pletely based on SSDs probably will not be reduced due to

increased storage capacity requirements. Therefore, we believe

that building a hybrid parallel I/O system with a large number

of HDD-based file servers (HServer) and a small number of

SSD-based file servers (SServer) is a promising way to address

the I/O access problem.

While the hybrid SSD-HDD approach is promising in newer

I/O systems, how to efficiently place data in these hybrid

I/O systems is challenging. In general, the storage space of

SServers is smaller than that of HServers. Without considering

the hardware resource characteristics, blindly placing data onto

the SServers does not best serve data accesses performance.

For example, if a small seldom accessed portion of data is

placed onto the Servers, the overall I/O performance can

hardly be improved because a large volume of data is still978-1-4799-0898-1/13/$31.00 c© 2013 IEEE
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TABLE I
DATA REQUIREMENTS FOR SELECT 2011 INCITE APPLICATIONS AT

ARGONNE LEADERSHIP COMPUTING FACILITY OF ANL [2].

Project On-line data Off-line data
(TBytes) (TBytes)

Combustion in Gaseous Mixtures 1 17

Protein Structure 1 2

Laser-Plasma Interactions 60 60

Type Ia Supernovae 75 300

Nuclear Structure and Reactions 6 15

Fast Neutron Reactors 100 100

Lattice Quantum Chromo dynamics 300 70

Fracture Behavior in Materials 12 72

Engineering Design of Fluid Systems 3 200

Multi-material Mixing 215 100

Turbulent Flows 10 20

Earthquake Wave Propagation 1000 1000

Fustion Reactor Design 50 100

served from the HServers. Moreover, since large requests usu-

ally lead to better I/O parallelism and there are more HServers

than SServers, serving large requests from SServers will incur

less performance gains, or even degrade I/O throughput. As

data access patterns of clients can vary at different parts of a

file thus generating a significant impact on I/O performance,

ideal data placement in a hybrid parallel I/O system must

consider the data access patterns from the clients side.

Currently, a lot of work has focused on the data placement

policy in an SSD-based hybrid storage system [12]–[15].

These methods are very helpful, however to the best of our

knowledge, most of the work is deployed in a single file

server, and none of the existing schemes have focused on data

placement optimization for parallel I/O systems in a global

view.

In this paper, we propose a cost-aware region-level data

placement scheme (CARL) for a hybrid parallel I/O system,

where HServers and SServers are deployed. CARL selectively

places critical data from a large file onto SServers and can be

beneficial to various types of I/O patterns. In summary, this

study makes the following contributions.

• We propose a data access cost model for parallel file

systems, which can evaluate the access time of a request

with different access patterns and on different storage

media.

• We present a region-level data placement scheme based

on the cost model, which divides files into regions and

selectively places regions with high access cost gains onto

the underlying SServers.

• We implement and integrate the cost-aware region-level

data placement scheme into the MPI-IO library; thus pro-

viding transparent access to applications, and portability

to many different parallel file systems.

• We evaluate CARL with the IOR benchmark suite. Exper-

imental results show that I/O throughput is significantly

improved.

The rest of this paper is organized as follows. Section II

discusses the related work. Section III describes the de-

sign and implementation of CARL. Section IV evaluates the

performance with the IOR benchmarks and highlights the

improvements. Finally, section V concludes the paper.

II. RELATED WORK

In this section, we focus on previous work in three aspects:

I/O request stream optimization, data placement in HDD-based

storage system, and data placement in SSD-based storage

system.

A. I/O Software Optimization Approaches

Numerous efforts have focused on reorganizing I/O requests

to produce large continuous data accesses. A lot of work has

been done at the I/O middleware layer, including data sieving

[16], list I/O [17], datatype I/O [18], two-phase I/O [19],

and collective I/O [16]. Data sieving [16] techniques integrate

multiple noncontiguous small requests into a larger contiguous

chunk, possibly fetched with additional data (hole). List I/O

[17] and datatype I/O [18] allow users to merge multiple I/O

requests with different patterns into a single I/O routine. While

list I/O is used to handle more general data access cases,

datatype I/O is designed to access data with certain regularity.

Two-phase I/O [19] and collective I/O [16] are techniques

proposed to rearrange concurrent I/O accesses among a group

of processes.

B. Data placement in HDD-based storage system

Optimizing data placement is another effective approach to

improve I/O performance. Parallel file systems usually provide

several data placement policies for different I/O workloads

[8]. Data partition [20], [21] and replication [22], [23] tech-

niques are also commonly used to organize data layout on

file servers consistent with I/O workloads. Workload studies

have shown that data accesses for most scientific applications

usually fall into several patterns [23], therefore data placement

optimization has to rely on the prior knowledge of data access

patterns. For example, our previous work [9] proposed a data

replication scheme, which identifies data access patterns, and

creates reorganized data replications for identified patterns

with optimized data layouts based on access cost analysis.

C. Data placement in SSD-based storage system

As SSDs exhibit a clear advantage in performance over

traditional HDDs, they are widely deployed in parallel I/O

systems. However, most of these approaches are done on

a single file server. Using SSDs as a cache of traditional

HDDs is one popular method to improve I/O performance.

SieveStore [24] captures the most popular blocks and places

them onto an SSD. iTransformer [25] and iBridge [26] redirect

the most random requests to the SSD to achieve cost-effective

storage acceleration. SSD-based hybrid storage is another cost-

effective method to make full use of the potential of SSDs.

These methods integrate an SSD and a hard disk as one block

device [14], [15]. I-CASH is a new hybrid storage architecture
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Fig. 1. Overview of system using CARL.

based on data-delta pairs which improves I/O performance for

I/O intensive workloads [13]. Hystor identifies critical data

blocks with strong temporal locality and redirects them to SSD

for fast future accesses [12].

All the I/O request reorganization and data placement tech-

niques are effective in improving parallel I/O performance.

However, little effort has been done on data placement in

a hybrid parallel I/O system deployed with both SSD-based

and HDD-based file servers. In addition, our proposed scheme

takes parallelism of parallel file system into account, and is

another important difference from existing work focused on a

single file server.

III. COST-AWARE REGION-LEVEL DATA PLACEMENT

The proposed data placement scheme, CARL, aims to

place critical data, which have high access costs, onto high-

performance SSD-based file servers in order to improve the

parallel I/O performance.

A. Overview of CARL

As data access patterns may vary at different parts of a

file and make a significant impact on I/O performance, data

placement in a hybrid parallel I/O system must consider the

data access patterns from the client side. CARL divides a

large file into several small regions and selectively places them

onto the underlying file servers according to the data access

patterns. This allows CARL to utilize the SSD and parallelism

for all I/O requests.

Many data-intensive applications have regular patterns in

accessing data files. These applications are often executed on

a computer cluster many times, possibly with different sets of

parameters. As the data access patterns are generally consistent

from one run to another run, it provides an opportunity to

optimize the data placement based on the I/O trace analysis.

Figure 1 shows the high performance cluster systems for

which CARL is designed. In these systems, application pro-

cesses on compute nodes access the data on the file servers

by calling the MPI-IO library. CARL is resident in MPI-IO

library and responsible for placing data onto the underlying

HServers and SServers, which are accessed by a parallel file

system respectively. Typically in such systems, there are a

larger number of HServers and a small number of SServers

with higher I/O performance and smaller storage space. CARL

is independent of the file system; thus, allowing the scheme to

be portable and easily adopted to multiple file systems, such

as PVFS [3], Lustre [4], and GPFS [5].

Figure 2 shows the procedure of obtaining an optimal

placement strategy with CARL, which consists of three phases.

In the “Tracing Phase”, the run-time statistics of data accesses

are collected by the trace collector during the applications’

first execution. In the “Analysis Phase”, the region analyzer
divides the file into regions and uses the data access cost

model to estimate the data access performance gains for each

region if they were placed on SServers over HServers. The

performance gains are then used to generate a region gain table

(RGT). In the “Placing Phase”, the region placer places the file

regions on the underlying file servers according to the RGT.

To make our scheme transparent to the applications, the region
redirector module is added at the I/O middleware layer (MPI-

IO library) to forward I/O requests to the underlying HServers

or SServers. Through these three phases, CARL reduces the

I/O time for applications accessing files in similar patterns in

later runs.

Application’s 
execution

Application’s 
execution

I/O trace

Region Gain 
Table

Regions in 
HServers

Regions in 
SServers

Cost 
Model

Placement / Region 
Redirection

Tracing Phase Placing PhaseAnalysis Phase

Regions in 
HServers

Fig. 2. The procedure of data placement scheme.

B. Trace Collecting

The trace collector is responsible for collecting run-time

file access information of parallel applications. While there

are some techniques and tools can be used for data analysis,

we use IOSIG [27], which is an I/O pattern analysis tool devel-

oped in our previous work, to capture the information required

by CARL. IOSIG is a pluggable library of MPI-IO, which

uses the Profiling MPI interfaces (PMPI) to trace standard

MPI-IO calls. IOSIG can help to gather all the information

of file operations, including file access type, operation time,

and other process related data. After running the applications

with the trace collector, we can get process ID, MPI rank,

file descriptor, type of operation, offset, request size, and time

stamp information.

C. Data Access Cost Model

In CARL, a model is proposed to calculate the data access

time for each file request with corresponding parameters listed

in Table II. By accumulating the cost of each file request on

a file region, the cost of each region can be obtained.
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TABLE II
PARAMETERS (SHORT IN PARS) IN COST ANALYSIS MODEL.

Pars Description

N Number of HDD file servers

M Number of SSD file servers (M < N )

Str Stripe size of parallel file system

S Data size of request req

a Minimum startup time cost in HDD

b Maximum startup time cost in HDD

βH HDD transfer time per unit data

βS SSD transfer time per unit data

For each file request req arriving at and served by HServers,

the access cost is defined as

TH = Ts + Tt (1)

Here the cost is the completion time for each request, which

consists two parts: startup time Ts and data transfer time Tt.

The startup time means the time consumption due to disk seek

and software overhead on the file servers. Data transfer time

means the time spent on actual data read/write from/to HDD

disk, and is proportional to the data size on the file servers.

Assume the startup time on each file server is α, α is usually

a random variable. We assume α follows uniform distribution

on [a, b], then the probability function of α is

P (α < x) =
x− a

b− a
, a � x � b (2)

Because PFSs commonly stripe file data across multiple file

servers, request req may involve several parallel data accesses

on m file servers. According to the size of req, the value of

m can fall into three cases, namely m = 1, 1 < m < N , and

m = N , as shown in Figure 3(a), (b), and(c) respectively. If

a file request req accesses data on m file servers in parallel,

the overall startup time should be the maximum of all the m
file servers. Let α1, α2, · · · , αm be the startup time of the m
file servers, X = max(α1, α2, · · · , αm), then the probability

density function of X is

f(x) =
m× (x− a)m−1

(b− a)m
, a � x � b (3)

Hence, the expectation of the maximum startup time

α =

∫ b

a

xf(x)dx = a+
m

m+ 1
(b− a) (4)

On the other hand, the data transfer time Tt of request

req should be the maximum of all m file servers, which is

proportional to the data size in each file server. If m = 1,

as shown in Figure 3(a), the maximum data size should be

the request size S. Similarly, if 1 � m < N , as shown

in Figure 3(b), the maximum data size should be the stripe

size Str. However, if m = N , as shown in Figure 3(c), the

maximum data size cannot be obtained directly. In this case,

let Sn denote the maximum data size, it can be calculated as

Sn = � S

N ∗ Str � ∗ Str +min{Str, S%(N ∗ Str)} (5)

Request

File Servers

File

Str

S

(a) (b) (c)

S

Str Sn

S

File Servers File Servers

Request

File

Request

File

S

Fig. 3. Three cases where a file request involves a different number of file
servers. (a) Only one file server is involved. (b) Three file servers are involved.
(c) All the four file servers are involved.

Here Sn includes two parts as shown in the right side

of Equation 5. � S
N∗Str � ∗ Str is the data which is stripe-

size-aligned and evenly divided by all the N file servers;

min{Str, S%(N ∗ Str)} is the overflowed data size.

Based on Equation 4 and 5, the data access cost of each file

request can be expressed as the following three cases.

TH =

⎧⎪⎪⎨
⎪⎪⎩

1
2 (a+ b) + S ∗ βH , S < Str

a+
� S
Str �

� S
Str �+1

∗ (b− a) + Str ∗ βH , Str � S < N ∗ Str
a+ N

N+1 ∗ (b− a) + Sn ∗ βH , S � N ∗ Str
(6)

In contrast, for request req served at SServers, we calculate

the access cost without consideration of the seek time because

SSDs are insensitive to spatial locality. Assume Sm is the

maximum data size when all SSD file servers are involved in

parallel data accesses, it can be defined as

Sm = � S

M ∗ Str � ∗ Str +min{Str, S%(M ∗ Str)} (7)

Then the access cost for request req served by SServers is

defined by

TS =

⎧⎪⎨
⎪⎩
S ∗ βS , S < Str

Str ∗ βS , Str � S < M ∗ Str
Sm ∗ βS , S � M ∗ Str

(8)

D. Region Cost Analysis

With the proposed data access cost model, the performance

gain of each file region by placing the region on SServers over

HServers is calculated. The basic approach includes following

three steps.

First, the address space of the file is logically divided into

regions by a fixed chunk size (e.g. 32MB or 64MB) for further

analysis.

Second, the I/O requests located on each region are identi-

fied according to the I/O traces. If the start offset of an I/O

request falls into the region, the request is counted toward the

region. If the request crosses several regions, then each subpart

of the request contributes to the region it falls into.
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Third, the performance gain for each file region is estimated.

Let n(i) denote the number of requests located on the ith file

region, T j
H and T j

S denote the data access cost time taken by

HServers and SServers to serve the jth request respectively,

which are calculated with Equation 6 and 8, then the gain gi
for the ith file region is defined by

gi =

n(i)∑
j=0

(T j
H − T j

S) (9)

After the above three steps, the region gains can be de-

termined for a large file. These estimates are stored in a

region gain table (RGT) to help make decisions in the data

placement algorithm. Since RGT comprehensively considers

the key factors in data accesses, such as number of requests,

request frequency, request size, and the I/O parallelism of

underlying file servers, it can be used to effectively guide the

data placement.

E. Placement Algorithm

The region placer places data for each file region based

on three factors: (1) the available free space in SServers,

indicating whether SServers can accommodate the current

region, (2) the value of the performance gain of the region,

indicating whether I/O performance can be improved if it is

placed on SServers, (3) the rank of the region performance

gain, indicating whether it incurs more performance gains than

other regions if it is located on SServers.

Algorithm 1 shows the algorithm of data placement for

each I/O request. First, a global region map RMT, which

keeps track of the location mapping information between

logical file regions and target regions on HServers or SServers,

is initialized. The RMT is empty at the beginning, and is

continuously updated as new regions are allocated to the file.

Upon each file request, the algorithm checks if the request falls

into a region that has been allocated to the file by consulting

the RMT. If so, the request is served with the allocated region.

Otherwise, a new region from the underlying file servers is

allocated to place the file data. Suppose there are n free

regions on SServers currently, and the incoming request r
belongs to file logical region reg, then the algorithm will

allocate a target region from SServers for r only when both

of the following conditions are true: (1) the performance gain

of region reg is positive, (2) region reg is in the top-n of

all the unallocated regions ordered by the performance gain.

Otherwise, the algorithm will find a free region from HServers

and place the data on the new allocated space.

Figure 4 shows an example of the proposed data placement

scheme. In this example, the file is divided into five regions,

where different regions have different access costs. Among

the five file regions, region 2 and 4 have higher positive

region gains than others. As there are two free regions on

SServers, region 2 and 4 are placed onto SServers, and the

rest are located onto HServers. Since the destination for each

region is optimized according to the data access gains on

them, the proposed data placement scheme can serve all

Algorithm 1 The region-level data placement algorithm

Require: I/O Request: r, Region gain table: RGT , Region

map table: RMT .

1: /* Lookup r in RMT , return a mapping entry reg*/

2: reg ← RMT lookup(r)
3: if reg != NULL then
4: if reg.position == SServers then
5: Forward r to reg on SServers
6: else
7: Forward r to reg on HServers
8: end if
9: else

10: /* Otherwise, place data to a new region */

11: c← Calculate the free capacity of SServers
12: Let n = c/region size
13: /* Find top n regions in RGT but not in RMT */

14: Reg[n]← top n({x : x ∈ RGT ∧ x �∈ RMT})
15: /* Find a matched region in Reg[n] */

16: for each reg in Reg[n] do
17: if r in reg and reg.gain > 0 then
18: reg ← Allocate a region from SServers
19: Forward r to reg on SServers
20: end if
21: end for
22: if no matched region found in Reg[n] then
23: reg ← Allocate a region from HServers
24: Forward r to reg on HServers
25: end if
26: Add an entry of reg into RMT
27: end if

File

Region

File
Servers

HServers SServers

… … … …

Reg. 0 Reg. 4Reg. 1 Reg. 2 Reg. 3

Fig. 4. An instance of the region-based data placement scheme.

I/O requests with high performance. The region-level data

placement scheme is a fine-grained optimization, and it is more

suitable for applications with complex data access patterns.

F. Region Redirection

The region redirector in the MPI-IO library is responsible

for redirecting user’s I/O requests to the underlying HServers

or SServers. In order to keep track of the location of each

file region, the mapping table RMT is stored in a file in the

same directory as the MPI program. The mapping table entries
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are also hashed in memory for efficient table lookup. Changes

to the mapping entries in memory are synchronously written

to the storage in order to survive power failures. We modify

the MPI library so that the mapping table is loaded with

MPI Init() and unloaded with MPI Finalize(). We also modify

the MPI File read/write() (and other variants of read/write),

so that the user requests can be atomically forwarded to the

alternative file servers. In more detail, if the requested regions

are found in RMT, the logical file regions will be translated to

the target regions. Then, the following read/write operations

will be forwarded to the target regions on underlying file

servers. All the operations are transparent to applications. In

this way, the SServers, which have a limited storage space

and small number of file servers, can be intelligently utilized

according to the I/O patterns.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of CARL

through several benchmark-driven experiments. Before dis-

cussing the experiment results, we will first describe the

experimental setup.

A. Experimental Setup

The experiments were conducted on a 65-node SUN Fire

Linux cluster. Each computing node has two AMD Opteron

processors, 8GB memory and a 250GB HDD (SEAGATE

ST32502NSSUN250G). The operating system is Ubuntu 9.04

and the parallel file system is PVFS2 version 2.8.1. All nodes

are equipped with Gigabit Ethernet interconnection, and 17

nodes are equipped with additional PCI-E X4 100GB SSD

(OCZ-REVODRIVE X2).

Of the 20 standalone configured nodes, eight nodes are

computing nodes, eight nodes are HServers, and four nodes are

SServers. Both SServers and HServers are accessed through

a PVFS2 parallel file system respectively. By default, data

is striped over the file servers with a 64KB striping unit

size. In general, the larger the capacity of an SServer; the

better the I/O performance. In order to avoid overestimating

the improvement, the data size on SServers is set to 20% of

the application file size. To make our comparison fair and

conservative, the operating system buffer caches are flushed

before each run to ensure that all data will be read from the

storage devices. In addition, the dirty data in the memory is

periodically flush to the storage devices to ensure that write

throughput on the storage devices is correctly measured.

IOR [28] is used to benchmark system performance. In

order to show the effectiveness of CARL for different I/O

patterns, IOR is used to generate two kinds of random work-

loads. One workload generates a uniform random distribution,

e.g. the default implementation in IOR. The other generates a

Zipfian distribution, and is implemented for this study. Since

CARL tries to utilize the skewness in workloads during data

placement, uniform random access is the workload that shows

the worst case behavior of CARL.

For each workload, the baseline experiments on the HDD-

only system show the original I/O performance. In order to

show the effectiveness of CARL, experiments are conducted

on the hybrid I/O system with a simple data placement scheme

(RANDOM). RANDOM distributes regions of a large file

randomly to the SServers.

B. Results and Analysis

1) Varying Request sizes: The IOR benchmark is executed

with request sizes of 8KB, 16KB, 32KB, and 256KB. The

number of processes n is fixed to 32. Each process is respon-

sible for accessing its own 1/n of a 10GB shared file, and

continuously issues requests with random offsets.
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Fig. 5. I/O throughputs with varied request sizes for uniform random
workload.

Figure 5 shows the read performance comparison for the

uniform workload. It is observed that both CARL and RAN-

DOM can improve the original I/O throughput by adding SSDs

to the parallel I/O system. CARL improves the performance

by 18.8%, 15.3%, 12.1% and 11.7%. With larger request sizes,

the I/O throughput improves because each request is contin-

uously served in HServers for a longer time. Compared with

RANDOM, CARL has a small performance difference. This

is because with uniform workloads, the regions selected by

CARL nearly bring the same performance gain as RANDOM.

In this case, CARL nearly degrades to RANDOM. Due to

space constraints, only results for read test are presented here,

the write test shows similar results.

Figure 6(a) shows the read performance for the Zipfian

workload. CARL can improve the I/O performance by 278.7%,

205.1%, 148.4% and 80.9%, while RANDOM only improves

the I/O performance by 29.3%, 26.1%, 22.6% and 16.0%.

These results show that, as the request size increases, both

CARL and RANDOM provide better performance compared

to the results for a uniform workload. However, CARL has a

significant performance improvement over RANDOM. This is

because the most critical data, which are a few regions of files

with the highest cost, are placed onto the SSDs; thus, the I/O

access time is largely reduced.

The write test yields similar result as shown in Figure 6(b).

In comparison to the baseline, CARL increases the throughput

by 127.4%, 118.9%, 94.8% and 73.7%, respectively. Com-

pared to RANDOM, CARL shows 88.1%, 82.3%, 65.6%

and 51.0% improvements. However, CARL provides a more

modest improvement in writes due the physical characteristics

of SSDs which favor reads over writes.

2) Varying Number of Processes: The impacts on I/O per-

formance are evaluated while varying the number of processes.
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Fig. 6. I/O throughputs with varied request sizes for Zipfian random
workload.

The IOR benchmark is executed with 16, 32, 64, 128 and 256

processes. The request size is fixed to 16KB.

Figure 7(a) shows the results of read performance for the

Zipfian workloads. Similar to the previous test, the overall

bandwidth is improved by between 107.2% to 139.7% through

using CARL. With the number of processes increasing, the

I/O bandwidth first increases and then decreases because each

HDD file server needs to serve more process requests and the

competition among processes impedes progress. Figure 7(a)

shows another improvement of CARL: when the process

number increases, the performance gain of CARL increases

as well. In other words, CARL has better scalability and

can handle more concurrent I/O processes. Additionally, the

figure shows that CARL is more effective than RANDOM, and

shows performance improvements of 74.2%, 81.9%, 96.7%,

94.5% and 73.2%. The performance trend is similar for write

requests, as shown in Figure 7(b).

3) Varying SSD Sizes: In general, the capacity of SServers

is much smaller than that of HServers and could be smaller

than the I/O working set size for the application. In order to

show the impacts of I/O performance due to SSD space, the

I/O performance is evaluated with data size ratios of 4:1, 3:1,

to 2:1 between HServers and SServers.

Figure 8(a) shows the I/O throughput for read operations.

Similar to previous results, these results show that CARL

is better than RANDOM, and has a performance improve-

ment of 278.7%, 356.4% and 450.8% over the original I/O

performance. I/O throughput improves by increasing the size

of SServers. With the size of SServers increasing, the IOR

bandwidth improves because more high-cost data regions are

located on the SServers. However, the improvement has a

limit. When most high-cost regions are already stored on

SServers, enlarging SServers will not improve performance
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Fig. 7. I/O throughputs with varied number of processes for Zipfian random
workload.
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Fig. 8. I/O throughputs with varied SSD sizes for Zipfian random workload.

significantly. This is observed in Figure 8(a).

For writes, the I/O throughput is lower than reads, due to the

better random read latency of SSD, but it also has a plateau,

as shown in Figure 8(b).

V. CONCLUSIONS

Parallel I/O systems are widely used to mask the huge per-

formance gap between computing and data accesses. However,

they may exhibit poor performance for certain I/O patterns. In

data-intensive parallel I/O environments, a single file could

reach several terabytes, and data access patterns of the file

could vary in different chunks of the file. Newer solid state
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drives (SSD) provide a possible hardware solution to the

I/O system bottleneck. Due to the excellent performance but

high cost of SSD, building parallel I/O systems with hybrid

SSD-HDD file server is a promising way to address the I/O

performance issue. In this paper, we proposed CARL, a cost-

aware region-level data placement scheme to speed up the I/O

performance for hybrid parallel I/O systems. This strategy pro-

vides fine-grained region-level data placement optimization,

which is highly suitable for applications with non-uniform data

access patterns.

We described the three-phase approach of the proposed data

placement optimization, including how to divide the file into

regions, how to calculate the performance gain for each region,

and how to decide which regions should be placed on which

file servers. The data placement scheme intelligently selects

the proper underlying file servers for different file regions.

It achieves a better integration of data access characteristics

of applications and data organization on heterogeneous stor-

age media in parallel file systems. The experimental results

demonstrate that, the proposed data placement strategy with

access cost awareness improves the performance up to 450.8%

for reads and 167.3% for writes with the widely-used IOR

benchmark.

In the future, we plan to enhance our cost model to

include more complex data access patterns, and explore more

optimization techniques to make I/O systems more intelligent

and efficient.
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