374

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

A Highly Reliable Metadata Service for
Large-Scale Distributed File Systems

Jiang Zhou™, Yong Chen

, Weiping Wang, Shuibing He

, and Dan Meng

Abstract—Many massive data processing applications nowadays often need long, continuous, and uninterrupted data accesses.
Distributed file systems are used as the back-end storage to provide the global namespace management and reliability guarantee. Due
to increasing hardware failures and software issues with the growing system scale, metadata service reliability has become a critical
issue as it has a direct impact on file and directory operations. Existing metadata management mechanisms can provide fault tolerance
capability to some level but are inadequate. They often have limitations in system availability, state consistence, and performance
overhead and lack an effective mechanism to offer metadata reliability. This paper introduces a novel highly reliable metadata service
to address these issues in large-scale file systems. Different from traditional strategies, this proposed reliable metadata service adopts
a new active-standby architecture for fault tolerance and uses a holistic approach to improve file system availability. A new shared
storage pool (SSP) is designed for transparent metadata synchronization and replication between active and standby servers. Based
on the SSP, a new policy called multiple actives multiple standbys (MAMS) is presented to perform metadata service recovery in case
of failures. A new global state recovery strategy and a smart client fault tolerance mechanism are achieved to maintain the continuity of
metadata service. We have implemented such highly reliable metadata service in a prototype file system CFS (Clover file system) and
conducted extensive tests to evaluate it. Experimental results confirm that it can significantly improve file system reliability with fast
failover under different failure scenarios while having negligible influence on performance. Compared with typical reliability designs in
Hadoop Avatar, Hadoop HA, and Boom-FS file systems, the mean-time-to-recovery (MTTR) with the highly reliable metadata service

was reduced by 80.23, 65.46 and 28.13 percent, respectively.

Index Terms—Distributed file systems, metadata service, metadata reliability, fault tolerance, shared metadata storage

1 INTRODUCTION
WITH the arrival of the big data era, massive data proc-
essing has been widely used for extracting useful
knowledge from a large amount of datasets. Most applica-
tions, including offline and online data analysis, often need
long, continuous, and uninterrupted data accesses. Mass
data storage has become a key building block for large data-
set processing. Distributed file systems have attracted inten-
sive attention in recent years and are being actively
investigated to meet new demands for the management of
massive datasets and a variety of data structures.

The metadata management is a critical component of
distributed file systems and plays a key role in terms of their
scalability, reliability, and availability. There are two meta-
data management mechanisms in general: a centralized
mechanism and a decentralized mechanism. The centralized
metadata management, including Lustre [1], PVFS [2], GFS
[3], and HDFS [4], has one metadata server to organize all

o J. Zhou, W. Wang, and D. Meng are with the Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China.
E-mail: {zhoujiang, wangweiping, mengdan|@iie.ac.cn.

Y. Chen is with the Department of Computer Science, Texas Tech University,
Lubbock, TX 79401. E-mail: yong.chen@ttu.edu.

S. He is with the College of Computer Science and Technology, Zhejiang
University, Hangzhou, Zhejiang 310058, China.

E-mail: heshuibing@zju.edu.cn.

Manuscript received 26 Jan. 2019; revised 4 July 2019; accepted 6 Aug. 2019.
Date of publication 26 Aug. 2019; date of current version 26 Dec. 2019.
(Corresponding author: Jiang Zhou.)

Recommended for acceptance by W. Yu.

Digital Object Identifier no. 10.1109/TPDS.2019.2937492

4

metadata of files and directories. It greatly simplifies the
design and implementation of distributed file systems but
can easily lead to a single point of failure: once the metadata
server crashes, the file system will not be available. The
decentralized metadata management, including Ceph [5],
Ursa Minor [6], and HDFS Federation [7], uses a group of
metadata servers to manage the global namespace. It
improves file system scalability and is the trend for future
distributed file systems. However, a decentralized metadata
management mechanism presents challenges in metadata
operation performance and in the case of multiple metadata
server failures. In this research, we focus on these challenges
and introduce a highly reliable metadata management policy
for multiple metadata services. We present its design, imple-
mentation, and evaluation results in this paper.

The reliability of file system metadata management has
never been so important. Advances in large-scale cluster and
high performance computing systems enable effective and
rapid mass data processing. However, larger systems gener-
ally have more processing components and other elements,
which increase the overall system failure rate. Although the
mean-time-between-failures (MTBF) for an individual com-
ponent may be high, the system reliability can decrease
significantly in a large-scale system. Experience in Facebook
indicates that modern data centers are rife with hardware
failures, in which the large scale of deployment both ensu-
res a non-trivial fault incidence rate and complicates the
localization of these faults [8]. Another example is the
MTBF of IBM Blue Gene/L machine, which is built with

1045-9219 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7687-5896
https://orcid.org/0000-0002-7687-5896
https://orcid.org/0000-0002-7687-5896
https://orcid.org/0000-0002-7687-5896
https://orcid.org/0000-0002-7687-5896
https://orcid.org/0000-0002-9961-9051
https://orcid.org/0000-0002-9961-9051
https://orcid.org/0000-0002-9961-9051
https://orcid.org/0000-0002-9961-9051
https://orcid.org/0000-0002-9961-9051
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-7075-4153
mailto:
mailto:
mailto:

ZHOU ET AL.: AHIGHLY RELIABLE METADATA SERVICE FOR LARGE-SCALE DISTRIBUTED FILE SYSTEMS 375

131,000 processors and is estimated to be below 7 hours [9].
In fact, recent studies indicate that servers tend to crash with
2-4 percent failure rate, 1-5 percent of disk drives die, and
2 percent memory errors occur per year [10], [11]. In an
extreme-scale system with more than hundreds of thousands
of nodes (part of them are designated as metadata servers),
the MTBEF is expected to fall below tens of minutes, and a
node/server error can occur every day on average [12].

In addition to increased hardware failures, many systems
often encounter software upgrades, configuration changes,
installation of new components, and planned or unplanned
downtime [13]. As a typical distributed framework, most
Hadoop clusters will perform major upgrades every quarter
and relevant software stack patch at any time. A metadata
service failure can have a significant impact. For example, it
will lead to tens of thousands of file system request failures
at the Facebook real-time system [14] if the metadata server
suspends. Due to the increasing likelihood of hardware fail-
ures or software issues, the metadata service can be inter-
rupted and lead to the entire file system unavailability,
which has a catastrophic impact on big data applications.

One common way for maintaining metadata reliability in
file systems is to depend on logs or checkpoints [15]. The
log-structured file systems [16] learn from the database
transaction processing [17] for metadata recovery from fail-
ures. Some local file systems [15], [18] or distributed file sys-
tems [19], [20] use log-based design for system reliability.
Metadata modifications are first written to a sequential jour-
nal on disks before being applied to operations. When in
recovery, the journals are read in memory to reconstruct the
file system namespace by replaying or rolling back logs.
Although this design improves the reliability of metadata
service, it has a critical limitation: whenever the server is
down, the file system is unavailable until it is fully recov-
ered from logs. Besides, when the server stores metadata on
persistent devices, it is restricted to read and write opera-
tions of local disks. It is important to tolerate the failure of
metadata service for satisfying such applications whose
uptime requirement is 24 x 7 in mass data analysis and
processing.

To provide a highly reliable metadata service, the pri-
mary-backup strategy is often used in distributed systems
such as Lustre [1] and GFS [3]. If the primary server crashes,
a backup one will take over its role and continue to respond
to clients. However, there is a service downtime before the
backup finishes metadata recovery and replaces the pri-
mary. For example, the largest HDFS cluster in Facebook
with 150 million files takes about 20 minutes for failover
[14]. To achieve seamless service switching, numerous strat-
egies [7], [21], [22] adopt hot standby for the primary. It
reduces the recovery time, but still needs dozens of seconds
and minutes for recovery and still has the problem of meta-
data state inconsistency. Server state replication [23], [24] is
another way to improve metadata reliability. All metadata
modifications are replicated in multiple standbys when an
active is running. One of the standbys will provide the
active service in case of failures. It enhances the file system
reliability. Current strategies, however, suffer three limita-
tions. First, they have influence and affect the performance of
normal metadata operations. Second, they require additional
failover time for system state recovery. Third, they lack an

effective method to tolerate failures for multiple metadata
services in distributed storage systems.

To address these aforementioned limitations, we propose
a novel, highly reliable metadata service to largely improve
metedata reliability for large-scale distributed file systems.
In contrast to existing systems and solutions, the contribu-
tion of this study is four-fold. First, we introduce a novel
shared storage pool (SSP) design for metadata persistence.
The SSP works as a virtual store for reliable metadata shar-
ing and storage. It is built upon existing metadata servers
and internally adopts an optimized two-phase commit pro-
tocol (2PC) for metadata/journal synchronization and repli-
cation [25], which not only provides consistency guarantee
among servers but also significantly reduces the overhead
on metadata operations. The shared storage pool is trans-
parent for metadata servers, without requiring any addi-
tional hardware support, which otherwise could increase
the cost and decrease the flexibility and likelihood of adop-
tion. Experimental results show that SSP improves the reli-
ability of metadata service for recovery.

Second, we propose a new active-standby policy called
multiple actives multiple standbys (MAMS), to perform meta-
data service recovery in case of failures. The MAMS policy
has two significant advantages. One is that it can tolerate
various failures and significantly improve metadata reliabil-
ity in a large-scale file system. To achieve that, MAMS
divides metadata servers into different replica groups and
maintains more than one standby server for recovery in
each group. When the active server fails, a new one will be
elected from standbys to replace the active and recover
metadata service. The other advantage is that MAMS can
reduce the overhead of recovery with little influence on file
system performance. It is based on the shared storage pool
for metadata consistency between active and standby serv-
ers. By using an elaborate interactive state transition among
servers, it achieves seamless service switching in the form
of hot standby. The MAMS policy also supports adding
backup nodes at runtime dynamically. Performance results
show that MAMS achieved a fast failover within millisec-
onds for metadata operations.

Third, we present a new global state recovery mechanism
for distributed file systems. When multiple points of failure
occur, some metadata servers may not be recovered even by
the MAMS policy, e.g., the operating system crashes or a
backup node fails. It needs to restart all servers and perform
failover for the entire file system. The mechanism assigns
unified checkpoint flags in the journals of each metadata
server. When the file system is resumed, the server read
journals to construct the namespace state till it meets the
unique flag. It ensures that the file system recovers to a con-
sistent state of previous time after recovery.

Fourth, we present a novel smart-client protocol for
transparent fault tolerance. Unlike traditional manual ser-
vice switching or virtual IP approaches, the client can auto-
matically find and connect to a new one when the metadata
server fails. Combining duplicate journal detection with
automatic reconnection mechanism, the client protocol
helps the MAMS policy to achieve quick failover with meta-
data consistency guarantee.

The rest of this paper is organized as follows. Section 2
outlines the related work. Section 3 describes the system

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:49 UTC from IEEE Xplore. Restrictions apply.

376 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

design of the highly reliable active-standby cluster. Section 4
presents our highly reliable metadata service. Section 5 eval-
uates the performance and characteristics of the service,
with comparisons to widely-used highly reliable metadata
management strategies. Section 6 concludes this paper and
outlines our future studies.

2 RELATED WORK

2.1 Distributed Metadata Storage

When providing metadata management, the file system
needs to persist metadata operations/logs to storage device
such as disks. It saves the namespace state and prevents
metadata information from becoming unavailable. In dis-
tributed file systems, the metadata server will also interact
with each other for state synchronization or state backup.
To ensure file system reliability, metadata synchronization
is often bound with replication, which can keep both meta-
data redundancy and consistence.

Metadata Synchronization. Several known studies exist and
mainly focus on the synchronization strategy to keep consis-
tent states among servers. An easy way is for the metadata
server to transmit metadata modifications to other servers
directly, such as BackupNode in HDFS [4]. It does not need
to access shared files and only incurs network communica-
tion overhead. This method can improve the synchroniza-
tion performance but cannot ensure state consistence among
servers if errors occur during metadata transmission. To
keep metadata consistent, several distributed protocols can
be used for coordination. The two-phase commit protocol
(2PC) [25] and variants [26] are atomic commit protocols to
achieve consistency for distributed operations. They can be
used to maintain consistent states among servers when syn-
chronizing metadata. TAPIR [27] is a transactional applica-
tion protocol that makes clients participate in 2PC process to
reduce the number of round-trips to storage servers. Some
modified protocols [28] combine the 2PC protocol with meta-
data processing to perform cross-metadata server opera-
tions. Although they ensure metadata state consistency, they
can lead to additional overhead on normal metadata opera-
tions. Shared storage [29] is an efficient method for metadata
synchronization in which the metadata server writes meta-
data operations into the shared files and the other server
reads them and updates its namespace state on time. NFS
[30] allows users to access the shared resources transpar-
ently. The metadata servers mount the remote file system in
a local machine and perform writing and reading for the files
simultaneously. BookKeeper [31] is a distributed log storage
system. It is based on the message queue for communication
and writes ledgers into multiple bookie nodes. BookKeeper
also considers fault tolerance by replicating each ledger
entry. It can wait for results asynchronously in which it
needs to reselect a bookie for writing the fault replica when
some node crashes. BookKeeper can store journals effec-
tively, but it adds additional steps for shared file access and
increase the synchronization overhead.

Metadata Replication. There is a long history of distributed
storage systems that employ replication to improve system
reliability [32], [33], [34], [35], [36]. These solutions provide
high availability and consistent semantics to handle system
failures. However, they either increase the operation cost or
need additional hardware support, which reduces the

flexibility and likelihood of adoption. To enhance system
reliability, numerous strategies adopt replicated state transi-
tion to achieve highly reliable services [37], [38]. TidyFS [39]
maintains multiple metadata servers as a replicated compo-
nent for the centralized metadata server. It leverages the
Autopilot Replicated State Library [40] and Paxos [41] proto-
col to solve consensus in a network of unreliable processors.
Boom-FS [23] implements a data-centric analytics stack,
which is compatible with Hadoop interfaces. To achieve reli-
ability, it adopts a globally-consistent distributed log to guar-
antee a total ordering over events affecting replicated states.
Both of them use the Paxos protocol to maintain consistency
among servers and provide a reliable mechanism by the rep-
licated state machine approach. The operation performance,
however, is affected by centralized repair action decision
and state transition, which leads to additional failover time.

Compared with these methods discussed above, we pro-
pose a new shared storage pool (SSP) for distributed meta-
data storage in distributed file systems. The shared storage
pool is designed as a virtual store for metadata persistence
(journal and image files). It is built upon existing metadata
servers, without any additional hardware support. Through
an optimized 2PC protocol, the shared storage pool can
achieve efficient metadata synchronization and replication
between the active and standby servers. It not only
improves metadata service for recovery but also reduces the
overhead for normal metadata operations.

2.2 Reliable Metadata Service

Metadata reliability strategy is widely adopted in large-
scale storage systems. It helps keep the continuity of meta-
data service and maintains the state consistency of file sys-
tems in case of failures.

Traditional Primary/Backup Strategy. To support continuous
service for metadata operations, the primary/backup strat-
egy is often used, such as in PVFS [2], Lustre [1], HARP [42],
GFS [3], HDFS [4] and etc. [43]. It achieves fault tolerance by
using the backup server to take over as the primary if the
latter crashes. When the active server provides service, the
backup server keeps updated status with it for state recovery.
It has little extra overhead on normal operations but easily
leads to incorrect states between the primary and backup
without consistency guarantee. Furthermore, as it requires
the procedure of restarting and reconnection in the backup
server, it takes a long time for failover. In contrast, our pro-
posed MAMS policy provides an automatic hot standby,
which significantly reduces the overhead for recovery.

Hot Standby Strategy. The hot standby strategy provides
seamless service switching for some systems to speed up
their failover recovery [7], [14], [22]. AvatarNode [14] at Face-
book is designed for a realtime file system that supports
online applications and requirements. In order to construct
file locations, the datanodes talk to both active and standby
metadata servers. As the standby server keeps the same state
with the active server on the fly, it can take over quickly.
Hadoop HA [7] employs the Quorum Journal Manager
(QIM) to synchronize server states between the active and
standby. They can achieve automatic fault tolerance but still
take some time for recovery and have influence on normal
metadata performance. Wang et al. [22] have proposed a pri-
mary-slaves topology to enable Hadoop high availability.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:49 UTC from IEEE Xplore. Restrictions apply.

ZHOU ET AL.: AHIGHLY RELIABLE METADATA SERVICE FOR LARGE-SCALE DISTRIBUTED FILE SYSTEMS 377

The mechanism consists of one primary critical node and
several slave nodes for removing a single point of failure. It
spends about three times of the response delay in metadata
operations. Different from above methods, our MAMS policy
achieves an automatic hot standby for multiple metadata ser-
vice in distributed file systems. Each metadata server has one
or more standbys that maintain the same namespace state
with it. If one metadata server crashes, a new active will be
elected from other standbys to replace it and achieve fast ser-
vice takeover.

Reliability Management Strategy. Symmetric or asymmetric
active/active models are also used to improve file system reli-
ability [44]. In the symmetric strategy [45], more than one ded-
icated server provides the shared global state with the virtual
synchrony technique. With a fast delivery protocol, service
node failures do not cause a failover to a backup and there is
no disruption of service or loss of service state. Asymmetric
strategy [46] comprises n + 1 and n + m configurations with
n active nodes and 1 or m standby nodes. The standby servers
monitor all active servers and perform failover when the out-
ageis detected. As client requests are distributed across multi-
ple active servers, these strategies will result in a performance
decrease in metadata processing and additional overhead for
response time. In contrast, our proposed MAMS policy
adopts distributed coordination and achieves faster, transpar-
ent fault tolerance within milliseconds while delivering high
performance for metadata operations.

Zookeeper [47] provides a high-performance coordina-
tion service for distributed applications. However, Zoo-
keeper mainly provides a simple set of primitives that
distributed applications can build upon to implement higher
lever services. We use Zookeeper to coordinate implementa-
tion of the proposed MAMS policy, such as monitoring
nodes, triggering events and maintaining server states.
Based on Zookeeper, the MAMS adopts a Paxos-like election
algorithm that ensures only one active server is elected each
time in a replica group. Comparing with consensus algo-
rithms Zab [48] or Raft [49], it uses two distributed protocols
for fault tolerance and recovery. One is the failover protocol
that achieves automatic state transition for metadata servers
between three different states. The other is the renewing pro-
tocol that can recover backup nodes from obsolete state and
allow dynamically adding backup nodes. Global state recov-
ery and smart-client fault tolerance are also achieved for
seamless failover. Evaluations have confirmed the efficiency
of such highly reliable metadata service.

3 SYSTEM DESIGN

The goal of this research study is to achieve a highly reliable
metadata service to improve metadata reliability for large-
scale file systems. In this section, first we discuss the chal-
lenges of achieving that, then we introduce the overall sys-
tem design. In the next section, we present the design and
implementation in detail.

3.1 Challenges
To achieve the research objective, a highly reliable metadata
service faces the below challenges:

e Metadata consistency. To achieve hot standby, the
backup node keeps a consistent namespace state with

the active server. Paxos-based methods enhance the
consistency but reduce the performance. In most
cases, it is a trade-off between the metadata opera-
tions and metadata consistency, e.g., offering either
strong or eventually consistency guarantees [50], [51].
Thus, an effective method is required to synchronize
and replicate metadata modifications among servers.

e IO Fencing. During the failover situation, it is impor-
tant that only the active server has the obligation to
update the shared metadata information. The backup
node performs read operations under failure free
cases. When it needs to elect a new active server, the
previous one is replaced but might not be isolated
immediately and may continue to perform metadata
modifications. IO fencing is required to ensure that
the obsolete server does not update the shared jour-
nals and to prevent fault pervasion.

e Split-brain problem. Highly-available clusters often
use the heartbeat mechanism to monitor each node
and the health status of the whole system. The split
brain scenario may happen when some errors occur,
such as transient network failures. At this time, each
backup node may believe it is the only one running
and wants to take over the active server. The cluster
could enter an uncertain state for clients, with the
risk of generating new errors.

e Performance overhead. When using a highly reliable
mechanism, it will result in additional overhead for
metadata operations under failure or failure-free
states. Low performance cost, including metadata
state synchronization, fault tolerance and failure
recovery, should be considered when designing a
highly reliable policy.

e System scalability. The scalability includes two
aspects: one is the ability of a file system to scale with
multiple metadata servers to manage a global name-
space. The other is the ability of a reliable policy to
support scaling backup nodes. When using a highly-
available cluster for system reliability, there is a risk
of server failures and will reduce the number of avail-
able servers. It is necessary to add backup nodes
dynamically for improving the reliability of the entire
storage system.

3.2 System Architecture

In a typical distributed file system, multiple metadata serv-
ers are deployed to manage a global namespace. Partition-
based methods [5], [7], [52] are often adopted for metadata
management and metadata distribution. Based on the parti-
tion, each metadata server manages a portion of the
namespace and responds to clients independently. The
applications perform metadata and I/ O requests through cli-
ent interfaces for file system operations.

To support an uninterrupted service, our highly reliable
metadata service adopts a novel active-standby architecture
to improve system availability. As shown in Fig. 1, each
metadata server (MDS) in the cluster is deployed with mul-
tiple dedicated backup nodes for reliability. For instance,
the server MDS; has several backup nodes. The backup
node can have two states, a standby state and a junior state,
discussed in detail below. For each metadata server, a

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:49 UTC from IEEE Xplore. Restrictions apply.

378 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

Applicatons Applicatons Applicatons

(4) Smart-client (4) Smart-client (4) Smart-client

o

24x7h
Uninterrupted Service

Distributed File System Interfaces

[y oo | EEE———————— 7 71
! Replica/ MDS2 / MDS2 MDS2 /i
: Group// (Active) /'/ (Backup) ° (Backup) /o
"_L____f ______________ ! 2 e 7 :—“
/ [
'Replica/ MDS1 / / MDS1 MDS1 /o
| Group/ (Active) / (Backup) oo (Backup) ,/ !
/ /
i_ ¥ Standby Cluster * / i
::’I‘,\
Active \/
Election Renewing
Protocol Metadata
?) Failover Synchronization (3) Global
MAMS| Protocol t [and Replication [Resct::zr
Policy Y
| Global View Management |
(1) Shared Storage
| Server State Transition | Pool (SSP)
WL ly
Fig. 1. System architecture overview with highly reliable metadata

service.

replica group is constructed with one active and two or
more standby/junior nodes. By server state replication, the
standby nodes can keep the same states with the active and
take over its role in the event of failures. Then the active
and backup metadata servers constitute an active-standby
cluster to provide file system service for applications.

The use of standby cluster can improve metadata reliabil-
ity, but may introduce additional cost and require additional
maintenance. In fact, it is always a trade-off between meta-
data server redundancy, performance, and reliability. First,
we use multiple metadata servers to provide file system ser-
vice, which can be highly scalable and beneficial for perfor-
mance [52]. Second, adding standbys can improve metadata
reliability. Our theoretical analysis shows that the mean time
to failure (MTTF) is improved by 3 magnitudes when adding
each additional backup node for one active in the replica
group (see details in Section 5.1). Third, our evaluations
show that the metadata performance is gradually decreased
when adding standbys but the influence is minor (see details
in Section 5.3). Thus, it is worthy to use a standby cluster to
achieve reliability for multiple metadata service.

With the active-standby architecture, our highly reliable
service adopts four collaborative and tightly connected mod-
ules to improve file system availability, as illustrated in
Fig. 1. The first module is a virtual shared storage pool
(SSP) [52], [53], which distributes the responsibility of manag-
ing different metadata partitions among different groups of
servers. The SSP provides a function for metadata synchroni-
zation and replication between the active and standby servers
with little performance overhead. It will be discussed in
detial in Section 4.1. The second module provides a MAMS
(multiple actives multiple standbys) policy, which is respon-
sible for fault tolerance and service switching if errors occur
at metadata servers. When the active server fails, a new one
will be elected from backup nodes, which is a synchroniza-
tion step similar to the Paxos leader election phase. A global
view management (which maintains server states) and
two distributed protocols, failover protocol and renewing

Global View
A:192.168.1. 110 S:192.168.1.111; J 192 168.112
Modlfy Elec}
__ Client e « — Failoverupgrade — = Standby
requests” | 192.168.1.110 _ _ _pyilover-degrade— - 192 168 L1111
‘ A
\ i
\ Replicate — Synchmnue // |
\ / ,
| Shared Storage |
Failover: de rade 8
1lov gl \ Pool Renew:upgrade /
[ceeeereanenenaneenn . \ \ / Fallover degrade
Control Actlon \ / //
—_ \ / ’
\ Renew / /
Journal Stream \ * / 7
\ Ve
______ > N . s
State Transition Junior Ing
/ 192.168.1.112

Fig. 2. Server state transition in the replica group. There are three states
for a metadata server: active, standby, and junior. The state of servers
may be switched to each other under different conditions.

protocol, are used in MAMS for server state transition. We
will discuss it in detail in Section 4.2. Third, a global state
recovery mechanism is designed to recover the entire file sys-
tem to a previous consistent state. This mechanism will be
discussed in detail in Section 4.3. Fourth, a smart-client com-
ponent is designed to achieve transparent fault tolerance and
to enable client applications to better leverage the design of
the metadata storage system. We will discuss it in Section 4.4.

3.3 Server State Transition

For each replica group in the active-standby cluster, the
metadata server starts up in different states according to a
global view. The global view keeps all server states in the
active-standby cluster and helps achieve server state transi-
tion. We use Zookeeper [47] to maintain the global view,
monitor server states, and fundamentally coordinate server
state transition in the MAMS policy. The metadata server
acts as one role and is transitioned to other states upon dif-
ferent conditions. The state of server is defined as follows:

e Active. An active server receives client requests and
provides metadata service for the namespace parti-
tion it manages. In any replica group, one and only
one of servers is in an active state at any time.

e Standby. A standby server is a backup node, which
simply keeps an up-to-date namespace state with the
active at any time (using strong consistency). It does
not provide metadata service but can take over as
the active server in the event of failures.

e Junior. A junior server is a type of backup node, which
is in an intermediate status and cannot provide hot
standby. It does not synchronize metadata with the
active server in real time but will finally recover state,
or update to standby if there is no longer strongly con-
sistent with regard to the active (using eventual con-
sistency). It can be a server which restarts after a
failure, or is a newly added backup node.

Under different conditions, the state of servers may be
switched to each other. Fig. 2 shows a diagram of server
state transition in the replica group. It can be seen that there
are three servers in different states: one is an active server
with the IP address 192.168.1.110, one is a standby server
with the IP address 192.168.1.111, and another one is a

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:49 UTC from IEEE Xplore. Restrictions apply.

ZHOU ET AL.: AHIGHLY RELIABLE METADATA SERVICE FOR LARGE-SCALE DISTRIBUTED FILE SYSTEMS 379

junior server with the IP address 192.168.1.112. As men-
tioned above, distributed protocols are responsible for the
state transition. The failover protocol performs upgrading
or degrading between the active and standby servers. It also
degrades them to the junior state when necessary. The
renewing protocol is adopted to upgrade the junior to a
standby. Based on the SSP, the active server synchronizes
and replicates journals to standby for keeping the state con-
sistent. It reduces additional overhead with little influence
on normal metadata operations. A monotonically increasing
serial number (sn) is assigned by the active when it writes
journals. Each batch of log records is described with the
pair <sn, groupid>. By subtracting the values between two
sn, the junior can retrieve missing metadata from the SSP or
the active server for upgrading to the standby state.

As the distributed metadata service decouples data and
metadata management, file contents are split into blocks
and replicated in the data server cluster. Block locations are
periodically reported via heartbeat [4] to both the active and
standby nodes by data servers. It means that the standby
node has the up-to-date file locations and can achieve a hot
standby for the active server.

4 HiGHLY RELIABLE METADATA SERVICE

We introduce the design and implementation details of our
newly proposed highly reliable metadata service, which
provides consensus guarantee for fault tolerance. Algorithm
1 lists key properties of the highly reliable metadata service,
where each element is discussed in detail over the rest of
this section.

Algorithm 1. The Highly Reliable Metadata Service
Guarantees that all these Properties are Met. The Section
Numbers Indicate where each Property is Discussed

1 while receive client requests;

2 do

3 Metadata synchronization safety check: the active
synchronizes metadata to standbys via the SSP.
Section 4.1.2

4 if active fails;

5 then

6 Election safety check: at most one active can be elected
in a given term. Section 4.2.1

7 State transition safety check: a new active will take

over the service, other metadata servers change to
states of standby or junior. Section 4.2.2
8 Metadata consistency check: server states change cor-
responding to the SSP, and only the new active can
write journals to standbys. Section 4.2.2
9 Server state consistency check: the junior will update
to standby based on the SSP. Section 4.2.3
10 Client state safety check: the client reconnects to the
new active and resends requests for failed operations;
the new active distinguishes duplicated requests for
fault tolerance handling. Section 4.4
11 end
12 end
13 Global state safety check: recover the entire file system to a
previous, consistent state in case of multiple points of fail-
ures. Section 4.3

| it (I b 1 oSS sssss= !
E Pool Node E E Pool Node E i Pool Node i
. 3 [} [|
: £ 1 MDps1 i MDSI i i wmDSI |
Replica Group g 1| (Active) | 1|1 (Backup) 1 1 (Backup)
N Z i [i
- | N Vo |
B I N . a
NS Sync/Replicate/Read/Write
N
— & [Disk { Disk Disk }
Journals l 5 o R o
e 7 :
N =3 Remote Remote
. . E Local Copy Copy \ Copy
Zi - - - —
RN e R ey S e

Fig. 3. Shared storage pool (SSP) design.

4.1 Shared Storage Pool
4.1.1 Shared Storage Pool Design

To achieve a highly reliable metadata service, a novel
shared storage pool (SSP) is proposed in our approach. The
SSP is an intermediate component that offers support for
metadata reliability. It has two major roles. First, the SSP
provides metadata synchronization between the active and
standby servers. To achieve a hot standby and service take-
over, standby servers need to synchronize metadata modifi-
cations from the active and keep consistent state with it.
The SSP uses an internal protocol for metadata synchroniza-
tion between the active and standbys. Second, the SSP pro-
vides persistent metadata storage. Besides maintaining
namespace in memory, the metadata server has to store
journals in disks for recovery. Otherwise, the file system
state will be lost if the metadata server fails. Different from
local disk storage, the SSP provides shared metadata stor-
age where the active makes replication for journals and dis-
tributes them to standbys in each replica group.

Each active has two types of journals that are persistently
stored, including a namespace image and one or more jour-
nal files. When the active synchronizes metadata to stand-
bys, it writes logs into journal files in one local copy and
replicates them in standbys simultaneously. In addition to
journal files, the entire namespace in memory is stored peri-
odically, as an image file. Like HDFS [4], it includes the
inode data and the list of blocks belonging to each file in the
file system. The image file is replicated between the active
and standbys in a pipeline fashion [4]. Thus, the SSP can
help to improve metadata redundancy and locality when
metadata servers load journals for recovery.

Fig. 3 depicts the design of the shared storage pool. As
shown in the figure, the active and multiple standby servers
in each replica group form a pool of nodes as SSP. For each
metadata operation, the active synchronizes and replicates
modifications to its standbys through the SSP. As metadata
servers are reused in the SSP, their states will change corre-
spondingly if active-standby state transition happens. For
instance, if an active is changed to standby due to failures, it
will not synchronize metadata to others any more but just
wait to receive metadata from the new active. Together with
the MAMS policy and client fault tolerance handling, the
SSP ensures eventual metadata consistency during server
state transition (discussed below).

4.1.2 Metadata Synchronization and Replication

This section introduces the journal synchronization and rep-
lication protocol in SSP. Through the protocol, the active

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:49 UTC from IEEE Xplore. Restrictions apply.

380 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

Coordinator Coordinator

| Begin Begin

v
Receive metadata Receive metadata

Participant
requests requests P K
v Participant _v Begin
Write log: - N -7 \ '
operation is prepared | _ — ¥ Begin | Generate SN for v
- - - each group 5
- s Write log:
P Ay Write log: 1/ operation is prepared
(' Wait | operation is prepared A\
‘\Walt/ﬁ\“ » Wait 4— — —ACK— — — —
N ACK. _ _ N
! k T
i PN
Commit or abort S T / -\
i { T . , Wait |
modifications | Commit ~¥\ Wait) Get majority A Vet
_ — orabort “-__responses / T
| . ~ Commit or abort
P Commit or abort mcou Y // v
| Wait operations Commit or abort
A ACK i (ot 7 G operations
- ANy J Write log: modifications
Writelog: operation is committed Write log:
operation is committed ereiEl A S _—
or aborted Y Write log in disk operation is committed
~Nd or aborted
Respond to 1 Respond to
- . - p . =
cllen’tys End chem; . R T
End) End End |

(a) Existing 2PC protocol (b) Optimized 2PC protocol in SSP:

journal synchronization and replication

Fig. 4. Journal synchronization and replication protocol in SSP.

synchronizes state to its standbys and stores journals in a
distributed way. To improve the performance, the active
aggregates metadata modifications as a batch of journals
and synchronizes them to standbys. As data servers period-
ically report block locations, the standby nodes can achieve
a hot standby for the active when failures occur. To reduce
the performance overhead on metadata operations, we
design a distributed protocol based on the two-phase com-
mit protocol (2PC) [25] for metadata synchronization
and replication. For comparison, we first discuss the 2PC
algorithm briefly and then introduce our protocol.

Fig. 4 shows the process of metadata synchronization and
replication with the optimized 2PC protocol in SSP [53]. The
2PC protocol is a popular atomic commitment protocol used
for distributed operations. Fig. 4a shows the workflow of
using existing 2PC protocol method in SSP, which includes
the pool node who initiates the write operation (coordinator)
and the pool node who receives log records (participant). It
is divided into two phases, a preparation phase and a com-
mitment phase. In the preparation phase, the coordinator
receives metadata requests from the client, writes the log
with “Prepare” label in local disk, and transmits them to
each participant. The participant receives journals and writes
the “Prepare” log. In response, the participant then sends an
“ACK” message to the coordinator to confirm the operation.
The coordinator waits and collects ACK messages from par-
ticipants in the commitment phase. When receiving all ACK
messages, the coordinator commits modifications in memory
and sends “ Commit” messages to participants for execution.
After all participants complete operations and write commit
logs, they send ACK messages to the coordinator. When
receiving all ACK messages, the coordinator write the com-
mit log and responds to the client. During the procedure, the
operation will be aborted if some participants send “Abort”
messages or other errors occur.

With the 2PC protocol for metadata synchronization, it
can ensure metadata consistency among metadata servers.
However, it needs four times of the message communica-
tion between the coordinator and participant, which can sig-
nificantly affect the performance of metadata operations.

Besides, the 2PC protocol lacks the critical fault tolera-
nce mechanism in the commitment phase for metadata
synchronization.

To address these issues, we introduce an optimized 2PC
protocol for metadata synchronization and replication in
SSP. It acts like quorum-based Viewstamped Replica-
tion [54] or Paxos protocol [41], but is specifically designed
and optimized for metadata operations and works together
with other components for metadata reliability. The process
is illustrated in Fig. 4b. First, the coordinator receives client
requests and aggregates them in a group. For each group,
the coordinator assigns a monotonically increasing serial
number (sn) for operation ordering and fault tolerance. It is
described with the pair <sn, groupid>. When a group of log
records are prepared, the coordinator sends them to all par-
ticipants. Second, each participant receives metadata modi-
fications, writes the “Prepare” log in local disk, and send an
ACK message to the coordinator. At last, when the coordi-
nator receives a majority of responses (more than half), it
performs operations in memory and responds to the client.
The coordinator can use the sn to check whether it receives
correct responses from participants. After that, the coordi-
nator notifies participants that have returned ACK mes-
sages to commit and write logs. As the coordinator
considers the synchronization operation has been finished,
it deals with subsequent responses from participants via
asynchronous threads. If the coordinator finds ACK mes-
sages timeout, it does not send journals to related partici-
pants any more. Different from the existing 2PC protocol,
the coordinator concludes the operation as a success if more
than half of participants return ACK messages. During this
process, the coordinator does not need to write journals
twice. It stores the commit or abort logs in local disk
directly. Supposing N is the number of replicas, our policy
can tolerate (N — 1)/2 failures and continue to work nor-
mally. As the journal file is written sequentially and read
when the file system restarts or recovers, we relax the meta-
data consistency model for journal synchronization and rep-
lication. It does not maintain the same context for replicas at
writing operations but ensures the eventual consistency
when metadata read operations happen.

Correctness. Two ways are provided for fault tolerance
and eventual consistency guarantees in the SSP. First, if the
standby fails during metadata synchronization and replica-
tion, it will change to junior state and do not receive meta-
data modifications. As time passes, the junior will have an
obsolete metadata state compared to the active. To address
that, a distributed protocol described in Section 4.2.3
updates junior to standby. After recovery, the standby will
receive metadata update from the active and act as standby
node in the SSP again. Second, if the active fails during the
protocol process, a client fault tolerance mechanism will
cooperate with the MAMS policy for metadata consistency
(as seen in Sections 4.2.2 and 4.4). For service switching in
the reliable paradigm, the new active may flush the last
group of journals to standbys or the client may resend failed
requests for dropped operations. At this time, duplicated
metadata modifications will be detected at metadata server
sides to achieve correct file system semantics. The MAMS
policy will ensure server states consistency during active-
standby transition, as well as their states in the SSP.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:49 UTC from IEEE Xplore. Restrictions apply.

ZHOU ET AL.: AHIGHLY RELIABLE METADATA SERVICE FOR LARGE-SCALE DISTRIBUTED FILE SYSTEMS 381

Global View Lock
A:ipl,S:ip2,S:ip3 123 ¢ l

Watcher Watcher
Client § e 4 Client

_¢»{ Activetipl | (Standby:ip2) Standby:ip3) [Junioriipl | { Activeip2 ,»—m»‘Standby:lp3

Global View Lock

A:ip2,S:ip3,J:ipl 23

Update Watcher ~ Watcher

(a) (b)
s Global View Lock Global View Lock
=) Aip2sipidipl | 23 - Aip2SipdSipl 230
_J/ssP) Watcher Watcher Watcher Watcher Watcher
) Renew ./ \ .
Client) § Client
il “Renew- Register N e Ve —
[Junior:ipl —»{ Active:ip2 «—— Standby:ip3) [\Standby:lpl/ [Active:ip2 | Standby:ip3
(c) (d)

Fig. 5. The main procedure of active-standby transition.

4.2 The MAMS Policy

Based on the SSP, we propose a new MAMS (multiple
actives multiple standbys) policy that uses the active-
standby cluster for fault tolerance. By maintaining a pre-
pared state replication and automatic state transition, the
MAMS policy achieves quick recovery in the form of hot
standby. We introduce the detailed design and implementa-
tion in this section.

4.2.1 Active Election

As the MAMS policy uses more than one standby for fault
tolerance, it needs to elect a new one when the active server
crashes. Based on Zookeeper, MAMS use a Paxos-like
algorithm [41] that ensures only one active server is elected
each time. Combining the algorithm with a global view
management, MAMS avoids the scenarios of split-brain.
The process of active election is like distributed lock man-
agement. When the active crashes, each standby tries to
obtain a distributed lock periodically until it either succeeds
or encounters a failure (e.g., timeout). Active election can
also be achieved by comparing log sn values. It ensures the
continuity of metadata service even if no standbys are in
the global view. Algorithm 2 describes the active election
algorithm in a replica group.

Algorithm 2. Active Election in the Replica Group

1 stdby = the number of standby nodes;

2 if active has errors or no active in the global view;

3 then

4 if stdby > 0;

5 then

6 while no active is elected;

7 do

8 each standby generates a random number in the
global view;

9 the standby S; with the largest random number

obtains the lock and upgrade to active;

10 end

11 end

12 else

13 while no active is elected;

14 do

15 select the junior J; with maximum sn;

16 J; obtains the lock and takes over as the active;
17 end

18 end

19 end

4.2.2 Active-Standby State Transition

The MAMS achieves an automatic active-standby switch for
fault tolerance. Combined with the heart beat from the node
monitor, the MAMS uses an event-driven mechanism to trig-
ger active election and state transition in case of failures. Each
server has three event watchers on the global view: one is on
itself, one is on the active server and another is on the distrib-
uted lock. Any error will trigger them to modify the global
view and result in two situations: the active state is changed,
which makes the active server lose the lock, and an election
process is launched, or other state transition between standby
and junior. It ensures that no processes can obtain the distrib-
uted lock before the active loses it. The main procedure of
active-standby transition for failover protocol is depicted in
Fig. 5, in which the underlined number means the server
with the same IP sequence that has granted the lock.

When the active server has detected failures, it stops pro-
viding service and no longer responds to clients, as shown
in Fig. 5a. In this example, the active is directly degraded to
junior. The role of active will also change in the SSP, which
does not synchronize metadata to standbys. However, some
obsolete data, such as buffered journals in the active, may
be flushed to standbys. It does not matter because the
standby only receives and responds for metadata that come
from the active. As the global view will be modified imme-
diately and the event is triggered whenever there are
changes in server states, the scenario of two metadata serv-
ers accessing the same journal file simultaneously does not
exist, which achieves the function of IO fencing. In some
cases, the standbys have fine states in the global view, but
network failures may happen between them. The watcher
will not announce any error, but the MAMS can handle this
failure in the renewing procedure as discussed below.

Once a standby server obtains lock successfully, it holds
the lock and prepares for state transition. Events are trig-
gered to notify others to stop competing, which will reduce
unnecessary actions for election. The elected standby then
does not receive any journals from the active and awaits an
opportunity to switch. If there are no pending or processing
operations, it will launch upgrade immediately. Otherwise,
the elected standby applies them to its own namespace and
ignores all new modifications. After committing cached
journals, it enters an upgrade procedure that is shown from
Figs. 5b, 5¢, and 5d:

1) The elected standby accesses the global view and
checks its own state. If it is in a junior state, it must
stop upgrading and give up the lock. The re-election
action will be performed at this time.

2) The elected standby modifies relevant states in the
global view. It changes the state of previous active to
standby or junior and sets itself to active. At this
moment, operations from the previous active will be
refused by all nodes.

3) New requests from clients and read service are
allowed. Once server states are switched, new file
operations may reach the elected standby. It receives
and saves requests in memory but does not commit
them until the upgrade process is finished.

4) To avoid missing operations (e.g., the previous active
does not return success to all clients), the elected

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:49 UTC from IEEE Xplore. Restrictions apply.

382 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

standby flushes last cached journals to others in the
replica group again. As the previous active may
become standby and receive the same journals again,
duplicated journals must be distinguished at this step.
Each standby will decide whether to commit logs by
comparing values of sn. Only if sn from the active is
larger than the current maximum serial number, the
standby applies journals and responds to it.

5) The elected standby receives register information
from all servers in the replica group. It confirms and
changes the state of each server in the global view. If
a server does not have the same maximum sn, it is
switched to junior. Otherwise the server will be
assigned to standby or junior according to its previ-
ous state.

6) If more than one standby is registered successfully,
the elected standby becomes the new active. It will
launch the renewing process for junior at an appro-
priate time.

7) When a junior is upgraded to the standby state, the
global view turns back to a stable status which is
shown in Fig. 5d. The global view can also be stored
in the SSP periodically for persistence. During the
process of state transition, the elected standby will
stop upgrading if any failures occur (e.g., standby
fails or network failures happen to all others). The
MAMS will launch the re-election process in the rep-
lica group at this time.

Benefiting from our namespace partitioning strategy [52],
the client can reconnect to the new active directly and auto-
matically after active-standby switching and resend requests
when needed. As the process is completely transparent
to applications, the file system does not see errors in case
of failures.

4.2.3 Junior Renewing

Once the active has detected fatal errors, such as disk fail-
ures, it will be directly degraded to the junior state. The
standby is often converted to the junior state when errors
occur, i.e., node crashes or does not provide an ACK mes-
sage to the execution of metadata synchronization. The
junior is an intermediate state which cannot receive meta-
data from the active via the SSP and provide a hot standby.
With the reduction of standbys, the file system will turn
into an unreliable status. To avoid this risk, the MAMS
adopts the renewing protocol to make the junior recover
missing operations and become the standby.

During the runtime, the active scans the global view peri-
odically and tries to launch the renewing process when
there are juniors. It selects one server with the least gap in
namespace state and creates a session for recovery at each
time. In response, the junior receives commands and starts
the task for upgrading. The active decides the renewing
strategy according to the value of maximum sn from the
junior. If the difference between them is large, the junior
will first retrieve the namespace image or journal files. To
check which journal files are missing, the junior needs to
ask the active to retrieve the journal file list. As the name-
space image and journal files are all stored in the SSP, the
junior can obtain them from the SSP to reduce latency. Oth-
erwise, if the junior cannot access the SSP, it will send

request to the active to retrieve metadata files. All above
operations are performed in the background and do not
affect file system service. During the course of reading
namespace image, the junior reconstructs the file and direc-
tory tree in memory and reaches a consistent state with the
active gradually. As there is no sn associated with it (0 as
default) and this phase can take a long time, the junior
records the point that has been committed. It can continue
to recover from other replicas in SSP at the last position and
avoid retransmitting the whole files if there are any inter-
ruptions in the process. During the procedure of reading
journal files, the junior records the current sn and sends it
to the active periodically.

When there are few gaps in the values of sn, the active
launches the final synchronization stage. Once the junior
recovers all journals and returns the same sn, the active
modifies the global view and changes its state to standby.
Then the junior is upgraded, acts as standby node in the
SSP again, and receives metadata from the active. It keeps
an up-to-date namespace state in the form of hot standby.
By renewing, more new backup nodes can also be added in
the replica group at runtime. It significantly improves the
reliability and availability of metadata service.

4.3 Global State Recovery Mechanism

While providing fault tolerance to keep the continuity of
metadata service, there exists one important problem of
global state inconsistency in case of multiple points of fail-
ure, i.e., more than one active servers fail. If excessive faulty
servers occur or some servers cannot be recovered by the
MAMS policy, the file system will still be in failure. At this
time, it needs to restart all metadata servers and achieve
failover for the entire file system. However, the status of
each metadata server may not be in the same consistent
state after restarting. The reason is two-fold. First, with the
multiple metadata service, each metadata server manages a
portion of the namespace and maintains part of the whole
file and directory tree. Some operations, e.g., mkdir and
delete, need to be performed as distributed transactions
cross metadata servers for consistence guarantee. Since the
distributed transaction corresponds to operations and jour-
nals in multiple metadata servers, it may cause journal
inconsistent when failures occur. Second, although there are
consistency protocols for distributed transaction coordina-
tion, it is difficult to reach a consensus between metadata
servers after restarting as each server loads its own journals
and is unaware of transaction states [28], [53].

To address this issue, we present a new approach based
on the shared storage pool to achieve global state recovery.
we use unified timestamp to make checkpoints [55] in dis-
tributed metadata servers, where each checkpoint repre-
sents a global consistent state at some point in time. In case
of multiple failures, all metadata servers restart and load
journals until reaching the same checkpoint, which ensures
the file system recovers to a previous, consistent state.

The global state recovery mechanism is triggered for
backup by external commands. To decide a timestamp for
checkpoint, it selects one node from active servers as the
time server so that other metadata servers send their system
time to it. By comparing different system time, the time
server selects an average value as the unified timestamp

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:49 UTC from IEEE Xplore. Restrictions apply.

ZHOU ET AL.: AHIGHLY RELIABLE METADATA SERVICE FOR LARGE-SCALE DISTRIBUTED FILE SYSTEMS 383

and sends it back to other nodes. The negotiated timestamp
may not match current system time with some metadata
servers. It does not matter as the timestamp just indicates a
time point for recovery. If all metadata servers receive the
checkpoint timestamp, they begin to write unique flags in
their journals with a collaborated way [56]. The time server
first stops receiving client requests. Then it commits all
metadata modifications in memory and writes a barrier flag
at the end of journals. At last, the time server initiates
requests to neighbor nodes, e.g., metadata servers in the
same rack, for notification. The neighbor nodes receive
requests and perform the same operations as the time server
to make checkpoints. When all metadata servers write flags
in journals, a global consistent checkpoint (unified system
state) is stored in the SSP. Algorithm 3 describes the mark-
ing of a global consistent state in metadata servers.

Algorithm 3. Marking of a Global Consistent state in
Metadata Servers

num = the number of active servers;
MDS[num] is an array of active servers;
MDSy;,,. = time server;
neighbors,, s = neighbor nodes of mds;
Tstamp = unified time point;
Flag = whether the barrier flag is marked in the journals;
for each mds € MDS[num)];
do
if no M DSy, then
1 <= rand number mod num,;
MDSime <= MDS]il;
end
mds send system time to MDSy;,;
Tstamp <= Tstamp + system time of mds
end
Tsf{zmp = stu,m[)/num;
MDS}ime send Tiiamp to each mds in MDS[numl];
MD S}, stop service and commit journals in memory;
Flag < true in MDSime at Toamp;
for each neighbor node p € MDS}j.;
do
MDSime send a message mkr to p;
if (!Flag) in p;
then
CLMark(p, neighbors,);
end
end
void CLMark(node p, nodes neighbors) {
p receive mkr;
if (!Flag) in p; then
31 then
32 pstop service and commit journals in memory;
33 Flag <= true in p at Tyamp;
34 for each node q € neighbors;
35 do
36 CLMark(q, neighbors,);
37 end
38 end
39 }

IO U WN -

QNN NNDNDNDNONDNONNNR R R 2R Rl),
OOV O UIkE WNNPRPOOVWONNULRE WN =R OV

When restarting all metadata servers for global state
recovery, a timestamp needs to be set as recovered check-
point. Then each active server reads its namespace images

Client Approach
(Start \
- :

—

‘ Operation fails ‘

Y

>{ Select a node from the ‘

global view in order Active Server

/}\ Approach

No_—Wait and connect—__Yes -
~—the new active— . j Send “Check” request

B Iﬁo active

No Read global v1ew X /Check duplicate operations

~_from shared storage 2/ by operationid /
o~ pool
Yes
.{ Select a node from the ‘ bufCurrent j bufFlush
global view in order X
L S : |
NOI::/Wait and con.né\ci*;:ﬁ : No_ - /i;tiqe oper;iii\(;ﬁ*\}
‘\\\th\r}ew e/l/c/tl/ye/ . T executed —
\:I/\Io active : T Yes

Return exception

: >{ Execute operation ‘ .

h PO I c

‘ Resend the operation

Return success

¥ End)

\

Fig. 6. Transparent Fault tolerance with smart-client.

and merge metadata journals with them from the SSP to
construct namespace structure. It stops loading metadata
until meeting the barrier flag at the timestamp. The standby
nodes also get the timestamp and reach the same state with
the active when it registers at the active in each replica
group. Then all metadata servers recover to a consistent
checkpoint of file system status that is before failures. When
the active restarts, it can write the namespace state in mem-
ory to a new image file and stores a snapshot in the SSP.
The global barrier flag can be marked many times so that
the whole file system can recover to different checkpoints.
After global state recovery, the file system provides service
and responds to clients again.

4.4 Smart-Client Fault Tolerance Mechanism

To achieve transparent fault tolerance for upper applica-
tions [57], new smart-client is performed in our highly reli-
able policy. Unlike traditional manual service switching [4]
or virtual IP approaches [14], the client can automatically
connect the new active and cooperates with the MAMS pol-
icy for recovery. When failures occur, the last group of
metadata operations may have been committed in the new
active server before service switching. The client will resend
requests for failed operations, and needs the new active
server to distinguish duplicate requests for fault tolerance.
Fig. 6 shows the flowchart of smart-client, in which the left
part depicts client approach and the right dotted box
depicts coordination of the active server.

The client first gets the global view from parameters or
the configuration file. With hash-based methods for name-
space partition [52], the client usually directly sends
requests to the active in one replica group except for distrib-
uted transaction operations, such as mkdir (discussed in
Section 5). It then waits and receives responses from the

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:49 UTC from IEEE Xplore. Restrictions apply.

384 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

1% u
Fig. 7. Markov model of one active and two standbys in case of node
failures.

active for getting the results. If there are any faults in meta-
data servers, the client gets errors of return results and starts
the approach of fault tolerance, as listed in the steps below:

1. To find the new active more quickly, the client selects
a node in the replica group from its global view for
the last failed operation and attempts to connect it.
The selected server may have no responses as the
active election or state transition has not been fin-
ished. It does not matter as the client will connect the
remaining nodes in the replica group orderly after
several tries.

2. Ifaserver is connected successfully, it means that the
server is the new active and can provide metadata
service. At this time, the client modifies its own global
view and sends a “Check” message to the new active
for detecting whether last failed operation has been
executed. The message includes a unique operation
id which is composed of client name and a monotoni-
cally increasing operation number. Different from
(sn), it is only generated at the client side and already
appended on each operation when the client sends it.

3. Whenaserver provides metadata service, it uses dou-
ble buffers to flush journals: bufCurrent for saving
new incoming metadata and bufFlush for actual writ-
ing. The context of bufCurrent is switched to bufFlush
if metadata operations are aggregated to a certain
threshold. As bufFlush keeps the last group of modifi-
cations, the new active can parse it to obtain the oper-
ation id list that have been executed. The id list is like
a hash set which saves multiple groups of metadata
operations and can be updated with replacement
strategy at periodic intervals. When receiving the
“Check” message, the new active detects duplicate
requests and judges whether to redo it.

4. If the operation has been executed, the new active
tells the client to directly return success to applica-
tions. Otherwise, the client needs to resend the failed
operation and waits the new active to execute it.

5. If the client cannot connect to all servers in the rep-
lica group after several times, it tries to read the
global view from the shared storage pool. When the
client obtains the latest view, it repeats from step 1.

6. When the client fails to visit the shared storage pool
or find the new active after a certain number of tries,
it no longer retries and returns errors to applications.

Combining the client with the active server for fault toler-

ance, the system ensures correctness of metadata service. As
the client can quickly find the new active, it reduces the
waiting time and avoids the effort of synchronizing status
from the global view for client. With this approach, our
highly reliable policy achieves a transparent fault tolerance
when failures occur in the active-standby cluster.

5 EVALUATION

In this section, we present the evaluation results of the pro-
posed highly reliable metadata service. A file system proto-
type, CFS (Clover File System) [52], has been designed and
implemented based on HDFS [4] with the reliable service for
the validation and evaluation. It adopts multiple metadata
servers to manage a global namespace and hash-based
method for metadata partition. CFS is based on the SSP for
metadata synchronization and replication and uses the
highly reliable policies introduced earlier for metadata man-
agement. CFS also supports transaction operations across
metadata servers, e.g., mkdir. For these operations, CFS main-
tains distributed operation consistency with consistency pol-
icy [52] for active servers across replica groups and applies
active-standby synchronization in each replica group.

The experimental platform is a cluster with 20 nodes. Each
node consists of four Intel Xeon X3320 Processors, 8-GB
memory and one Gigabit network interface card, with Linux
kernel 2.6.32. Each of them acts as the pool node in the SSP
and stores image and journal files. For file system operations,
multiple metadata modifications are aggregated before
being submitted and written back to journals in an asynchro-
nous way. To facilitate failure detection and auto service
switch, the Zookeeper [47] was used to monitor nodes, trig-
ger events and maintain the global view for active-standby
server states.

5.1 Reliability Analysis

We first analyze the reliability of the active-standby cluster in
theory. We use the Markov Model [58], [59] to evaluate the
system reliability when adding backup nodes. In our design
of multiple metadata servers, each active server and its back-
ups form the replica group which performs service switching
for managed namespace partition. As the cluster reliability
can be described as an exponential distribution, the reliabil-
ity of each replica group can be computed as below:

R(f) _ e—t/MYTF’ (1)

where the MTTF is the mean time to failure of replica
group. Supposing the system meets following conditions:
(1) the failure probability of each node is independent and
follows exponential distribution which is set to A, ie.,
MTTFerper = 1/X; (2) the fault recovery rate of each node is
set to p, that is MTTRyrer = 1/ in which MTTR is the
mean time to recovery. Taking the case of one active and
two standbys in one replica group, we build the Markov
model for the system failure cases. As Fig. 7 shows, state 0
represents normal work status and state 1 represents one
node failure. State 2 means two node failures and the replica
group can only provide read service. State 3 represents all
node failures of the replica group in which the file system
can no longer provide metadata service.

At time ¢, the probability of system status being from 0 to
3 are Py(t), Pi(t), P»(t) and Ps(t), respectively. The initial
value meets the following condition:

Py =1,P(0) = P,(0) = P5(0) = 0. (2

According to Markov model in Fig. 7, differential equa-
tions can be established as follows. The flow-in and flow-
out relationship is clearly seen in these equations. For

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:49 UTC from IEEE Xplore. Restrictions apply.

ZHOU ET AL.: AHIGHLY RELIABLE METADATA SERVICE FOR LARGE-SCALE DISTRIBUTED FILE SYSTEMS

TABLE 1
Reliability Improvement by Adding Backup Nodes

Number of Added Backup Nodes for

Improvement Ratio One Active
2 3 4 5
MTTF,/MTTF, 0° 10 107 10% 10"

instance, the total flow out of state 0, F;(t), is given by
—3A\Py(t) + nPi(t) as there is 3A\Py(t) out of state 0 and
wPi(t) into state 0 [60].

Py(t) = =3APy(t) + nPy (1) (3)

Pl(t) = 3APy(t) — 2\ + 1) Pu(t) + nPy(2) (4)
Py(t) =2X\P(t) — (A + p) (1) (5)

Pi(t) = APy(t). (6)

From above equations, the MTTF can be computed for
the replica group with one active and two standbys in case
of failures:

MITF = /OO(PO(t) + Pi(t) + Px(t)) dt. (7)

0

Take each initial value into the equation and we have the
following results:
w2 A 4 112
63
This is the mean time to failure of replica group in

MAMS policy. If only one server provides metadata service
without standbys, the value of MTTF; is 1/\. Thus we have:

MTTF p? 4+ 4 + 1102

MITF = ®)

385

As in actual applications the value of u is considerably
larger than), the result of the above equation can be esti-
mated. For instance, MTTF /MTTF1 ~ 135601 in the case of
nw=09,A=0.001. It means that the system reliability is
improved by 6 magnitudes comparing two standbys with a
single metadata server. The availability of the file system
will be further improved if more standbys are added in the
replica group. With the above analysis, Table 1 reports the
reliability improvements when adding different number of
standbys, where MTTF, means the MTTF by adding n addi-
tional backup nodes.

5.2 Evaluation of Shared Storage Pool

In a highly reliable metadata service, the metadata server
records logs for metadata persistence when it responds to
client requests. The backup node also synchronizes meta-
data modifications with the active server for standby. In our
design, we use the SSP for distributed metadata storage and
server state synchronization. To compare SSP with other
approaches, typical policies, including the 2PC [25], Hadoop
Quorum Journal Manager (QJM) [7], and BookKeeper log
system [31], were implemented or deployed on multiple
nodes for metadata synchronization and replication. The
Hadoop QJM provides a feature to share edit logs between
the active and standby metadata servers in HDFS, where the
JournalNodes (metadata replication nodes) are set to default
value 3. BookKeeper is a system to reliably log streams of
records. The tests first compared the write performance of
different policies by using one node as the log writer. Then it
used SSP as the metadata storage for namenode in HDFS to
evaluate metadata operation performance.

Fig. 8 shows the performance of journal storage in SSP.
Fig. 8a compares the journal write performance under dif-
ferent policies with 3 replicas. The x-axis represents write
counts per second and the y-axis represents the average

= 9)
2 .
MTTF, 6A delay latency. All logs were flushed asynchronously with
80 T T 60 : X T —c 105
: ollee cochee] 1 - = i
70 ,’ 'l 50 h '| e 95 | rep! 1Ca rep) fCaS B ,’:’/
,\60 L) ',’ _ I ',' o= 2K _ 85 || —3replicas =+ 4 replicas ’fﬁf"
250 [g40 | " ! ——512 g 75 g X
g4o ll ," Bag || ! g 6 v
£30 [1] £ : H £ 55r v i
20 Il = o= Bookkeeper - 20 F :) /’ - 45
- %= QIM i
10 f —rosse 0|t 3
. —=— SSP without acks|| ;’ :x_,,—’f 25
0 » e . . N .
0 10 20 30 40 0 % 10 20 30 40 50 B3 40 45
Throughput (Kops/s) Throughput (Kops/s) Throughput (Kops/s)
a) Write performance comparison b) Write performance under different log sizes (c) Write performance under different replicas
p p p 2 p P
60 - 851"’ 40
——Local Replica 'E) s | ——SSP w%thout Rep.lica F?ilures I
50 . g 8 <<+ SSP with 1 Replica Failure | 7
-8 Remote Replica T 30 | =%= SSPwith2 Replica Failures 4
240 | z 75 ¢ 2 ys | L= -SSP with3 Replica Faures __;-,'3?
g £ 7t =2 « 2l
$30 | 22 /A\ il
3 565 ¢ —HDFS g ¢ %
E£20 | 3 s —=HDFS-SSP-1 replica | 3 15 | 3 . ,;‘
T = r —+—HDFS-SSP-2 replicas 10 2N /
¥55 =#=HDFS-SSP-3 replicas 5
8
e e 128 256 512 1024 0 S 3 s e 1 0
1 3 5 9 11 13 15 0 5 10 15 20 25 30 35 40 45
Journal File Size (MB) Number of Clients Time (seconds)

(d) Read performance with different journal sizes (e) Metadata operation peformance compared with (f) Journal write performance with different replica
errors

in SSP HDFS

Fig. 8. Performance of journal storage in SSP.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:49 UTC from IEEE Xplore. Restrictions apply.

386 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

each 1 KB size. From the results, it can be observed that the
performance of 2PC was the worst among all policies. Its
latency was nearly 2, 3, and 4 times of the values of the
BookKeeper, QJM, and SSP, respectively. This is because
the journal replication in the 2PC needs four round trip
messages, which considerably increases the waiting time
and load of nodes. BookKeeper is a logging storage system
which writes replicas to assigned redundant nodes simulta-
neously. However, in order to ensure strong consistence,
BookKeeper waits for an operation to be completed until all
replicas have been written successfully. Otherwise, it selects
other nodes to rewrite journals via a round-robin way when
replica errors occur. The QJM is a log sharing storage used
between the active and standby namenodes. It can tolerate
at most (N — 1)/2 failures but needs additional overhead
for journal synchronization and lacks the mechanism of
fault tolerance. Compared with the BookKeeper and QJM,
SSP shows a better result, which improved the performance
by 40.51 and 23.46 percent, respectively when writing 25K
logs per second. This is because SSP adopts a replication
policy that combines local files and remote copies. It reduces
the communication overhead in which SSP returns success
only if more than half replicas are written. All write latency
increased gradually with the increase of the throughput
except in the case of SSP without acks (which means writing
journal copies without waiting for replication node
response in SSP). It is due to the processing capability limit
of the writer node.

Fig. 8b reports the write performance under different log
sizes with 3 replicas in SSP. It can be seen that the SSP
achieved better performance with less size logs. For example,
the average write latency has been increased nearly 20 times
when the log size varied from 512 B to 32 KB. In distributed
file systems, journal storage belongs to a small chunk of writ-
ing data operations. It verified the effectiveness of SSP for
metadata synchronization and replication. With the appro-
priate log size 512 B, Fig. 8c gives the write performance
under different replicas in SSP. The results show that the
write latency is increased by 2.81, 2.62 and 2.95 percent when
adding one replica. It improves metadata redundancy with
negligible overhead on write performance.

As log records are stored in the journal file with multiple
replicas in SSP, we performed tests to measure the read per-
formance by using the namenode in HDFS to read journals.
Fig. 8d shows the time spent for reading journals with dif-
ferent sizes and replicas. The results reveal that the read
performance of local journal for namenode was about 22.32
MB/s, which is similar with that of HDFS. The time
increased with the increase of journal sizes. As the name-
node would replay logs to construct namespace in memory,
it spent additional overhead for reading journals. When the
namenode read logs from remote replicas, there is a perfor-
mance degradation which was reduced by 19.59 percent on
average compared with local copies. Network communica-
tion caused delays, but the effect is negligible. The SSP still
achieved impressive read performance with the replication
strategy of increasing metadata availability.

We have conducted another series of tests to measure the
performance influence on metadata operations with the jour-
nal write policy in SSP. These tests used the namenode to pro-
vide metadata service and multiple clients on different nodes

for payload. Fig. 8e shows the metadata operation perfor-
mance comparison by using SSP as journal storage in HDFS.
It can be observed that metadata operations with one local
journal achieved the best performance, which is nearly equal
to that of HDFS. With the increase in replica number, the
average operations per second were reduced. This is because
the namenode would replicate journals to pool nodes
through the SSP for multiple copies, which incurs additional
data transmission overhead. The average performance
decreased by less than 6.1 percent when adding two addi-
tional remote replicas, namely HDFS-SSP-3 replicas. The
results confirm that the SSP achieved metadata synchroniza-
tion and replication with little effect on the performance.

To verify metadata restoration in the SSP, we test journal
write performance in case of failures. Fig. 8f depicts the jour-
nal writing performance in case of different replica errors.
Among them, the vertical axis is average access latency. In
these tests, we increase the workload gradually (accordingly
the SSP latency without replica failures increases for its
curve) and generate replica errors by killing pool node pro-
cesses. When there was one replica error at the 10th seconds,
the latency increases as much as three times for failure free
cases. This is because the SSP waits for the response from the
failed pool node and removes it when timeout, which incurs
an additional overhead. But the SSP was recovered to normal
performance subsequently. With our journal replication
approach, the SSP returns success when more than half num-
bers of replicas are written. Although the written replicas are
decreased, the performance of SSP is improved with the
reduction of response time and waiting latency. The experi-
ments show the same results when there were two replica
faults. In the case of more than three replica errors, the jour-
nal writing would fail because the number of written replicas
was less than half. It resulted in the linear increase of the
average latency.

In conclusion, the experiments show that the SSP achieved
superior write performance and short recovery time (from 5
to 15 milliseconds) even in the case of replica failures. These
tests have confirmed the effectiveness and reliability of our
metadata synchronization and replication strategy.

5.3 Evaluation of MAMS for Performance Overhead
in Case of Failures Free

Based on the SSP, the MAMS policy achieves metadata syn-
chronization and replication among the active server and
standby nodes. It provides a highly reliable mechanism for
metadata service, though it may have an impact on normal
metadata operations. To measure the overhead on normal
metadata operations, the experiments were conducted
under failure free cases. As the CFS is an implementation of
multiple metadata service based on HDFS, we first compare
it with vanilla HDFS by configuring HDFS with different
active and standby nodes. Then we compare MAMS with
typical highly reliable systems, including BackupNode [4],
Hadoop AvatarNode [14], and Hadoop HA [7], to observe
the metadata operation performance. All three comparison
systems are based on HDFS and use the primary-backup
policy (one active and one standby server) for metadata reli-
ability. For Hadoop HA, it uses the QJM mechanism for
metadata sharing in which the JournalNodes (metadata rep-
lication nodes) are set to default value of 3.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:49 UTC from IEEE Xplore. Restrictions apply.

ZHOU ET AL.: AHIGHLY RELIABLE METADATA SERVICE FOR LARGE-SCALE DISTRIBUTED FILE SYSTEMS

180 16-clients 120

2160 ; &l
2 o 100 - _ =
£ 140 || £ m =
g o £ =
2120 | 280 | |- = 2
<) oo © -

$100 | =sl i]

K mn £ 60 =
= 80 m o =
= | = =
< 60 sl < 40 =
g | 5 =
£ 40 s & =
A S 5 20 =
£ 20 HHo £ =
E 1 = B H E =

0 HDFS MAMS MAMS MAI\;IS MAMS MAMS MAMS MAMS MAMS

387

O16-clients B32-clients

[
wn
1

[
=l
T

016-clients B32-clients

—
wn
T

—
>
T

wn

Time Spent for Getfileinfo Operations (s)

=

HDFS
1A1S 1A2S 1A3S 1A4S 2A2S 2A4S 2A6S 2A8S
Highly Relable Paradigms

(a) Mixed operation

O 16-clients E32-clients

23

=3

>
!

N

n

<
1

£ _ =L = [l 1 E200 ¢ _ =
= — = = i
:’izoo] x5 g =
S S150

£ &

£150 g

2 7100 |
£100 £

= =

Y Y

@50 & 50 -

© °

E]

i =

HDFS Backup Hadoop Hadoop MAMS MAMS MAMS
Node AvatarNode HA 1A3S 2A6S 3A9S

Highly Relable Paradigms

(d) Delete operation

Backup Hadoop Hadoop MAMS MAMS MAMS
Node AvatarNode HA

Highly Relable Paradigms

(b) Create operation

PHJFS Ba_ckup H:doop Ha_doop M_AMS M_AMS M_AMS
Node AvatarNode HA
Highly Relable Paradigms

(e) Mkdir operation

HDFS Backup Hadoop Hadoop MAMS MAMS MAMS
Node AvatarNode HA 1A3S 2A6S 3A9S

Highly Relable Paradigms

1A3S 2A6S 3A9S

(c) Getfileinfo operation

16-clients E32-clients

O 16-clients ©32-clients

[
wn =
= >
T 1

|

]
]
]

]
] I

Time Spent for Rename Operations (s)
N~
=3
S

N w
n =3
> =
T

]

—_

n =3 n

= =l =]
T T

HDFS Backup Hadoop Hadoop MAMS MAMS MAMS
Node AvatarNode HA 1A3S 2A6S 3A9S
Highly Relable Paradigms

1A3S 2468 3A9S

(f) Rename operation

Fig. 9. Metadata operation performance compared with other reliability mechanisms.

The experiment results are shown in Fig. 9. Each test was
performed with total 1 million operations with multiple cli-
ents (16 or 32 clients) and metadata operations. Fig. 9a
shows the mixed operations (including create, getfileinfo,
delete, etc.) performance of HDFS and CFS with the MAMS
policy. The CFS was configured with different active and
standby servers, e.g., MAMS-2A8S means 2 actives and 8
standbys in 2 replica groups. The HDFS adopts a single
metadata server without any reliable mechanism. The
experiment results reveal that the metadata operation per-
formance was reduced in CFS from MAMS-1A1S to MAMS-
1A4S compared to HDFS. Note that the performance of CFS
was gradually decreased when adding standbys in each
replica group (i.e 1A1S achieves higher performance than
2A2S). The reason is that the active server needs to synchro-
nize journals to more standbys, which will increase addi-
tional time. The performance of metadata operation with
1A4S was declined with 3.87, 4.06 and 3.25 percent respec-
tively by adding one standby for the active metadata server.
The MAMS policy, however, was built upon the SSP which
reduced the synchronization overhead and was not a per-
formance bottleneck.

For more detailed evaluations, we compare MAMS with
other highly reliable policies by performing different meta-
data operations. Figs. 9b, 9¢, 9d, 9e, and 9f shows the perfor-
mance results of measurements. The tests used multiple
clients on different nodes to provide the workload with
each performing the same number of operations. The exper-
iment results reveal that, except the read-only operation get-
fileinfo, the metadata operation performance was reduced
with the primary-backup mechanisms and MAMS-1A3S
compared to HDFS. This is because they need real-time state

synchronization between the metadata server and backup
nodes, which results in additional overhead. Compared
with others, the BackupNode incurred less time but it does
not guarantee metadata consistency. For MAMS-1A3S, the
performance was higher than the Hadoop AvatarNode and
Hadoop HA even using multiple standbys. This is mainly
due to two aspects: one is the journal synchronization strat-
egy with the SSP which greatly reduced the additional over-
head; the other is the MAMS policy can effectively perform
service switching and achieve failover.

From Figs. 9b and 9c, it can be observed that the perfor-
mance of CFS with MAMS-2A6S and MAMS-3A9S is higher
than HDFS and the primary-backup mechanisms for create
and getfileinfo operations. This is due to the metadata parti-
tion strategy in CFS in which the metadata servers can per-
form metadata operations simultaneously. The performance
of CFS is further improved when the client number varies
from 16 to 32. For example, the CFS with MAMS-3A9S only
spends 26.98 and 22.47 percent time of HDFS for create and
getfileinfo operations at 32-clients. The effect of adding clients
is not significant for systems with HDFS and the primary-
backup mechanisms as they use one metadata server which
reaches the performance limitation at 16-clients. It proves
that the CFS achieves good performance for the two opera-
tions even if using the MAMS policy for reliability.

The other three types of operations, including delete, mkdir
and rename, belong to distributed transactions in the CFS.
Besides state synchronization, the transaction consistency
cross metadata servers will have an impact on these opera-
tions. As shown in Figs. 9d, 9e, and 91, it needs more time
spent for operations in CFS. The performance is improved
when adding client load, e.g., the CFS with MAMS-2A6S and

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:49 UTC from IEEE Xplore. Restrictions apply.

388 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

1

09 |
08
0.7 |

0.6

05 |

—o— Write File
=== Block Report

TABLE 2
MTTR of Different Reliable Metadata Management Systems
MTTR (s)
Image (MB)
MAMS-1A3S BackupNode Hadoop Avatar Hadoop HA

16 5.893 2.784 27.362 15.351
32 6.376 5.326 31.574 17.439
64 6.531 9.653 30.721 18.624
128 5.742 22.928 29.273 16.372
256 5.436 36.431 32.805 19.016
512 6.795 78.365 31.446 17.853
1024 6.081 142.513 33.239 19.193

0.4
03 |
0.2 |
0.1 |

0

Percentage of Write File Size

0K

375K

750K

1125K

[N w N 7]
) = = =]

Block Report Time (second)

—
=)

0
1500K

MAMS-3A9S achieves better performance than HDFS and
the primary-backup mechanisms at 32-clients. The MAMS
policy may affect some operation performance of the CFS
but significantly enhances the metadata service reliability (in
general, any reliable metadata management strategy sacrifi-
ces the performance for reliability). It is worthy to trade
slight performance reduction for the entire file system reli-
ability in return.

In summary, the experiment results indicate that the
MAMS policy can significantly improve metadata service
reliability and keep server states consistent in the same rep-
lica group with little effect on the performance.

5.4 Evaluation of MAMS for Failover Time in
Case of Failures

This series of tests measured the failover time of different
reliable metadata management systems discussed in the
above subsection. They are all implemented based on the
HDEFS and increase the metadata reliability guarantee com-
pared to the vanilla HDFS. We also observed and analyzed
the time needed for different stages in the MAMS in these
tests, which includes active election, active-standby switch-
ing and client reconnection. The CFS was configured with
1A3S and other systems adopt the primary-backup strategy.
In the Hadoop HA, the number of JournalNodes was set to
4. For fault detection, the heart beat interval and session
timeout of ZooKeeper were set to 2 and 5 seconds, respec-
tively. Metadata server failures were generated by shutting
down processes, unplugging the network cables, etc.

During the experiments, client interfaces were called to
access the file system continually and the failover time was
measured. We choose the mean time to recovery (MTTR) as
the metric for comparison. It can be computed by subtract-
ing the timestamp of operation failure and that of success
when metadata service is unavailable and recovered,
respectively. Each test was performed 10 times, and the
average MTTR was computed as below:

times

MTTR = =1

(T”nercturn failure — szer'eturn sucuess)

Times

Table 2 reports the MTTR of different systems. The first
column lists the image size, which is the file size of a name-
space image that saves the entire file and directory tree
structure of the distributed file system. The image size can
indicate the file system scale, e.g., there are more than 7 mil-
lion files when it is about 1 GB. The tests were conducted

Block Number

Fig. 10. Failover ability of file writing. The Write File line is plotted
base on the left axis and the Block Report line is plotted based on
the right axis.

using create operations to create files. We can observe that
the MTTR of BackupNode increased gradually with file sys-
tem scale expansion from 2.784 to 142.513 seconds. This is
mainly because its backup node needs to recollect block
locations before taking the place of the primary. Compared
with the BackupNode, Hadoop Avatar, and Hadoop HA,
the average failover time of the MAMS are 14.35, 19.77, and
34.54 of them respectively. The results verified two aspects.
One is that the overhead of failover in MAMS is relatively
low. By exclusive of session timeout (default 5 seconds), the
time spent for active election and active-standby switching
are less than 100 ms and 350 ms, respectively. The other is
that clients can quickly connect to the new active and
achieve transparent fault tolerance.

5.5 Evaluation of MAMS for Recovery Efficiency in
case of Failures

In the above section, we have measured the failover time
comparing MAMS with other highly reliable paradigms.
The results are all tested based on a single point of server
failure. This subsection continues to verify the efficiency of
the MAMS for recovery at different failure scenarios. The
CFS is configured with one replica group including one
active and three standbys (1A3S). Metadata server failures
are generated by shutting down processes, taking out/plug-
ging back network wires and etc. The tests are performed
from three aspects: file writing operations, metadata opera-
tions and junior renewing.

5.5.1 File Write Recovery

Like HDFS, the CFS adopts the method of decoupling meta-
data and data operations. It splits the file into blocks and
distributes them among datanodes with multiple replicas.
To utilize memory space effectively, the metadata server
only maintains mapping relation between files and blocks.
Actual block locations are reported by datanodes when the
system starts up. Though MAMS provides a highly reliable
policy for metadata service, the file I/O is also important for
applications [61]. Besides structures of files and directories
in memory, the state recovery includes block information
collection for file locations. To evaluate file I/O recovery,
the test writes a total 100 GB file with the block being set
64 KB. The CFS is configured with 1A3S with 3 replicas.

Fig. 10 shows the failover ability of file writing in CFS. The
horizontal axis represents the number of reporting file
blocks, the left vertical axis indicates the proportion of file

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:49 UTC from IEEE Xplore. Restrictions apply.

ZHOU ET AL.: AHIGHLY RELIABLE METADATA SERVICE FOR LARGE-SCALE DISTRIBUTED FILE SYSTEMS 389

TABLE 3
Test scenarios and Server State Transition

Test A Test B Test C
MDS BN BN BN MDS BN BN BN MDS BN BN BN

State

1 A S S S A S S S A S s s
2 - S S S A S - - - s s's
3 - A S S A S J] - A S's
4 S A S S A S S S] A S'Ss
5 s - § s - - s s s A s's
6 s - A S - - A S s - -'s
7 S S A S J - A S S - - A
8 S S - s S - A S S] - A
9 S s - A S J A S S S J A
10 S S S A S S A S S S S A

written and the right one is block reporting time. When writ-
ing the file, we generate metadata server errors twice to
observe the results. As seen in the figure, the writing opera-
tions were suspended because the active failed when writing
30 and 60 percent of the file size. In CFS, the client mainly
communicates with datanodes and transmits file blocks to
them directly after creating files. As blocks are allocated by
the metadata server, the client can only continue to write the
file until it waits for the new active to provide service in case
of failures. During service switching, the MAMS policy may
cause temporary data transmission interruption but it will
recover the file writing after failover. For a hot standby, the
datanodes send block information to both the active and
standbys periodically. Due to time lag, the new active may
not receive latest block locations and can not access needed
data. The problem can be analyzed from two aspects. One is
to reduce the time interval of block reporting but may result
in lots of network communication overhead in a large scale
storage system. The other is to use the heart beat messages to
perform block querying and updating. With our policy, the
results indicate that the time is less than 40 seconds when
datanodes send about 1.5 million blocks to all active and
standby servers. So there is little influence on data access cor-
rectness. When reading a file, the client can get the file block
locations directly from the new active when errors occur.
The results prove that our highly reliable policy can also
achieve fault tolerance for file I/O.

5.5.2 Metadata Recovery

This section reports the evaluation results of the metadata
recovery ability of MAMS in various scenarios. We used
multiple client processes on different nodes to provide over-
load. The tests include continuous create and regular mkdir
operations. Files are distributed among multiple directories

with average requests per second being counted. Table 3
reports different test scenarios and corresponding server
state transition. The states of nodes include active (denoted
as A), standby (denoted as S) and junior (denoted as]). The
symbol “-” means the server is still in a fault state.

Three groups of tests were performed in our experi-
ments. Errors were generated through modifying the global
view to make the active lose the lock (Test A), unplugging
and reconnecting network wires (Test B), and restarting
processes (Test C). Fig. 11 shows the failover ability of meta-
data operations in the CFS. The vertical axis is average
requests per second and the horizontal axis is the test time.

As shown in Fig. 1la, the active lost the lock at the
moment of 60 seconds. It triggered an active election and
state transition in response to state 2 in Table 3. At this
point, the average time of metadata operations was not
reduced to 0 immediately. It is because the active has
returned partial success results to clients. Subsequently, the
active stopped the service and performed a fault-tolerant
processing from 62 to 68 seconds. The file system did not
respond to clients anymore. After service switching, the
state of each node was transformed to state 4. The original
active registered to the new one as a standby. When the
new active began to provide service, clients may resend
requests for incorrect results. Therefore, the curve has a
slight upward trend at the time of 70 seconds. The dupli-
cated message handling in the MAMS will avoid the prob-
lem of incorrect metadata operations. At last, the file system
restored to the normal performance before failures in which
the new active continued to provide metadata service. The
same operations were also performed at the time of 120 and
180 seconds. Experiment results indicate that the MAMS
policy can elect the new active and achieve server takeover
quickly to keep the continuity of file system service.

Test B and test C show similar results when generating
errors by taking out/plugging back network wires and
shutting down/restarting server processes for several sec-
onds. As expected, the MAMS policy can perform active-
standby switching, achieve upgrade for juniors by the
renewing protocol, and tolerate various failures for meta-
data servers. Though there is some performance degrada-
tion, it still significantly improves the reliability of file
system with a fast recovery. These experiment results verify
the efficiency of the MAMS policy well.

5.5.3 Junior Renewing

The MAMS policy maintains automatic state transition
among nodes in the replica group for fault tolerance. This test
further verifies the failover ability of renewing protocol for
junior nodes or new added backup nodes. The experiment

7K (a)[_——Drop Lock in the Active | 7K (b)[_==—Take Out/Plug Back Network Wires | K © | ——Kill the Process ‘
T <
S6K £6K T6K
<9
95K 25K S5k
= @ ' &
24K F 34K 54K
@ =Y [l 2
73K 23K 23K
g2k 32K M ERS
ZiIK Sk Sk

& ' &
0K : ‘ : : 0K 0K ‘ ‘ ‘ ‘
0 40 80 120 160 200 240 0 40 L 120 160 200 240 0 40 80 120 160 200 240
Time (seconds) Time (seconds) Time (seconds)

Fig. 11. Failover ability of metadata operations.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:49 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

1 -
09 4
08 -

07 | % ¢

4
;e--)(-x-*-)(
0.6) !

2

No failure (map)

0.5 |
CFS-Active failure (map)

= == BoomFS-Master failure (map)

14
/
II
0.4 /
/
/J

0.3

percentage of completion

390
25 60
——Renew Journals 1 50
20 || e Synchronize Journals
S Load Image File 1 a0s
£15 g
>3
2 1302
= L
E 10 4 20 .E
= =
S 110
) deommeeXeeeee STTED N ITTITE VTN AT NITTTD TTTH Hooesos X 0

1050K
Renewing Journal Records

Fig. 12. Time spent for junior renewing.

results are as shown in Fig. 12. The horizontal axis is the num-
ber of log records for renewing journals. The left vertical axis
is the time required to renew or synchronize journals and the
right one is the time for loading image. When upgrading, the
junior will first load namespace from the image file if it misses
lots of operations compared with the active. The top curve
represents the time when the junior reads fixed image in
which the initial size is 1 GB. After loading image, the junior
reads remaining operations from shared journals in SSP
according current submitted sn number. It can be seen that
time of renewing journal increases with the growth of log
records. If there are few gaps in namespace state, the junior
can synchronize latest operations from the active directly.
Experiment results show that the main cost for junior upgrad-
ing is for reading the image and journal files from the SSP. As
the procedure is achieved in the background, the active can
still provide service at this time. Only when the active per-
forms final synchronization (as shown in the bottom curve),
it stops to receive client requests for journal transmission. It
spent little time in which the value is about 22.78 milliseconds
when synchronizing 10,000 log records. So there is negligible
effects on normal file system operations. When new backup
nodes are added in the active-standby cluster, it can be
upgraded from the junior state to standby state by the same
way. Experiment results verify the effectiveness of renewing
protocol for service fault tolerance. It will significantly
improve the file system availability when more backup nodes
are added in the active-standby cluster.

5.6 Evaluation of Global State Recovery Mechanism
In this section, we evaluate the global state recovery and
snapshot with our highly reliable metadata service. Each
test loads or writes metadata files with a total 5 GB size in
which the unified timestamp is pre-written in the journals.

500 “ HDFS = HDFS-NFS
450 | = “CFS-1AIS = CFS-1A3S
400 |- TCFS-2A6S = CFS-3A9S

Time (second)

System Recovery and Checkpoint

Fig. 13. Time spent for global state recovery.

0.2

No failure (reduce)

=l CFS-Active failure (reduce)

0.1 / = == BoomFS-Master failure (reducc)

[SN S SV
Time (second)

Fig. 14. Run time comparison for Hadoop programs.

For comparison, we configured NFS [30] as a shared storage
for HDFS to store metadata files, namely HDFS-NFS. As
shown in Fig. 13, the time spent for global state recovery is
approximately equal for HDFS, CFS-1A1S and CFS-1A3S. It
is because the CFS can load the metadata information from
local files in the SSP directly, which achieves the similar per-
formance with HDFS. For HDFS-NFS, the cost is nearly two
times more than that of HDFS. The network communication
of accessing metadata files in NFS results in additional over-
head. For CFS-2A65S and CFS-3A9S, it spent less time for
recovery than HDFS as multiple metadata servers parti-
tioned the global namespace and loaded the image simulta-
neously. Besides, the backup nodes can reach the same
metadata state with the active parallelly. Benefited from our
global state recovery mechanism, the metadata servers in
CFS can effectively reach to the same timestamp and
recover to a consistent state after starting up.

The snapshot is an image file for saving the namespace
state in memory. It is made by the namenode in HDFS or
the active server in CFS. From the figure, it can be seen that
CFS-1A1S and CFS-1A3S spent the similar time with HDFS
and HDFS-NFS. As backup nodes need not make the snap-
shot, the CFS can quickly write a new image file in the SSP.
For HDFS-NFS, there is no significant performance degra-
dation to flush the image on NFS as the write cache reduces
the latency. When using multiple metadata servers, such as
CFS-2A6S and CFS-3A9S, the CFS spent less time for mak-
ing snapshot. This is because the metadata servers partition
the namespace in which each one only need to flush part of
the whole file and directory tree. The experiments prove
that our highly reliable metadata service can achieve effi-
cient global state recovery for file system.

5.7 Evaluation of Highly Reliable Metadata Service
for Hadoop Applications

In this section, we evaluate the tolerance ability of our highly
reliable metadata service with standard MapReduce applica-
tions as use cases. The CFS file system provides compatible
interfaces with the HDFS and supports mass data processing
in the MapReduce framework. To verify transparent failover
for upper applications, we compared the CFS with the Boom-
FS, another typical reliable system with multiple metadata
servers based on the HDFS. The test generated a metadata
server error for measuring the program completion time with
the same environments. It runs a Hadoop wordcount job on a
5 GB input file. The CFS was configured with 3A9S.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:49 UTC from IEEE Xplore. Restrictions apply.

ZHOU ET AL.: AHIGHLY RELIABLE METADATA SERVICE FOR LARGE-SCALE DISTRIBUTED FILE SYSTEMS

Fig. 14 shows the cumulative distribution of the percent-
age of completed MapReduce jobs over time in case of fail-
ures. The data of Boom-FS including normal and failure
operations comes from [23]. As shown in the figure, it had
an influence on the program when the metadata server
failed. Compared with the Boom-FS, the CFS exhibited bet-
ter failover performance when errors occurred. Its comple-
tion time of map and reduce jobs was less than the Boom-
FS, by 28.13 and 9.76 percent respectively. The reduce jobs
of the Boom-FS have a phenomenon of suspension. As it
took time to finish map jobs for recovery, the reduce jobs
needed the former to write intermediate results into the file
system before continuing subsequent operations. It added
additional waiting time. On the contrary, the fault tolerant
mechanism in the MAMS ensured fast taking over for meta-
data service. It had little effect on the MapReduce execution.
The experiment results indicate that our highly reliable pol-
icy can achieve transparent failover for upper applications
and ensured expected behavior in case of failures.

6 CONCLUSION

Metadata reliability is critical to large-scale storage systems
as it will affect file system operations and application per-
formance. In this paper, we propose a novel highly reliable
metadata service that fuses multiple new methodologies to
improve distributed file system reliability and availability.
We have introduced a new design of an active-standby
architecture to manage replica groups for multiple metadata
servers and adopted four collaborative and tightly con-
nected modules to achieve fault tolerance in case of failures.
We have implemented the highly reliable metadata service
in Clover file system (CFS), a large-scale distributed file sys-
tem for mass data processing compatible with the Hadoop
platform. Note that these methods can also be used in other
parallel/distributed file systems for metadata service reli-
ability. Experiment results confirm that this new reliable
metadata service can significantly improve the reliability of
file systems with negligible influence on metadata opera-
tions and ensure fast, transparent failover. In future work,
we will explore the integration of data availability with fault
tolerance mechanisms and consolidation techniques to fur-
ther improve file system reliability.

ACKNOWLEDGMENTS

This research is supported by the Beijing Municipal Science
and Technology Project under grant Z191100007119002.
This research is supported in part by the National Science
Foundation under grant CNS-1338078, CNS-1362134, CCF-
1409946, CCF-1718336, OAC-1835892, and CNS-1817094.
This research is also supported in part by the National Sci-
ence Foundation of China No. 61572377, the Natural Science
Foundation of Hubei Province of China No.2017CFC889,
and the Fundamental Research Funds for the Central Uni-
versities No. 2018QNA5015.

REFERENCES

[1] P.J. Braam, “The Lustre storage architecture,” White Paper, Clus-
ter File System, Inc., Oct. 2003.

[2] P.H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur, “PVES: A
parallel file system for Linux clusters,” in Proc. 4th Annu. Linux
Showcase Conf., 2000, pp. 391-430.

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

391

S. Ghemawat, H. Gobioff, and S. T. Leung, “The Google file
system,” in Proc. ACM Symp. Oper. Syst. Principles, 2003, pp. 29-43.
K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in Proc. Int. Conf. Massive Storage Syst.
Technol., 2010, pp. 1-10.

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Proc.
USENIX Symp. Operating Syst. Des. Implementation, 2006, pp. 307-320.
S. Sinnamohideen, R. Sambasivan, J. Hendricks, K. Liu, and
G. Ganger, “A transparently-scalable metadata service for the
Ursa Minor storage system,” in Proc. USENIX Annu. Techn. Conf.,
2010, p. 13.

“HDFS federation,” 2017. [Online]. Available: https://hadoop.
apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/
Federation.html

A.Roy, H. Zeng,]. Bagga, and A. Snoeren, “Passive realtime data-
center fault detection and localization,” in Proc. USENIX Symp.
Networked Syst. Des. Implementation, 2017, pp. 595-612.

I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of fault
tolerance mechanisms and checkpoint/restart implementations
for high performance computing systems,”]. Supercomput.,
vol. 65, no. 3, pp. 1302-1326, 2013.

D. Fiala, F. Mueller, C. Engelmann, K. Ferreira, R. Brightwell, and
R. Riesen, “Detection and correction of silent data corruption for
large-scale high-performance computing,” in Proc. Int. Conf. High
Perform. Comput. Netw. Storage Anal., 2012, Art. 78.

X. Tang, J. Zhai, B. Yu, W. Chen, W. Zheng, and K. Li, “An efficient in-
memory checkpoint method and its practice on fault-tolerant HPL,”
IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 4, pp. 758-771, Apr. 2018.
K. Sato, A. Moody, K. Mohror, T. Gamblin, B. Supinski,
N. Maruyama, and S. Matsuoka, “FMI: Fault tolerant messaging
interface for fast and transparent recovery,” in Proc. Int. Parallel
Distrib. Process. Symp., 2014, pp. 1225-1234.

R. Garg, T. Patel, G. Cooperman, and D. Tiwari, “Shiraz: Exploit-
ing system reliability and application resilience characteristics to
improve large scale system throughput,” in Proc. 8th Annu. IEEE/
IFIP Int. Conf. Depend. Syst. Netw., 2018, pp. 83-94.

D. Borthakur, et al., “Apache Hadoop goes realtime at Facebook,”
in Proc. SIGMOD Conf., 2011, pp. 1071-1080.

C. Min, S. Lee, and Y. Eom, “Design and implementation of a log-
structured file system for flash-based solid state drives,” IEEE
Trans. Comput., vol. 63, no. 9, pp. 22152227, Sep. 2014.

J. Yoo, J. Oh, S. Lee, Y. Won, J. Ha, J. Lee, and J. Shim, “OrcFS:
Orchestrated file system for flash storage,” ACM Trans. Storage,
vol. 14, no. 2, 2018, Art. no. 17.

T. Haerder and A. Reuter, “Principles of transaction-oriented database
recovery,” ACM Comput. Surveys., vol. 15, no. 4, pp. 287-317, 1983.

S. C. Tweedie, “Journaling the Linux ext2fs file system,” in Proc.
4th Annu. LinuxExpo, 1998.

F. Schmuck and R. Haskin, “GPFS: A shared-disk file system for
large computing clusters,” in Proc. 1st USENIX Conf. File Storage
Technol., 2002, Art. no. 19.

Z. Zhang, et al., “A light-weight log-based hybrid storage sys-
tem,” J. Parallel Distrib. Comput., vol. 118, no. 2, pp. 307-315, 2018.
A. Oriani and 1. C. Garcia, “From backup to hot standby: High
availability for HDFS,” in Proc. Symp. Reliable Distrib. Syst., 2012,
pp. 131-140.

F. Wang, et al., “Hadoop high availability through metadata repli-
cation,” in Proc. 1st Int. Workshop Cloud Data Manage., 2009, pp. 37—44.
P. Alvaro, T. Condie, N. Conway, K. Elmeleegy,]. M. Hellerstein,
and R. C. Sears, “Boom: Data-centric programming in the data-
center,” Tech. Rep. UCB/EECS-2009-113, 2009.

T. Hsu and A. Kshemkalyani, “Value the recent past: Approxi-
mate causal consistency for partially replicated systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 29, no. 1, pp. 212-225, Jan. 2018.
M. T. Ozsu and P. Valduriez, Principles of Distributed Database Sys-
tems, Berlin, Germany: Springer, 2011.

“Three-phase commit protocol,” 2017. [Online]. Available:
https:/ /en.wikipedia.org/wiki/Three-phase_commit_protocol

I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. Ports,
“Building consistent transactions with inconsistent replication,” in
Proc. 25th Symp. Operating Syst. Principles, 2015, pp. 263-278.

J. Xiong, Y. Hu, G. Li, R. Tang, and Z. Fan, “Metadata distribution
and consistency techniques for large-scale cluster file systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 22, no. 5, pp. 803-816, May 2011.

A. Hatzieleftheriou and S. V. Anastasiadis, “Host-side filesystem
journaling for durable shared storage,” in Proc. 13th USENIX
Conf. File Storage Technol., 2015, pp. 59-66.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:49 UTC from IEEE Xplore. Restrictions apply.

https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/Federation.html
https://en.wikipedia.org/wiki/Three-phase_commit_protocol

392

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]
[41]
[42]

[43]

[44]

[45]

[46]
[471

[48]

[49]

(501
[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

R. Sandberg, et al., “Design and implementation of the Sun
network filesystem,” in Proc. Summer USENIX Conf., 1985, pp.
119-130.

“Apache software foundation,” 2017. [Online]. Available: http://
zookeeper.apache.org/bookkeeper

F. Chang, et al., “Bigtable: A distributed storage system for struc-
tured data,” in Proc. USENIX Oper. Syst. Des. Implementation, 2006,
p- 15.

J. Corbett, et al., “Spanner: Google’s globally-distributed database,”
in Proc. USENIX Oper. Syst. Des. Implementation, 2012, pp. 251-264.

Y. Lin and H. Shen, “EAFR: An energy-efficient adaptive file repli-
cation system in data-intensive clusters,” IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 4, pp. 1017-1030, Apr. 2017.

S. He and X. Sun, “A cost-effective distribution-aware data
replication scheme for parallel I/O systems,” IEEE Trans. Comput.,
vol. 67, no. 10, pp. 1374-1387, Oct. 2018.

J. Zhou, Y. Chen, and W. Wang, “Attributed consistent hashing
for heterogeneous storage systems,” in Proc. 27th Int. Conf. Parallel
Archit. Compilation Techn., 2018, Art. no. 23.

R. Shi and Y. Wang, “Cheap and available state machine repli-
cation,” in Proc. USENIX Annu. Tech. Conf., 2016, pp. 265-279.

T. Kobus, M. Kokocinski, and P. Wojciechowski, “Hybrid transac-
tional replication: State-machine and deferred-update replication
combined,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 7,
pp. 1499-1514, Jul. 2018.

D. Fetterly, et al., “TidyFS: A simple and small distributed file sys-
tem,” in Proc. USENIX Conf. USENIX Annu. Tech. Conf., 2011, p. 34.
M. Isard, “Autopilot: Automatic data center management,” ACM
SIGOPS Oper. Syst. Rev., vol. 41, no. 2, pp. 60-67, 2007.

L. Lamport, “The part-time parliament,” ACM Trans. Comput.
Syst., vol. 16, no. 2, pp. 133-169, 1998.

B. Liskov, et al., “Replication in the Harp file system,” in Proc.
Symp. Operating Syst. Principles Conf., 1991, pp. 226-238.

A. Papaioannou and K. Magoutis, “Replica-group leadership
change as a performance enhancing mechanism in NoSQL data
stores,” in Proc. IEEE 38th Int. Conf. Distrib. Comput. Syst., 2018,
pp. 1448-1453.

C.Melo, J. Dantas, A. Oliveira, D. Oliveira, I. Fé,]. Araujo, R. Matos,
and P. Maciel, “Availability models for hyper-converged cloud
computing infrastructures,” in Proc. Annu. IEEE Int. Syst. Conf.,
2018, pp. 1-7.

X. He, L. Ou, C. Engelmann, X. Chen, and S. L. Scott, “Symmetric
active/active metadata service for high availability parallel file sys-
tems,” . Parallel Distrib. Comput., vol. 69, no. 12, pp. 961-973, 2009.
C. Leangsuksun, et al., “Asymmetric active-active high availability
for high-end computing,” in Proc. 2nd Int. Workshop Oper. Syst., 2005.
“Apache software foundation,” 2017. [Online]. Available: http://
zookeeper.apache.org/

F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-
performance broadcast for primary-backup systems,” in Proc. 41st
Int. Conf. Depend. Syst. Netw., 2011, pp. 245-256.

D. Ongaro and J. Ousterhout, “In search of an understandable
consensus algorithm,” in Proc. USENIX Annu. Techn. Conf., 2014,
pp- 305-319.

“Azure cosmos db,” 2017. [Online]. Available: https://azure.
microsoft.com/en-us/try/cosmosdb/

G.DeCandia, etal., “Dynamo: Amazon'’s highly available key-value
store,” ACM SIGOPS Oper. Syst. Rev., vol. 41, pp. 205-220, 2007.

Y. Wang, J. Zhou, C. Ma, W. Wang, D. Meng, and]. Kei, “Clover:
A distributed file system of expandable metadata service derived
from HDFS,” in Proc. Int. Conf. Cluster Comput., 2012, pp. 126-134.
J. Zhou, Y. Chen, X. Gu, W. Wang, and D. Meng, “A virtual shared
metadata storage for HDFS,” in Proc. IEEE Int. Conf. Netw. Archit.
Storage, 2015, pp. 265-274.

B. Liskov and J. Cowling, “Viewstamped replication revisited,” Com-
put. Sci. Artif. Intell. Laboratory, MIT, Cambridge, MIT-CSAIL-TR-
2012-021,2012.

K. Arya, R. Garg, A. Polyakov, and G. Cooperman, “Design and
implementation for checkpointing of distributed resources using
process-level virtualization,” in Proc. Int. Conf. Cluster Comput.,
2016, pp. 402-412.

K. M. Chandy and L. Lamport, “Distributed snapshots: Determin-
ing global states of distributed systems,” ACM Trans. Comput.
Syst., vol. 3, no. 1, pp. 63-75, 1985.

“Common open policy service,” 2017, [Online]. Available:
https:/ /en.wikipedia.org/wiki/CommonOpen_Policy Service

J. R. Norris, Markov Chains,” Cambridge, U.K.: Cambridge Univ.
Press, 1997.

[59]

[60]

[61]

G. Su, T. Chen, Y. Feng, and D. Rosenblum, “ProEva: Runtime
proactive performance evaluation based on continuous-time mar-
kov chains,” in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng., 2017,
pp- 484-495.

K. S. Trivedi, “Probability and statistics with reliability, queueing,
and computer science applications,” Englewood Cliffs, NJ, USA:
Prentice-Hall, 1982.

S.He, Y. Wang, Z. Li, X. Sun, and C. Xu, “Cost-aware region-level
data placement in multi-tiered parallel I/O systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 28, no. 7, pp. 1853-1865, Jul. 2017.

Jiang Zhou received the PhD degree in computer
architecture from the Institute of Computing Tech-
nology, Chinese Academy of Sciences, in 2014.
He is an assistant professor with the Institute of
Information Engineering, Chinese Academy of
Sciences. His research interests include file and
storage systems, parallel and distributed comput-
ing, metadata management, /O optimization, and
cloud computing.

Yong Chen is an associate professor and director
of the Data-Intensive Scalable Computing Labora-
tory in the Computer Science Department of Texas
Tech University. He is also the site director of the
NSF Cloud and Autonomic Computing Center at
Texas Tech University. His research interests
include data-intensive computing, parallel and dis-
tributed computing, high-performance computing,
and cloud computing. More information about
him can be found at http://www.myweb.ttu.edu/
yonchen/.

Weiping Wang received the PhD degree in com-
puter science from the Harbin Institute of Technol-
ogy, China, in 2008. He is a professor with the
Institute of Information Engineering, Chinese Acad-
emy of Sciences. His research interests include
database and storage systems.

Shuibing He received the PhD degree in com-
puter science and technology from the Huazhong
University of Science and Technology, in 2009. He
is now a ZJU100 young professor with the College
of Computer Science and Technology, Zhejiang
University. His research areas include parallel
I/O systems, file and storage systems, high-
performance and distributed computing. He has
more than 60 papers in major journals and interna-
tional conferences including the IEEE Transac-
tions on Parallel and Distributed Systems, the
IEEE Transactions on Computers, ICDCS, IPDPS,
ICPP, and CLUSTER.

Dan Meng is a professor and director of the Insti-
tute of Information Engineering, the Chinese
Academy of Sciences. His main research inter-
ests include computer architecture, information
security and big data storage and processing.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:49 UTC from IEEE Xplore. Restrictions apply.

http://zookeeper.apache.org/bookkeeper
http://zookeeper.apache.org/bookkeeper
http://zookeeper.apache.org/
http://zookeeper.apache.org/
https://azure.microsoft.com/en-us/try/cosmosdb/
https://azure.microsoft.com/en-us/try/cosmosdb/
https://en.wikipedia.org/wiki/CommonOpen_Policy_ Service
http://www.myweb.ttu.edu/yonchen/
http://www.myweb.ttu.edu/yonchen/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

