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ABSTRACT

Emergent ReRAM-based accelerators support in-memory compu-

tation to accelerate deep neural network (DNN) inference. Weight

matrix pruning of DNNs is a widely used technique to reduce the

size of DNN models, thereby reducing the resource and energy

consumption of ReRAM-based accelerators. However, conventional

works on weight matrix pruning for ReRAM-based accelerators

have three major issues. First, they use heuristics or rules from do-

main experts to prune the weights, leading to suboptimal pruning

policies. Second, they mostly focus on improving compression ratio,

thus may not meet accuracy constraints. Third, they ignore direct

feedback of hardware.

In this paper, we introduce an automated DNN pruning and map-

ping framework, named Auto-prune. It leverages reinforcement

learning (RL) to automatically determine the pruning policy con-

sidering the constraint of accuracy loss. The reward function of RL

agents is designed using hardware’s direct feedback (i.e., accuracy

and compression rate of occupied crossbars). The function directs

the search of the pruning ratio of each layer for a global optimum

considering the characteristics of individual layers of DNN models.

Then Auto-prune maps the pruned weight matrices to crossbars

to store only nontrivial elements. Finally, to avoid the dislocation

problem, we design a new data-path in ReRAM-based accelerators

to correctly index and feed input to matrix-vector computation

leveraging the mechanism of operation units. Experimental results

show that, compared to the state-of-the-art work, Auto-prune

achieves up to 3.3X compression rate, 3.1X area efficiency, and 3.3X

energy efficiency with a similar or even higher accuracy.
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1 INTRODUCTION

Deep neural networks (DNNs) have become the dominant approach

to solving a variety of computing problems in computer vision [26],

natural language processing [22], robotics[24] among many other

fields. Leveraging emerging devices and non-traditional computing

systems [1–3, 6, 9, 10, 12, 27, 37] is an ideal approach to accelerate

DNN inference. Resistive random access memory (ReRAM) is the

main candidate for DNN accelerators because of its superior char-

acteristics of extremely low energy leakage, high-density storage,

and in-situ computation.

ReRAM-based accelerators can perform matrix-vector multipli-

cation efficiently in the convolutional (CONV) layers and fully-

connected (FC) layers of DNNs [10, 17, 23, 29]. They store weight

matrices of DNN filters in crossbar arrays. The weights are repre-

sented as the conductances, which conduct dot-product with the

voltages converted from the input feature maps. The current in

the end of each bitline can be summed up and the dot-product

operations are executed simultaneously, thus reducing the massive

amount of data movements between memory and arithmetic units

required in the von Neumann computer architecture.

Recent researches show that weight sparsity increases as the

bits-per-cell decreases [33]. After applying weight sparsifying algo-

rithms (e.g., quantization [7] and low-rank matrix factorization [5])

during training, up to 78% of crossbar cells may store zero weights.

As a result, pruning these values before mapping to hardware saves

the usage of crossbars and removes unnecessary computations.

However, existing pruning algorithms designed on ReRAM-based

accelerators have the following three major issues.

First, these algorithms prune the weights using heuristics or rules.

For example, they typically used heuristics (e.g., patterns and all-

zero rows/columns) to direct the pruning process [4, 30, 35]. Because

of the nature of heuristics-based algorithms, these schemes may

prune some nontrivial weights or preserve some trivial weights.

Therefore, it would be very difficult for them to find a pruning policy
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on ReRAM-based accelerators that achieves a global optimum for

DNN models.

Second, they do not use the actual accuracy loss of compressed

DNN models as direct feedback in pruning. To reduce the resource

and energy consumption of ReRAM-based accelerators, existing

algorithms tend to maximize the compression rate of weight matri-

ces of DNNs [4, 33]. They do not consider its impact on the actual

accuracy loss of the compressed DNN models, which may not meet

the accuracy constraints.

Third, they ignore direct feedback of hardware in pruning. The

performance of a pruning algorithm cannot be accurately reflected

by the compression rate of weight matrices of DNNs. For example,

the architecture of ReRAM-based accelerators includes both cross-

bar arrays and their auxiliary ADC/DAC circuits. The conventional

pruning algorithms optimized on the compression rate might not

be optimal on the energy consumption for the ReRAM-based ac-

celerator. Furthermore, the algorithms optimized on one hardware

may not be optimal on the other with respect to the number of oc-

cupied crossbars. We need specialized pruning policies for different

architectures of ReRAM-based accelerators.

In this paper, we propose a hardware-aware automated pruning

and mapping framework, named Auto-prune, for ReRAM-based

accelerators. First, it leverages reinforcement learning to automat-

ically predict the sparsity of DNN layers given the resource con-

straints and the hardware’s feedback. For each layer, the RL agent

receives the configuration and characteristic of the layer as obser-

vation. Then it outputs the expected pruning ratio of the weight

matrix for the layer. After the pruning ratios of all the layers are

decided, we leverage the simulator of ReRAM-based accelerators

as the environment to obtain direct feedback (i.e., the accuracy loss

and/or energy consumption of the compressed DNN models and

the compression rate of occupied crossbars). The RL agent then uses

the feedback to compute reward of this pruning policy (i.e., a list

of pruning ratios for all layers). After multiple epochs of searching

both locally and globally, the reward converges and the optimal

pruning policy is decided. Second, Auto-prune compresses DNN

models in a layer-wise manner given the layer sparsity. Specifically,

it prunes the weight matrices in the granularity of column-vectors.

We remove the less important column-vectors and shift the re-

maining vectors left and then map the pruned weight matrices to

crossbar arrays. Third, we add a weight indexing structure to the

data-path of the architecture of ReRAM-based accelerators. The

control unit can feed matching input to the ReRAM-based crossbars

to conduct matrix-vector multiplication at the level of the opera-

tion unit (OU) [33]. Finally, the control unit also needs to place the

output of an OU at its matching position in the output register to

solve the dislocation problem.

In summary, this paper offers the following contributions:

• We design an automated pruning and mapping framework

for ReRAM-based accelerators, Auto-prune, which searches

for a global optimum policy without requiring rule-based

heuristics and domain experts.

• We use the actual accuracy loss and direct feedback from

the simulator of ReRAM-based accelerators in the pruning

policy, which offers a specialized solution given the different

configurations of ReRAM-based accelerators.

Figure 1: Illustration of mapping filter weights to a crossbar

array used in the architecture of ReRAM-based accelerators.

BL: bitline; WL: wordline; OU: operation unit.

• We prune and map weight matrices on ReRAM-based accel-

erator in a finer granularity of column-vector, which makes

better trade-offs between compression rate and accuracy

compared to conventional coarse-grained methods.

• We design a new data-path to support the column-vector

pruning and mapping, which uses the OUmechanism to skip

useless inputs, reduce ineffectual computation, and avoid

the dislocation problem.

We evaluate Auto-prune with three DNN models including

AlexNet [15], VGG16 [13], and Plain20 [8] on two datasets, i.e., CI-

FAR10 [14] and MNIST [16]. Compared to the state-of-the-art work

PIM-Prune [4], Auto-prune can achieve up to 3.3X compression

rate, 3.1X area efficiency, and 3.3X energy efficiency with a similar

or even higher accuracy.

2 BACKGROUND AND RELATEDWORK

2.1 Mapping Filter Weights of DNNs in
ReRAM-based Accelerators

The architecture of ReRAM-based accelerators consists of crossbar

arrays and input/output peripheral components. In a crossbar array,

each bitline is connected to each wordline through a ReRAM cell.

Input peripheral circuits (e.g., wordline decoders) convert inputs

to the voltage pulses and feed them into the corresponding word-

lines. Each ReRAM cell conveys the inner product between the

driving voltage and the cell conductance and generates current

which reaches the output peripheral circuits, e.g., analog-to-digital

converters (ADCs). The accumulated current at the end of each

bitline is converted by ADCs to the digital values representing the

partial sum of a convolution operation. Because of the overhead

from ADC, matrix-vector multiplication in ReRAM-based accelera-

tors must be executed at a smaller granularity, called an operation

unit (OU) [33]. Figure 1 shows a simplified example of an 8 × 4

crossbar array. When OU is enabled, only two wordlines and two

bitlines are turned on concurrently within the crossbar array in

one cycle.

When a DNN model is mapped onto a ReRAM crossbar array,

the synaptic weights of neurons are encoded as the conductances of
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Table 1: Comparison of Auto-prune with existing weight matrix pruning schemes for ReRAM-based accelerators.

Pruning technique Pattern for pruning Automation Hardware feedback Use OU in data-path

Lin et al. [21] Unimportant weight groups No No No

SRE [33] All-zero row/column vectors No No Yes

PIM-Prune [4] Unimportant rows and columns No No No

Pattern pruning [35] Patterns No No Yes

Auto-prune Unimportant column-vectors Yes Yes Yes

ReRAM cells in crossbars. Figure 1 demonstrates a mapping scheme

for ReRAM-based accelerators. It shows the convolution operations

between four 2×2×2 filters and one 4×4×2 input feature map in a

convolution layer. Each element of the filter is mapped to one bitline

of the crossbar array. A set of 2 × 2 × 2 activation values derived

from the input feature map is sent to eight wordlines of the crossbar

array after being converted to the input voltages. Because only two

wordlines and two bitlines in one OU are activated in one cycle, the

four convolution operations through the four bitlines are completed

in eight cycles. At the end of each bitline, the accumulated currents

are converted to the digital value by ADC, which corresponds to

an element in one channel of the output feature map. Then, the

input sliding window moves right (or down) and the corresponding

elements in the input feature maps are fed into the crossbar array

in the next cycles. When all the elements of the input feature map

complete convolution operations with the four filters in this layer,

the output feature map of 3 × 3 × 4 can be stored in buffers and

used as the input for the next layer.

2.2 Weight Pruning for ReRAM-based
Accelerators

Filter weight matrices of DNN models are sparse because they of-

ten store zero or redundant weights, which have a trivial impact

on the accuracy of the models [32]. More sparsity can be created

by applying weight quantization [7], low-rank matrix factoriza-

tion [5], and regularization [18, 36]. For example, Denil et al. ob-

tained weight matrices of 95% sparsity after applying low-rank

matrix factorization[5]. Therefore, before mapping the weight ma-

trices to crossbars of ReRAM-based accelerators, they need to be

pruned to reduce the number of occupied crossbars and their energy

consumption. However, all the rows and columns in a crossbar array

are coupled together. Even if some cells of the crossbar store zeros,

we cannot remove them directly because there are non-zero cells

in the same rows or columns. Researchers have designed several

weight pruning schemes considering the tightly coupled crossbar

structure in ReRAM-based accelerators [4, 21, 33, 35]. They can be

used to effectively reduce the number of trivial elements exploiting

the sparsity of the weight matrices.

The tightly coupled crossbar structure makes it difficult to ex-

ploit the sparsity of neural networks for ReRAM-based accelerators.

ReCom is the first to exploit the sparsity of neural networks for

ReRAM-based accelerators [11]. It explores the weight sparsity only

in the granularity of matrix-row and crossbar-row. SNrram [32]

and XCS [19] prune the unimportant columns of the weight matrix

to exploit the sparsity. Lin et al. proposed to exchange columns of

weight matrices to move non-zero elements together and store them

in clusters separated from the clusters of zero elements [21]. Then

the clusters of zero elements can be pruned. Yang et al. designed a

sparse ReRAM engine that prunes all-zero vectors in weight matri-

ces in either row or column direction for OU-based ReRAM-based

accelerators[33]. They exploited the sparsity of weight matrices at

the granularity of row/column vectors for a higher compression ra-

tio. For the pruning schemes designed for OU-based ReRAM-based

accelerators, additional indexing tables are required in their data-

path to active correct OUs in subsequent cycles. PIM-Prune exploits

the sparsity at the level of blocks of weight matrices [4]. It prunes

the elements in both row and column directions. Most recently,

pattern pruning uses patterns that represent irregular vectors of a

particular shape to identify more zero elements for pruning [35].

We compare Auto-prune to the major pruning schemes in Ta-

ble 1. Auto-prune has three major differences from them. First,

the existing schemes use the proposed heuristics or rules to find

a pruning policy. Because of the nature of heuristics-based algo-

rithms, it would be very difficult to find a global optimum for the

DNN model. Auto-prune addresses this issue by searching for an

optimal solution globally based on reinforcement learning. Second,

they were designed to maximize the compression ratio of weight

matrices. They may not meet the accuracy requirements. In con-

trast, Auto-prune involves direct feedback from the ReRAM-based

accelerators in the design loop, which makes better trade-offs be-

tween compression rate and accuracy. Third, existing approaches

usually prune weight matrices in the granularity of matrix, block,

or crossbar row/column. Auto-prune performs the pruning on

ReRAM-based accelerator in a finer granularity of column-vector

based on the OU mechanism. It delivers a higher compression rate

with the accuracy constraint.

2.3 Accelerator Design using Reinforcement
Learning

AutoML based on reinforcement learning is designed to release

human labor on searching configurations while there are vast

search space and limited computational budgets. It is a popular

searchmethodwith good performance, less assistance from humans,

and high computational efficiency [25, 34]. Therefore, AutoML is

widely used in neural architecture search. Inspired by the AutoML

framework, AMC compresses DNN models automatically [8]. It

achieves a higher compression ratio and preserves better accuracy

than heuristics-based model compression algorithms. More impor-

tantly, it does not require human expertise in the design. Recently,

HAQ [31] was designed to decide a hardware-aware quantization

policy for DNNs using AutoML. They targeted FPGA and ASCI-

based accelerators. Similar to them, Auto-prune uses AutoML to

determine the pruning ratio of weight matrices of DNNs before

mapping to crossbars. Its reinforcement learning agent is designed
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Figure 2: An overview of the Auto-prune framework.

to consider the characteristics of crossbars in the architecture of

ReRAM-based accelerators.

3 DESIGN OF AUTO-PRUNE

We model the pruning task for ReRAM-based accelerators as a re-

inforcement learning problem. The goal in reinforcement learning

is to learn a pruning policy that minimizes the number of occupied

crossbars used in ReRAM-based accelerators with accuracy con-

straints. Figure 2 shows the general architecture of the Auto-prune

framework, which includes the following components.

DDPG agent. It is used to generate actions, i.e., pruning policies

for each layer of DNNs. The DDPG agent is a pair of actor-critic

network [20]. The actor network predicts a new pruning policy for

hardware feedback given the input of a state vector consisting of

features of DNN models (e.g., the number of input channels) and

ReRAM-based accelerators (e.g., the number of crossbars required

before pruning). The critic network evaluates the importance of the

action-state pair using Q-function [28].

Pruning policy. The agent needs to explore a large action space

of pruning policies. We use a list of pruning ratios, each corresponds

to a layer of DNN models, to denote one pruning policy. In Figure 2,

the policy to be evaluated by the hardware assigns the pruning

ratio of 0.6 to layer 2, meaning that Auto-prune will need to prune

60% of the elements in the filter weight matrix of layer 2 before

mapping it to crossbars.

Pruned weight matrices. They are a list of filter weight ma-

trices to be mapped to ReRAM-based accelerators after pruning.

Different pruning policies may result in different pruned weight

matrices, leading to the accuracy variation of the pruned DNN

models and the changing resource consumption of hardware.

ReRAM-based accelerator. It is simulated using MNSIM [38].

Because Auto-prune leverages the OU mechanism to explore fine-

grained pruning, we add indexing modules to the data-path of

the processing elements (PEs) of ReRAM-based accelerators in the

simulator.

Table 2: Symbols used in the DDPG algorithm.

Symbol Meaning

k layer index

t layer type: CONV:1 ; FC: 0

inc number of channels in the input feature map

outc number of channels produced by the convolution

ks number of elements of a convolving kernel

h height of the input feature maps

w width of the input feature maps

s stride of the convolution

xb[k] number of crossbars required for mapping layer k

xbsaved [k]
accumulated number of the crossbar saved from

the first layer to layer k − 1

xbr est [k]
number of crossbars required from layer k + 1 to
the last layer

sizexb length of the crossbar size

accr eram
accuracy reported by the ReRAM-based accelera-

tor simulator

ak−1 action from the last time step

3.1 DDPG Algorithm for ReRAM-based
Accelerators

In this section, we describe the DDPG algorithm to search for an

optimal pruning policy given direct hardware feedback. In the

design of a DDPG agent, we need to define its state space, action

space, and reward function.

State space. For each layer k , we use a 12-dimensional feature
vector as our observation. Specifically, the state vector Sk for layer
k is defined as

(k, t, inc,outc,ks,h,w, s, xb[k], xbsaved [k], xbr est [k],ak−1) (1)

where all the features are defined in Table 2. It is worth noting

that for fully-connected layers their inc and outc are equal to the
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number of input and output neurons respectively. To make the re-

inforcement learning model effective for both convolutional layers

and fully-connected layers, we set both ks and s to 1 for the fully-
connected layers even though they do not have such attributes.

Action space. In order to achieve a fine-grained pruning de-

cision, we choose the Actor’s action space ak ∈ (0, 1] and prune

the current layer with a pruning ratio ak at the granularity of
column-vectors. We describe the pruning algorithm in Section 3.2.

Reward function. As direct feedbacks, the simulator passes the

number of occupied crossbars and the accuracy of the compressed

DNN models to the DDPG agent to compute the reward for rein-

forcement learning given the current pruning policy. Specifically,

we define our reward function to be related to both compression

rate and DNN model accuracy in Equation 2. The agent uses the

reward function to obtain reward and adjusts its policy based on

the reward. The reward function is also designed to balance the

impact of the compression rate of crossbars and the accuracy of

pruned DNN models in the searching process. Consequently, we

can avoid the situation of significant accuracy drop when exploring

pruning policies to maximize the compression rate of crossbars.

Reward = (1 −
1

ratexbcompression

)α × accr eram (2)

In the equation, α is a scaling factor which is set to 2 in our

experiments. ratexbcompression is a ratio of the number of occupied

crossbars for all the layers without pruning (xbor i ) to the number
of occupied crossbars using the current pruning policy (xbcur ) as
shown in Equation 3.

ratexbcompression =
xbor i
xbcur

(3)

xbor i =
L−1∑

k=0

(xbor i [k]) (4)

xbcur =
L−1∑

k=0

(xbcur [k]) (5)

xbor i [k] and xbcur [k] are the number of occupied crossbars
for layer k without pruning and with the current pruning policy
respectively. xbcur [k] is obtained from the simulator. xbor i [k] is
calculated using the following equations.

For convolutional layer k ,

xbor i [k] = �
ks × inc

sizexb
� × �

outc

sizexb
� (6)

For FC layer k ,

xbor i [k] = �inc/sizexb � × �outc/sizexb � (7)

3.2 Column-Vector Based Pruning and OU
Formation

Given a pruning policy generated by the DDPG actor, Auto-prune

needs to run pruning algorithms to mark nontrivial elements in

filter weight matrices based on their weights. It only maps the

nontrivial elements to crossbars. We use Algorithm 1 for matrix

pruning in Auto-prune. Specifically, it calculates the number of

column-vectors in a column of the weight matrix given the kernel

Algorithm 1 The column-vector based pruning algorithm

Require: д: the granularity of the column-vector;
ratiopruninд : the pruning ratio generated by DDPG

agents;

outc: number of output channels of a layer;
inc : number of channels of input feature map of the layer;
ks: kernel size of the layer;
W : 2D-weight matrix of the layer;

1: num ← �ks × inc/д�
2: tmp_sum ← 0, dict ← {}, list ← []

3: for i ← 0, 1, . . . , (outc − 1) do
4: cnt ← 0

5: for j ← 0, 1, . . . , (num × д − 1) do
6: tmp_sum ← tmp_sum + abs(W [j][i])
7: if (j + 1)%д == 0 then
8: dict .append(key : (cnt, i),value : tmp_sum)
9: tmp_sum ← 0

10: cnt ← cnt + 1
11: end if

12: end for

13: end for

14: sorted_list ← ascend_sort_by_value(dict)
15: for i ← �ratiopruninд ×num ×outc� − 1, . . . , len(sorted_list)-1

do

16: list .append(sorted_list[i].key)
17: end for

18: return list

(3,1)

(2,2)

(1,3)(1,4)(1,5)

(3,6)(3,3)(3,4)

(2,5)

Figure 3: An example of the pruning and OU formation pro-

cess. The value in each cell represents the weight of the cor-

responding element in the filter. (x,y) represents the coordi-

nate of a vector in the vector space. W and W ′ denote the

original and pruned weight matrices respectively.

size of the layer, the number of input channels, and the granularity

of column-vectors (Line #1). Then for each column in the matrix,

it scans through all the column-vectors and records their coordi-

nates and the accumulated weights of the vectors in a dictionary

(Line #3-13). Then we sort the vectors based on their weights (Line

#14). Finally, based on the pruning ratio, the vectors consisting of

nontrivial weight elements are selected and returned (Line #15-18).

We use an example to illustrate the pruning and OU formation

process in Figure 3. In the example, we assume the granularity of

a column-vector is 2. The weight matrixW can be divided into 18

column-vectors. Each column-vector is indexed using its coordinate

in the vector space. For example, the coordinate of the vector [1, 6]T

in filter F1 (column 1) is (3, 1), where 3 represents that it is located
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Algorithm 2 Vector sequence creation algorithm

Require: h: the number of column-vectors in each OU;
list[i]: the list of index pairs from Algorithm 1;

1: Index ← {}, L ← дetIndexLen(list)
2: cnt ← 0

3: for i =0, 1, . . . , (L − 1) do

4: taд[i] ← 1

5: end for

6: for i =0, 1, . . . , (L − 1) do

7: if taд[i] == 1 then
8: Index.append(list[i])
9: taд[i] ← 0

10: cnt ← 1

11: for j = i + 1, . . . , (L − 1) do

12: if list[i].x == list[j].x and taд[j] == 1 then
13: Index.append(list[j])
14: taд[j] ← 0

15: cnt ← cnt + 1
16: if cnt==h then

17: break

18: end if

19: end if

20: end for

21: end if

22: end for

23: return Index

in the third row in the vector space and 1 represents that it is in the

first column in the vector space. After running the algorithm for

the pruned weight matrixW ′, nine vectors are pruned to achieve a

pruning ratio of 50% because their accumulated weights are smaller

than those of the remaining vectors. One observation from the ex-

ample is that the pruned vectors are randomly located in the weight

matrix. In order to exploit the sparsity, Auto-prune accumulates

the remaining vectors to remove the holes. Then it leverages the

support of OUs in ReRAM-based accelerators to perform matrix-

vector multiplication.

For the formation of OUs after pruning, we need to create a list

of indexes of column-vectors based on the order of their access in

crossbars in the sequence of computation of OUs. Then we will add

a corresponding indexing module to the data-path of ReRAM-based

accelerators as discussed in Section 3.3. We use Algorithm 2 to

form OUs and create the index. Each OU has a fixed number of

column-vectorsh. In the vector space, we need to findh vectors that
are next to each other (Line #11-20). These h vectors are computed
together in one OU. The algorithm assigns all vectors in the list

output from Algorithm 1 to their corresponding OUs. The output of

Algorithm 2 is an indexing list to be used by data-paths of ReRAM-

based accelerators. We continue using the example in Figure 3 for

illustration. The index output of Algorithm 2 is {(3,1), (3,3), (2,2),

(2,5), (1,3), (1,4), (3,4), (3,6), (1,5)}. We assume that the OU size is

2×2 and two column-vectors are assigned to one OU. The data-path

hardware in ReRAM-based accelerators will map the weight vectors

onto 5 OUs. For example, [1, 6]T at (3,1) in F1 and [2, 3]T at (3,3) in
F3 are assigned to OU1.

Figure 4: An overview of the data-path for Auto-prune.

3.3 Data-Path Design

Because we use semi-structural pruning in Auto-prune, vectors

of different filters may be placed to the same crossbar-column. As

shown in Figure 3, [3, 3]T of F3, [3, 2]T of F2, and [1, 6]T of F1 are

placed to the first column in the crossbar, resulting in the dislocation

problem [4]. In this section, we introduce a novel data-path to solve

the dislocation problem in ReRAM-based accelerators.

Figure 4 shows the data-path designed for the column-vector

pruning algorithm used in the Auto-prune framework. Because

the crossbar arrays only store nontrivial weights, we only need to

fetch the input activations corresponding to the weights.Weight

index buffers store the index of column-vectors generated by Algo-

rithm 2. In each cycle, control units fetch a few index tuples having

the same x coordinate from the weight index buffer. The number
of tuples fetched should be smaller than or equal to the number

of column vectors in one OU. Input address generators generate

the address of an activation vector in the input feature map to be

accessed by the crossbar given the x coordinate of index tuples
from the weight index buffer. Specifically, the buffer address of the

activation vector is д × (x − 1) + 1 where д is the granularity of
column-vectors. Input registers store the input to the crossbar array.

To perform computation on OUs, control units issue command to

active corresponding wordlines and bitlines given the coordinates

of column-vectors. Then we need to place the output of crossbars at

a matching location in the output. For this purpose, we use position

mask generators to produce position masks whose length is equal to

the number of columns of the original weight matrix. The currents

from crossbar arrays are converted by ADCs and then stored in

OU outputs. Then XB (crossbar) outputs recover the final output

by padding the value from the OU output with zeros according

to the position mask. Then adders add the previous output from

intra-layer output and the new value from XB output. Finally, they

store the partial sum to the intra-layer output.

We continue to use the example in Figure 3 for illustration. Given

the output of Algorithm 2, The weight index buffer stores {(3,1),

(3,3), (2,2), (2,5), (1,3), (1,4), (3,4), (3,6), (1,5)}. In OU1, two vectors

[1, 6]T and [2, 3]T with indexes (3,1) and (3,3) respectively (marked

in the red square in Figure 5(a)) are selected to perform computation.

For the selected weights, the input address generator outputs buffer

address 5 which is equal to 2×(3-1)+1. Then given the address, [9,10]

in the feature map are fetched to the input register. The crossbar

array then performs multiplication between [9, 10] and the selected

weights in OU1 and then outputs [69, 48]. However, because [1, 6]T
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Figure 5: States of data-path components after the execution

of OU1 and OU2.

and [2, 3]T are from F1 and F3 respectively as shown in Figure 3. We

cannot store it in the intra-layer output directly. Instead, we need

to find the corresponding positions of 69 and 48 in the XB output.

The positions indicated by the position mask are [1, 0, 1, 0, 0, 0]

because the accumulated sum for Filter 1 and Filter 3 should be

placed at positions 1 and 3 respectively. As a result, the adder adds

[69, 0, 48, 0, 0, 0] from the XB output and [0, 0, 0, 0, 0, 0] from the

intra-layer output and then sends the result [69, 0, 48, 0, 0, 0] to the

intra-layer output.

In OU2, two vectors [3, 2]T and [4, 4]T with indexes (2,2) and (2,5)

respectively (marked in the red square in Figure 5(b)) are selected

to perform computation. For the selected weights, the input address

generator outputs buffer address 3. Then given the address [5,6]

in the feature map is fetched to the input register. The crossbar

array then performs multiplication between [5, 6] and the selected

weights in OU2 and outputs [27, 44]. However, because [3, 2]T and

[4, 4]T are from F2 and F5 respectively as shown in Figure 3. We

need to find the corresponding positions of 27 and 44 in the XB

output. The position mask is [0, 1, 0, 0, 1, 0] because the accumulated

sum for Filter 2 and Filter 5 should be placed at positions 2 and 5

respectively. As a result, the adder adds [0, 27, 0, 0, 44, 0] from the

XB output and [69, 0, 48, 0, 0, 0] from the intra-layer output and then

sends the result [69, 27, 48, 0, 44, 0] to the intra-layer output.

4 EVALUATION

4.1 Experimental Setup

Experimental platform.We implement a pruning and mapping

framework for ReRAM-based accelerators in Python. We use a

ReRAM simulator in the experiments because commercial ReRAM

Table 3: The structure of neural networks. The symbol a ×

Cb-c represents that a convolutional layers with b × b-sized
kernels and c output channels. The symbol Fd means a fully-

connected layer with d neurons.

Network Structure

AlexNet C3-64, C3-192, C3-384, 2 ×C3-256,

F4096, F4096, F10

VGG16 2 ×C3-64, 2 ×C3-128, 3 ×C3-256,3 ×C3-512,

3 ×C3-512, F4096, F1000, F10

Plain20 7 ×C3-16, 6 ×C3-32,

6 ×C3-64, F10

devices are unavailable to us.We useMNSIM [38] as the simulator of

ReRAM-based accelerators because of its efficiency, flexibility, and

simplicity. To support multi-bit weights, ISAAC [27] and PRIME [3]

store the weights in multiple cells in the same row and require addi-

tional modules to support shift-and-add operations, thus increasing

the overhead of peripheral circuits and lacking in reconfigurability

for different bit widths. MNSIM stores multi-bit weights in multi-

ple crossbars, improving the flexibility of computing units while

reducing the overhead of peripheral modules.

We use the hardware model in MNSIM to evaluate the area and

energy consumption of crossbars and other modules (including

DAC, ADC, IR, OR, and other digital parts). In the setting of the

model, each memristor cell stores one bit, and both ADC and DAC

are set to be 1 bit. Each weight of the DNN models uses 8-bit

quantization, which means 8 crossbars are needed to represent a

weight. By default, we set the crossbar size as 128×128 and the

granularity of column-vector (д) as 32. The operation unit (OU) size
is set to д × д. All other configurations are the same as the default
ones used in MNSIM.

Workloads and datasets.We evaluate Auto-prune with three

DNN models, including AlexNet [15], VGG16 [13], and Plain20 [8].

Table 3 shows the structures of these DNN models. We execute

the inference of the models on two datasets, i.e., CIFAR10 [14]

and MNIST [16]. The CIFAR10 dataset consists of 60, 000 colorful

images, each with 32 × 32 × 3 pixels. There are 50, 000 images for

training and 10, 000 images for testing. The MNIST dataset consists

of 70, 000 grayscale 28 × 28 × 1 images. It includes 60, 000 images

for training and 10, 000 images for testing.

Comparison systems.We compare Auto-prunewith the state-

of-the-art pruning and mapping frameworks for ReRAM architec-

tures: PIM-Prune [4] and Pattern-Prune [35]. We do not compare

Auto-prune with SRE [33] because SRE has not shown the infer-

ence accuracy of the pruned networks in the paper, making the

comparison unfair as Auto-prune provides both low accuracy loss

and high compression rate. Neither do we evaluate Lin et al. [21]

and XCS [19] because the evaluation results of PIM-Prune [4] have

shown PIM-Prune significantly outperforms them, making the com-

parisons redundant.

As PIM-Prune and Pattern-Prune are not open-source, we re-

implement them as faithfully as possible according to the descrip-

tions in their papers respectively. Although PIM-Prune supports

three pruning methods (i.e., SC+XRS, SR+XCS, and block-based

pruning), we only implement the block-based pruning method

because it exploits the fine-grained block-level sparsity in both
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Table 4: The compression rate (CR) comparison of different

frameworks on CIFAR10.

Network Method CR on XBs Acc5 Acc Drop

AlexNet

Naive 1 99.36%

PIM-Prune 4.3 98.81% 0.55%

Pattern-Prune 1.1 96.48% 2.88%

Auto-Prune 14.3 99.10% 0.26%

VGG16

Naive 1 99.29%

PIM-Prune 6.1 98.62% 0.67%

Pattern-Prune 2.6 98.43% 0.86%

Auto-Prune 11.9 98.62% 0.67%

Plain20

Naive 1 98.14%

PIM-Prune 7.3 98.19% -0.05%

Pattern-Prune 1.2 98.24% -0.10%

Auto-Prune 10.3 98.29% -0.15%

directions (row and column) while the other two methods can only

exploit the sparsity in one direction. PIM-Prune prunes the weights

in each block within a fixed compression rate, which may lead to

sub-optimal pruning performance. Pattern-Prune uses the pattern

pruning algorithm [30] to remove unimportant weights and then

applies kernel-reordering methods to map the pruned weight matri-

ces to crossbar arrays. Pattern-Prune only focuses on convolutional

layers which usually have a large number of patterns. It fails to

utilize the sparsity in fully-connected layers. Consequently, the

compression rate of the whole network models may be very low

using Pattern-Prune. Furthermore, we also compare Auto-prune

to the original system (Naive) where DNN models are not pruned

and directly mapped to ReRAM crossbar arrays.

4.2 General Results

Compression rate. Table 4 shows the compression rate (CR) com-

parison of different pruning and mapping methods on the CIFAR10

dataset. The CR is defined as the ratio of the number of occupied

crossbars (XBs) before pruning to that after pruning. We can see

that Auto-prune achieves the highest compression rate among

the four methods with the lowest accuracy drops. More specifically,

compared to Naive, Auto-prune can get 14.3X, 11.9X, and 10.3X

compression rates for AlexNet, VGG16, and Plain20, respectively,

with 0.26%, 0.67%, and -0.15% accuracy drops. Its compression rate

is up to 2.3X and 12X higher than that of PIM-Prune and Pattern-

Prune respectively. Auto-prune has the best pruning performance

because of its automated pruning method using reinforcement

learning and a fine-grained mapping mechanism.

We also notice that Pattern-Prune has the lowest compression

rate. This is because Pattern-Prune is efficient only for convolutional

layers but inefficient for fully-connected layers, which have high

weight sparsity. In contrast, both Auto-prune and PIM-Prune work

effectively for all the layers of the networks. We also observe that

AlexNet has the highest compression rate among the networks. The

reason is that AlexNet has 5% and 9% higher weight sparsity than

VGG16 and Plain20 respectively in our experimental results.

Table 5 shows the compression rates of different pruning meth-

ods on the MNIST dataset. For comparison, we use Acc1 to evaluate

the accuracy in these tests because all methods achieve similar

Acc5 accuracy but distinct Acc1 accuracy on this dataset. Auto-

prune also outperforms PIM-Prune and Pattern-Prune. Compared

Table 5: The compression rate comparison of different

frameworks on MNIST.

Network Method CR on XBs Acc1 Acc Drop

AlexNet

Naive 1 98.89%

PIM-Prune 13.6 98.41% 0.48%

Pattern-Prune 1.1 97.78% 1.11%

Auto-Prune 21.4 98.49% 0.40%

VGG16

Naive 1 98.67%

PIM-Prune 13.3 98.56% 0.11%

Pattern-Prune 2.8 98.34% 0.33%

Auto-Prune 19.3 98.63% 0.04%

Plain20

Naive 1 98.13%

PIM-Prune 5.0 97.91% 0.22%

Pattern-Prune 1.2 97.42% 0.71%

Auto-Prune 6.2 98% 0.13%
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Figure 6: The results of area efficiency on different datasets.

to Naive, Auto-prune achieves 21.4X, 19.3X, and 6.2X compres-

sion rates with 0.4%, 0.04%, and 0.13% accuracy drops for the three

networks respectively, while the other two methods achieve up to

13.6X, 13.3X, and 5X compression rates with at least 0.48%, 0.11%,

and 0.22% accuracy drops. We observe that the compression rates

are up to 62% higher on MNIST than those on CIFAR10 for AlexNet

and VGG16. This is because the images in the MNIST dataset are

easier to be classified than those in the CIFAR10 dataset. The trained

networks using the MNIST dataset require a fewer number of pa-

rameters to achieve similar accuracy. Consequently, more network

weights can be pruned on MNIST. We also notice that the compres-

sion rates of Plain20 on MNIST are lower than those on CIFAR10.

This is because (1) we choose Acc1 on MNIST which is more sensi-

tive to pruning than Acc5 and (2) the accuracy of Plain20 is more

sensitive to pruning than the other two networks.

Area efficiency. Figure 6(a) shows the crossbar area efficiency

of different methods on CIFAR10. The area efficiency is normalized

to that of the network without pruning (Naive). From Figure 6(a),

we can observe that Auto-prune achieves the best area efficiency

among the four schemes for all three networks. More specifically,

Auto-prune improves the area efficiency by 10.2X, 8.5X, and 7.5X
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Figure 7: The results of energy efficiency on different

datasets.

on AlexNet, VGG16, and Plain20, respectively, while PIM-Prune

and Pattern-Prune can improve by up to 3X, 5X, and 6X. These

results indicate that our proposed method is efficient to improve

crossbar area efficiency.

Figure 6(b) shows the results of ReRAM crossbar area efficiency

on MNIST. Auto-prune improves the area efficiency by 15.1X,

13.7X, and 4.6X for AlexNet, VGG16, and Plain20, respectively. The

area efficiency is up to 56% and 13X higher than those of PIM-

Prune and Pattern-Prune, respectively. We also observe that the

area efficiency of the networks trained on MNIST is up to 60%

higher than that on CIFAR10. The main reason is that the pruning

ratio with MNIST is higher than that with CIFAR10 for the same

network. Therefore, the fewer crossbar arrays make ReRAM-based

accelerators more area efficient.

Energy efficiency. Figure 7 shows the energy efficiency com-

parison among the network models on CIFAR10 and MNIST. The

energy efficiency is normalized to that of Naive. We can observe

that Auto-prune achieves up to 2.3X and 12.2X higher energy effi-

ciency compared to PIM-Prune and Pattern-Prune respectively with

CIFAR10. For MNIST, Auto-prune achieves 21.4X, 19.3X, and 6.2X

energy efficiency improvement for AlexNet, VGG16, and Plain20

respectively. As Auto-prune requires up to 95% fewer number of

ReRAM crossbar arrays, a smaller number of bitlines, wordlines,

ADCs, and DACs are activated, making it more energy efficient

than the other pruning schemes.

4.3 Occupied Crossbar Analysis

Table 6 and 7 show the number of occupied crossbars for each

layer of the networks on CIFAR10 and MNIST. Because of the space

limitation, we only show the results of AlexNet. We have similar

observations on other networks. AlexNet has eight layers, where

the first five layers are convolutional layers and the last three are

fully-connected layers. Because Pattern-Prune may map multiple

layers to one crossbar, we cannot compute the number of crossbars

for each layer individually. As a result, for Pattern-Prune, we only

Table 6: The number of occupied crossbars for each layer of

AlexNet on CIFAR10. Li means layer i of AlexNet.

Method
# of occupied crossbars

L1 L2 L3 L4 L5 L6 L7 L8 Total

Naive 8 80 336 432 288 2048 8192 256 11640

PIM-Prune 8 24 112 104 72 480 1800 120 2720

Pattern-Prune conv:280 fc:10496 10776

Auto-Prune 8 40 208 216 120 72 80 72 816

Table 7: The number of occupied crossbars for each layer of

AlexNet on MNIST. Li means layer i of AlexNet.

Method
# of occupied crossbars

L1 L2 L3 L4 L5 L6 L7 L8 Total

Naive 8 80 336 432 288 2048 8192 256 11640

PIM-Prune 8 16 32 56 40 128 512 64 856

Pattern-Prune conv:80 fc:10496 10576

Auto-Prune 8 8 24 16 16 96 360 16 544

record the total numbers of occupied crossbars for all convolutional

layers and all fully-connected layers respectively. We can observe

that different pruning schemes lead to different numbers of occu-

pied crossbars for each layer of the network and Auto-prune uses

the lowest number of occupied crossbars for the whole network.

Compared to Naive, Auto-prune reduces the total number of oc-

cupied crossbars by 93%, while PIM-Prune and Pattern-Prune only

reduce it by 77% and 7% respectively. Reducing the number of occu-

pied crossbars results in 2.1X and 2.3X higher area efficiency and

energy efficiency of ReRAM-based accelerators as shown in Fig-

ure 6(a) and Figure 7(a). We also observe that Auto-prune performs

70% better than PIM-Prune especially for the fully-connected layers

(i.e., L6, L7, and L8). This is because the fully-connected layers have
higher sparsity (as shown in Figure 9 in Section 4.4) than other

layers. The RL agent prunes more unimportant weights in the fully-

connected layers with a higher pruning ratio to achieve a global

optimum. In contrast, PIM-Prune uses a fixed pruning ratio for

all layers without considering the sparsity variation of individual

layers, resulting in less amount of pruned crossbar arrays to realize

the similar accuracy with Auto-prune. Furthermore, we find that

Pattern-Prune is inefficient for fully-connected layers because it

cannot reduce the number of crossbars for such layers.

Auto-prune has better performance than other pruning schemes

with MNIST. Specifically, it reduces the total number of occupied

crossbars by 95% compared to Naive, while PIM-Prune and Pattern-

Prune only reduce it by 93% and 9% respectively. We also observe

that PIM-Prune and Auto-prune use a fewer number of occupied

crossbars withMNIST than that with CIFAR10 for the same network.

For example, the total number of occupied crossbars for Auto-

prune reduces from 102 to 68 when the dataset is switched from

CIFAR10 to MNIST. This is because MNIST is easier to be classified

than the CIFAR10 dataset. Auto-prune identifies a larger number

of trivial elements for pruning in weight matrices with MNIST.

4.4 Sensitivity Studies

Crossbar size. The crossbar size may impact the compression rate

of occupied crossbars, the accuracy of networks, the area efficiency,

and the energy efficiency of ReRAM-based accelerators. We study
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Figure 8: Compression rate, area efficiency and energy effi-

ciency for AlexNet on CIFAR10 with various crossbar sizes.
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Figure 9: The layer-by-layer sparsity of AlexNet with vari-

ous crossbar sizes after pruning.

the effectiveness of Auto-prune with various crossbar sizes with

the CIFAR10 dataset. We only show the results of AlexNet because

we observed similar trends for other networks. Figure 8 (a), (b),

and (c) show the normalized compression rate, area efficiency, and

energy efficiency respectively compared to Naive. We observe that

the compression rate of occupied crossbars varies as we increase the

crossbar size from 32×32 to 256×256. The crossbar size of 128×128

has the highest compression rate 11.6X. For all the four crossbar

sizes, the normalized compression rates are consistently larger than

8 with less than 0.5% accuracy drop. Among the four crossbar sizes,

the ReRAM-based accelerator with the crossbar size of 128×128

achieves the highest energy efficiency and area efficiency, as shown

in Figure 8(b) and Figure 8(c).

To understand the characteristics of Auto-prune with different

crossbar sizes, Figure 9 shows the layer sparsity of AlexNet. For

the same crossbar size, we can see that L6, L7, and L8 have higher
sparsity on average compared to the other layers, meaning that

the fully-connected layers are more sparse and prone to be pruned.

For the same layer in AlexNet, the pruning ratios decided by the

reinforcement learning algorithm are also varied with different

crossbar sizes. To preserve the features in the original input feature

map as much as possible, Auto-prune is designed not to prune the

first layer. As a result, the sparsity of L1 equals zero in Figure 9.
The granularity of column-vectors.We study the impact of

the granularity of column-vectors on system performance. As Fig-

ure 10 shows, as the granularity of column-vectors increases, the

compression rate decreases. So do the area efficiency and energy

efficiency. When the granularity of column-vectors is 8, Auto-

prune achieves the highest compression rate. This is because using

finer-grained column-vectors helps exploit the sparsity of weight

matrices, improving the chances of pruning unimportant weights.

However, the fine granularity makes the hardware architecture

more complex in design, incurring higher indexing overhead. In

8 16 32 64
0

7

14

21

28

35

(a) Compression Rate.

N
or

m
al

iz
ed

 C
R

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y 
D

ro
p 

(%
)

CR Acc Drop

8 16 32 64
0

5

10

15

20

25

(b) Area Efficiency.

N
or

m
al

iz
ed

 E
ffi

ci
en

cy

8 16 32 64
0

7

14

21

28

35

(c) Energy Efficiency.

N
or

m
al

iz
ed

 E
ffi

ci
en

cy

Figure 10: Compression rate, area efficiency, and energy ef-

ficiency for AlexNet with various granularities of column-

vectors.
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Figure 11: The layer-by-layer sparsity of AlexNet with vari-

ous granularities of column-vectors after pruning.

this paper, we choose 32 as the granularity of column-vectors in

order to balance performance benefits and hardware overhead.

To understand the characteristics of Auto-prune with various

granularities of column-vectors, Figure 11 shows the layer sparsity

of AlexNet on CIFAR10 when the granularity increases from 8 to

64. For each layer except L1 and L7, as the granularity increases,
the layer sparsity decreases. When the granularity of the column-

vector is 8, the sparsity of each layer is above 87% and achieves the

highest.

4.5 Index Overhead Analysis

To support the data-path of ReRAM-based accelerators in the Auto-

prune framework, we need to store the index of the preserved

column-vectors of weight matrices in weight index buffers. Assume

that the number of elements in weight matrices of the unpruned

network isw and the pruning ratio of the network is sp, then the
number of preserved elements in the weight matrices after pruning

is �w×(1−sp)�. For a given granularity of column-vectorд, the num-
ber of column-vectors after pruning is �w × (1 − sp)/д�. Because
the weight index buffer needs to store both x and y coordinates to
index each column-vector and we need 5 bits to represent x or y at
most for the cases studied in the paper, the total amount of storage

space required for the weight index buffer is 2×5×�w × (1 − sp)/д�.
Figure12 shows the storage overhead of the weight index buffer

for different networks on CIFAR10 and MNIST. The granularity

of column-vector (i.e., д) is 32. The overhead results are derived
fromw and sp given the specification of networks and the output of
Auto-prune with different datasets. For example, the sp is 94% for
AlexNet on CIFAR10. Among all the networks, VGG16 with CIFAR

10 uses the largest amount of storage space (162 KB) to store the

index structure, leading to 2% storage overhead compared to the

original network size.
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Figure 12: The storage overhead of Weight Index Buffer for

different networks on CIFAR10 and MNIST respectively.

5 CONCLUSION

In this paper, we propose a hardware-aware automated DNN prun-

ing and mapping framework, Auto-prune, for ReRAM-based ac-

celerators. It utilizes three techniques to improve the compression

rate of ReRAM crossbars. First, it leverages reinforcement learning

to automatically determine a global optimum pruning policy given

the constraint of accuracy loss. Second, it prunes weight matrices

in a finer granularity to exploit the sparsity of weight matrices and

only maps the nontrivial weights to crossbars. Third, we devise a

new data-path to correctly index and feed input to matrix-vector

computation. The data-path skips useless inputs and reduces in-

effectual computation. Leveraging the OU mechanism, it solves

the dislocation issue. Experimental results show that Auto-prune

achieves up to 3.3X compression rate, 3.1X area efficiency, and 3.3X

energy efficiency compared to PIM-Prune while maintaining a simi-

lar or even higher accuracy. We believe the insights in Auto-prune

will inspire the future software and hardware co-design for deep

neural networks.
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